M. Arumugam, J. Raes, E. Pelletier, D. Le-paslier, T. Yamada et al., Enterotypes of the human gut microbiome, Nature, vol.473, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

M. D. Auffret, R. Stewart, R. J. Dewhurst, C. Duthie, J. A. Rooke et al., Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse bos taurus breeds and basal diets, Frontiers in Microbiology, vol.8, p.2642, 2018.

I. M. Barchia, P. F. Arthur, C. Weber, R. M. Herd, K. A. Donoghue et al., Optimizing test procedures for estimating daily methane and carbon dioxide emissions in cattle using short-term breath measures, Journal of Animal Science, vol.95, issue.2, pp.645-656, 2017.

T. Cali?ski and J. Harabasz, A dendrite method for cluster analysis, Communications in Statistics, vol.3, issue.1, pp.1-27, 1974.

A. C. Cervino, M. Pichaud, F. Plaza-oñate, E. Le-chatelier, F. Gauthier et al., MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data, Bioinformatics, vol.35, issue.9, pp.1544-1552, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02417979

N. A. Cole, Effects of animal-to-animal exchange of ruminal contents on the feed intake and ruminal characteristics of fed and fasted lambs, Journal of Animal Science, vol.69, issue.4, pp.1795-1803, 1991.

P. I. Costea, F. Hildebrand, M. Arumugam, F. Bäckhed, M. J. Blaser et al., Enterotypes in the landscape of gut microbial community composition, Nature Microbiology, vol.3, issue.1, pp.8-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629150

R. Danielsson, J. Dicksved, L. Sun, H. Gonda, B. Müller et al., Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure, Frontiers in Microbiology, vol.8, p.226, 2017.

B. Delgado, A. Bach, I. Guasch, C. González, G. Elcoso et al., Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle, Scientific Reports, vol.9, issue.1, p.11, 2019.

G. F. Difford, D. R. Plichta, P. Løvendahl, J. Lassen, S. J. Noel et al., Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows, PLOS Genetics, vol.14, issue.10, 2018.

H. E. Flay, B. Kuhn-sherlock, K. A. Macdonald, M. Camara, N. Lopez-villalobos et al., Hot topic: Selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield, Journal of Dairy Science, vol.102, issue.3, pp.2018-15234, 2019.

P. J. Gerber, A. N. Hristov, B. Henderson, H. Makkar, J. Oh et al., Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review, Animal, vol.7, issue.s2, pp.220-234, 2013.

C. Hennig, Cluster-wise assessment of cluster stability, Computational Statistics & Data Analysis, vol.52, issue.1, pp.258-271, 2007.

S. A. Huws, C. J. Creevey, L. B. Oyama, I. Mizrahi, S. E. Denman et al., Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future, Frontiers in Microbiology, vol.9, p.2161, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890696

E. Jami, B. A. White, and I. Mizrahi, Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency, PLoS ONE, vol.9, issue.1, 2014.

F. Jari-oksanen, G. Blanchet, M. Friendly, R. Kindt, P. Legendre et al., vegan: Community ecology package. R package version 2.5-3, 2018.

P. Jeraldo, K. Kalari, X. Chen, J. Bhavsar, A. Mangalam et al., IM-TORNADO: A tool for comparison of 16S reads from paired-end libraries, PLoS ONE, vol.9, issue.12, 2014.

K. A. Jewell, C. A. Mccormick, C. L. Odt, P. J. Weimer, and G. Suen, Ruminal Bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency, Applied and Environmental Microbiology, vol.81, issue.14, 2015.

L. Junhua, H. Zhong, Y. Ramayo-caldas, N. Terrapon, V. Lombard et al., A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment, p.272690, 2019.

J. Kamke, S. Kittelmann, P. Soni, Y. Li, M. Tavendale et al., Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation, 2016.

. Microbiome, , vol.4, p.56

S. Kittelmann, C. S. Pinares-patiño, H. Seedorf, M. R. Kirk, S. Ganesh et al., Two different bacterial community types are linked with the low-methane emission trait in sheep, PLoS ONE, vol.9, issue.7, 2014.

D. Knights, T. L. Ward, C. E. Mckinlay, H. Miller, A. Gonzalez et al., , 2014.

, Cell Host & Microbe, vol.16, issue.4, pp.433-437

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, 2012.

,. Lê-cao, I. González, and S. Déjean, integrOmics: An R package to unravel relationships between two omics datasets, 2009.

A. L. Ramayo-caldas,

, Bioinformatics, vol.25, issue.21, pp.2855-2856

S. C. Leahy, W. J. Kelly, R. S. Ronimus, N. Wedlock, E. Altermann et al., Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies, Animal, vol.7, issue.s2, pp.235-243, 2013.

