A. P. Russell, Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training, J. Physiol, vol.591, pp.4637-4653, 2013.

A. Munoz, C. Riber, P. Trigo, C. Castejon-riber, and F. M. Castejon, Dehydration, electrolyte imbalances and renin-angiotensinaldosterone-vasopressin axis in successful and unsuccessful endurance horses, Equine Vet. J, vol.42, pp.83-90, 2010.

D. H. Snow, P. Baxter, and R. J. Rose, Muscle fibre composition and glycogen depletion in horses competing in an endurance ride, Vet. record, vol.108, pp.374-378, 1981.

K. J. Davies, L. Packer, and G. A. Brooks, Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training, Arch. biochem. bioph, vol.209, pp.539-554, 1981.

H. Hoppeler, S. Klossner, and M. Fluck, Gene expression in working skeletal muscle, Adv. Exp. Med. Biol, vol.618, pp.245-254, 2007.

I. G. Cannell, Y. W. Kong, and M. Bushell, How do microRNAs regulate gene expression?, Biochem. Soc. Trans, vol.36, pp.1224-1231, 2008.

A. Grimson, MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol. cell, vol.27, pp.91-105, 2007.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, pp.15-20, 2005.

N. Kosaka, Secretory mechanisms and intercellular transfer of microRNAs in living cells, J. Biol. Chem, vol.285, pp.17442-17452, 2010.

F. Collino, Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs, PLoS one, vol.5, p.11803, 2010.

F. S. Lira, Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men, Eur. J. Appl. Physiol, vol.107, pp.203-210, 2009.

J. D. Arroyo, Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, vol.108, pp.5003-5008, 2011.

A. L. Baggish, Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training, J. Physiol, vol.589, pp.3983-3994, 2011.

A. Bye, Circulating microRNAs and aerobic fitness-the HUNT-Study, PloS one, vol.8, p.57496, 2013.

S. Nielsen, The miRNA plasma signature in response to acute aerobic exercise and endurance training, PloS one, vol.9, p.87308, 2014.

F. C. Mooren, J. Viereck, K. Kruger, and T. Thum, Circulating micrornas as potential biomarkers of aerobic exercise capacity, Am. J. Physiol. Heart Circ. Physiol, vol.306, pp.557-563, 2014.

S. Sawada, Profiling of Circulating MicroRNAs after a Bout of Acute Resistance Exercise in Humans, PloS one, vol.8, p.70823, 2013.

S. L. Wardle, Plasma MicroRNA Levels Differ between Endurance and Strength Athletes, PloS one, vol.10, p.122107, 2015.

M. Uhlemann, Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults, Eur. J. Prev. Cardiol, vol.21, pp.484-491, 2014.

S. Radom-aizik, Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells, Clin. Transl. Sci, vol.5, pp.32-38, 2012.

S. Radom-aizik, F. Zaldivar, S. Oliver, P. Galassetti, and D. M. Cooper, Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes, J. Appl. Physiol, vol.109, pp.252-261, 2010.

A. G. Tonevitsky, Dynamically regulated miRNA-mRNA networks revealed by exercise, BMC Physiol, vol.13, pp.9-20, 2013.

J. Krol, I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay, Nat. Rev. Genet, vol.11, pp.597-610, 2010.

H. Liu, Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma, BMC Syst. Biol, vol.4, pp.51-68, 2010.

A. Boveris and A. Navarro, Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic, Biol. Med, vol.44, pp.224-229, 2008.

S. Capomaccio, RNA sequencing of the exercise transcriptome in equine athletes, PloS one, vol.8, p.83504, 2013.

J. M. Scott, Cardiovascular Consequences of Completing a 160-km Ultramarathon, Med. Sci. Sport Exerc, vol.41, pp.25-33, 2009.

S. Mohr and C. C. Liew, The peripheral-blood transcriptome: new insights into disease and risk assessment, Trends Mol. Med, vol.13, pp.422-432, 2007.

E. Barrey, E. Mucher, C. Robert, F. Amiot, and X. Gidrol, Gene expression profiling in blood cells of endurance horses completing competition or disqualified due to metabolic disorder, Equine Vet. J. Suppl, vol.36, pp.43-49, 2006.

J. A. Gim, Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses, Gene, vol.547, pp.152-158, 2014.

A. N. Kavazis, A. J. Smuder, and S. K. Powers, Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle, J. Appl. Physiol, vol.117, pp.223-230, 2014.