F. Li, C. Li, Y. Chen, J. Liu, C. Zhang et al., Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle, 2019.

. Microbiome, , vol.7, p.92

G. Manafiazar, S. Zimmerman, and J. A. Basarab, Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring system, Canadian Journal of Animal Science, vol.97, issue.1, pp.118-126, 2016.

C. Martin, D. P. Morgavi, and M. Doreau, Methane mitigation in ruminants: From microbe to the farm scale, Animal, vol.4, issue.3, pp.351-365, 2009.

T. A. Mcallister, K. J. Cheng, E. K. Okine, and G. W. Mathison, Dietary, environmental and microbiological aspects of methane production in ruminants, Canadian Journal of Animal Science, vol.76, issue.2, pp.231-243, 1996.

M. S. Mccabe, P. Cormican, K. Keogh, A. O'connor, E. O'hara et al., Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised succinivibrionaceae and an increase of the methanobrevibacter gottschalkii clade in feed restricted cattle, PLoS ONE, vol.10, issue.7, 2015.

P. R. Myer, T. P. Smith, J. E. Wells, L. A. Kuehn, and H. C. Freetly, Rumen microbiome from steers differing in feed efficiency, PLoS ONE, vol.10, issue.6, 2015.

S. M. O'herrin and W. R. Kenealy, Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens, Applied and Environmental Microbiology, vol.59, issue.3, pp.748-755, 1993.

J. N. Paulson, O. C. Stine, H. C. Bravo, and M. Pop, Differential abundance analysis for microbial marker-gene surveys, Nature Methods, vol.10, p.1200, 2013.

P. Pérez and G. Campos, Genome-wide regression and prediction with the BGLR statistical package, Genetics, vol.198, issue.2, pp.483-495, 2014.

P. B. Pope, W. Smith, S. E. Denman, S. G. Tringe, K. Barry et al., Isolation of Succinivibrionaceae implicated in low methane emissions from tammar wallabies, Science, vol.333, issue.6042, p.646, 2011.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Research, vol.41, issue.D1, pp.590-596, 2012.

P. Ricci, J. A. Rooke, I. Nevison, and A. Waterhouse, Methane emissions from beef and dairy cattle: Quantifying the effect of physiological stage and diet characteristics, Journal of Animal Science, vol.91, issue.11, pp.5379-5389, 2013.

F. Rohart, B. Gautier, A. Singh, and K. Cao, mixOmics: An R package for 'omics feature selection and multiple data integration, PLOS Computational Biology, vol.13, issue.11, 2017.

E. M. Ross, P. J. Moate, L. C. Marett, B. G. Cocks, and B. J. Hayes, Metagenomic predictions: From microbiome to complex health and environmental phenotypes in humans and cattle, PLoS ONE, vol.8, issue.9, 2013.

P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, vol.20, pp.53-65, 1987.

A. Saborío-montero, Variance components estimation of complex traits including microbiota information, 2018.

E. Santos and F. Thompson, Other major lineages of bacteria and the archaea, p.363, 2014.

H. Berlin,

S. Scheller, M. Goenrich, R. K. Thauer, and B. Jaun, Methylcoenzyme M reductase from methanogenic archaea: Isotope effects on the formation and anaerobic oxidation of methane, Journal of the American Chemical Society, vol.135, issue.40, pp.14975-14984, 2013.

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al., Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities, Applied and Environmental Microbiology, vol.75, issue.23, p.7537, 2009.

M. Schubert, S. Lindgreen, and L. Orlando, AdapterRemoval v2: Rapid adapter trimming, identification, and read merging, BMC Research Notes, vol.9, pp.88-88, 2016.

H. Seedorf, S. Kittelmann, G. Henderson, and P. H. Janssen, RIM-DB: A taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments, PeerJ, vol.2, pp.494-494, 2014.

C. Shannon, A mathematical theory of communication, 1984.

I. Tapio, T. J. Snelling, F. Strozzi, and R. J. Wallace, The ruminal microbiome associated with methane emissions from ruminant livestock, Journal of Animal Science and Biotechnology, vol.8, pp.7-7, 2017.

R. J. Wallace, J. A. Rooke, N. Mckain, C. Duthie, J. J. Hyslop et al., The rumen microbial metagenome associated with high methane production in cattle, BMC Genomics, vol.16, issue.1, p.839, 2015.

R. J. Wallace, G. Sasson, P. C. Garnsworthy, I. Tapio, E. Gregson et al., A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions, Science Advances, vol.5, issue.7, 2019.

P. J. Weimer, Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations, Frontiers in Microbiology, vol.6, p.296, 2015.

R. H. Whittaker, Evolution and measurement of species diversity, Taxon, vol.21, issue.2/3, pp.213-251, 1972.

T. Wongnate, D. Sliwa, B. Ginovska, D. Smith, M. W. Wolf et al., The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase, Science, vol.352, issue.6288, 2016.