V. Bianchessi, The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells, J. Mol. Cell Cardiol, vol.81, pp.62-70, 2015.

J. O. Holloszy and E. F. Coyle, Adaptations of skeletal muscle to endurance exercise and their metabolic consequences, J. Appl. Physiol. Respir. Environ. Exerc. Physiol, vol.56, pp.831-838, 1984.

J. A. Makarova, Exercise immunology meets MiRNAs, Exerc. Immunol. Rev, vol.20, pp.135-164, 2014.

A. Safdar, A. Abadi, M. Akhtar, B. P. Hettinga, and M. Tarnopolsky, A. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6 J male mice, PloS one, vol.4, p.5610, 2009.

C. P. Gomes, Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run, Biomarkers, vol.19, pp.585-589, 2014.

G. Tzimagiorgis, E. Z. Michailidou, A. Kritis, A. K. Markopoulos, and S. Kouidou, Recovering circulating extracellular or cell-free RNA from bodily fluids, Cancer Epidemiol, vol.35, pp.580-589, 2011.

L. Moldovan, Methodological challenges in utilizing miRNAs as circulating biomarkers, J. Cell Mol. Med, vol.18, pp.371-390, 2014.

N. Koulmann and A. Bigard, Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise, Pflugers Archiv-Europ. J. Physiol, vol.452, pp.125-139, 2006.

T. Thum, MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts, Nature, vol.456, pp.980-984, 2008.

J. G. Godwin, Identification of a microRNA signature of renal ischemia reperfusion injury, Proc. Natl. Acad. Sci. USA, vol.107, pp.14339-14344, 2010.

A. Pellegrini-masini, D. Tedeschi, P. Badagli, C. , and L. , Exercise-induced intravascular haemolysis in standardbred horses, Comp. Clin. Pathol, vol.12, pp.45-48, 2003.

Y. Inoue, Effect of exercise on iron metabolism in horses, Biol. Trace Elem. Res, vol.107, pp.33-42, 2005.

, Scientific RepoRts |, vol.6

L. Moyec and L. , Protein catabolism and high lipid metabolism associated with long distance exercise are revealed by plasma NMR metabolomics in endurance horses, Plos one, vol.9, p.90730, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00973735

R. Edgar, M. Domrachev, and A. E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res, vol.30, pp.207-210, 2002.

T. Buza, . Arick, H. Wang, and D. G. Peterson, Computational prediction of disease microRNAs in domestic animals, BMC Res. Notes, vol.7, pp.403-416, 2014.

C. Desjardin, Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology, BMC genomics, vol.15, pp.798-809, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01194112

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, pp.25-35, 2009.

A. Kauffmann, R. Gentleman, and W. Huber, ArrayQualityMetrics-a bioconductor package for quality assessment of microarray data, Bioinformatics, vol.25, pp.415-416, 2009.

G. K. Smyth, Linear models and empirical bayes methods for assessing differential expression in microarray experiments, Stat. Appl. Genet. Mol. Biol, vol.3, p.3, 2004.

J. M. Bland and D. G. Altman, Multiple significance tests: the Bonferroni method, BMJ, vol.310, p.170, 1995.

P. Lopez-romero, Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library, BMC Genomics, vol.12, pp.64-72, 2011.

G. Bindea, ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks, Bioinformatics, vol.25, pp.1091-1093, 2009.

R. Janky, iRegulon: from a gene list to a gene regulatory network using large motif and track collections, PLoS Comput. Biol, vol.10, p.1003731, 2014.

, Drugs to treat overweight and obesity, J. Psychosoc. Nurs. Ment. Health Serv, vol.52, pp.21-22, 2014.

Y. Ge, S. C. Sealfon, and T. P. Speed, Some Step-down Procedures Controlling the False Discovery Rate under Dependence, Stat. Sin, vol.18, pp.881-904, 2008.

Y. Assenov, F. Ramirez, S. E. Schelhorn, T. Lengauer, and M. Albrecht, Computing topological parameters of biological networks, Bioinformatics, vol.24, pp.282-284, 2008.

F. Villers, B. Schaeffer, C. Bertin, and S. Huet, Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems, Stat. Appl. Genet. Mol. Biol, vol.7, p.14, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00708182

N. Meinshausen and P. Buhlmann, High-dimensional graphs and variable selection with the Lasso, Ann. Stat, vol.34, pp.1436-1462, 2006.