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Highlights (3-5 bullets points, maximum 85 characters, including spaces, per bullet point) 12 

- DNA-metabarcoding for diatom biomonitoring was tested on 447 French river sites  13 

- We identified bioinformatics strategies giving the closest result to microscopy 14 

- Non clustering strategy (ISU) requires less computing power and gave good results 15 

- A loose taxonomic assignment, rather than a stringent one, was recommended  16 

- The indices of microscopy and ISU deviate by less than 1 point for 72% of the 447 sites 17 

 18 

Abbreviations 19 

HTS: high-throughput sequencing 20 

ISU: individual sequence units  21 

OTU: Operational taxonomical Unit 22 

 23 

Abstract (400 words) 24 

Benthic diatoms are routinely used as ecological indicators in rivers. A standardized methodology is 25 

based on biofilm sampling, species identification, and counting under microscope. DNA-metabarcoding 26 

is an alternative methodology that can identify species and assess their proportion based on high-27 

throughput DNA sequencing. Sequence data is analyzed with bioinformatics tools, and several strategies 28 

can be chosen. The strategy choice can affect communities composition and structure, and therefore 29 

the resulting ecological assessment. We wanted to optimize the bioinformatics strategy to obtain the 30 

closest results to microscopy. This was done in the framework of the Mothur pipeline. Here, 447 31 

samples from French rivers were analyzed in the monitoring context of the European Water Framework 32 

Directive. Samples were analyzed both with DNA metabarcoding and microscopy. A usual bioinformatics 33 

strategy in Mothur includes clustering DNA-sequences into Operational Taxonomic Units (OTUs). 34 

Different algorithms exist for this. From a subsample of 142 samples, we showed that some strategies 35 

(Furthest neighbor) gave closer results to microscopy than others (Opticlust) in terms of community 36 

structure and diatom index values. However, we showed that OTU clustering was not necessary for 37 
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ecological monitoring: Direct taxonomic assignment of individual sequence units (ISU) gave similar 38 

results to those obtained in microscopy. Interestingly, direct assignment enabled the detection of more 39 

species 2 to 3 times faster in terms of computation time compared to the OTU strategy. However, it 40 

remained important to remove low quality and chimeric sequences; if not, biomonitoring results 41 

differed greatly from microscopy. We showed that it was preferable to have a loose taxonomical 42 

identification threshold instead of a stringent one. This allowed detecting more species, which could 43 

participate in the index calculation and increased its performance. Indeed, in diatoms, phylogenetically 44 

neighbor species often have similar ecologies, and this explains why it is preferable, in a biomonitoring 45 

framework, to identify more species with less stringency instead of identifying few species with 46 

stringency. Finally, the best strategy (direct assignment of filtered ISU with a loose taxonomical 47 

threshold of 60%) was applied to the 447 samples covering a large diversity of ecological qualities. These 48 

data were then used to produce quality index values, using a quantification correction factor taking into 49 

account species biovolumes. Compared to microscopy, the DNA-based method assigned the same 50 

quality class for 66% of the samples, and 72% of the samples had an index value (ranging from 0 to 20) 51 

with less than one point difference from microscopy. 52 

Keywords 53 
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 55 

1. Introduction 56 

Diatoms are ubiquitous unicellular microalgae routinely used as biological indicators of water quality in 57 

Europe as part of the Water Framework Directive (European commission, 2000). Current standard 58 

methods for water quality assessment using diatoms are based on the characterization of 59 

environmental assemblages that are subsequently used to calculate biotic indices (e.g. Rimet, 2012). 60 

Indices calculation requires identification of diatom taxa to the species level based on the morphology 61 

of their frustule. This microscopic identification is challenging because it requires a strong taxonomic 62 

expertise and is time-consuming thus limiting the use of diatoms for routine monitoring.  63 

Diatom DNA metabarcoding was developed in recent years as an alternative method for diatom 64 

identification (e.g. Kermarrec et al., 2013; Zimmermann et al., 2015). By combining a DNA barcode 65 

reference database and bioinformatics processing steps, it is possible to obtain taxonomic lists that can 66 

be used for ecological assessment from high-throughput sequencing (HTS) data. To prepare these 67 

molecular inventories, traditional bioinformatics procedures, such as in implemented in Mothur (Schloss 68 

et al., 2009), usually involve several steps: a) sample demultiplexing, b) assembly of paired-end reads, c) 69 

removing poor quality sequences, d) sequence dereplication into ISU, e) detecting and removing 70 

chimeras, f) clustering of remaining reads into operational taxonomic units (OTUs) based on their 71 

genetic similarity using a similarity threshold, and g) taxonomic assignment of each OTU using a 72 

taxonomic assignment threshold. 73 

Different programs have been developed to process HTS data like Mothur (Schloss et al., 2009), QIIME 74 

(Caporaso et al., 2010), UPARSE (Edgar, 2013), DADA2 (Callahan et al., 2016), etc. For each pipeline, the 75 

user has to choose a number of settings (e.g. length and filtering criteria, removal of chimeric 76 

sequences, choice of a clustering algorithm, selection of a taxonomic assignment threshold for OTUs, 77 

etc.). The choice of these settings is not straightforward and may affect the final molecular inventories, 78 

which may in turn change the ecological assessment. For instance, prior work showed that the choice of 79 

bioinformatics treatment strongly affects final molecular inventories in eukaryotes and the ecological 80 

conclusions for marine nematodes and for diatoms (Majaneva et al., 2015; Holovachov et al., 2017; 81 

Tapolczai et al. 2019, respectively).  82 



Furthermore, the similarity matrix generation step towards the creation of OTUs requires considerable 83 

storage space and running time (Al-Neama et al., 2014). Bioinformatics can create molecular diatom 84 

inventories for biomonitoring purposes, but this process has not yet been standardized so the impact of 85 

the settings choice on the final ecological assessment is still unknown despite the work of many 86 

scientists (Leese et al., 2016). Fortunately, several studies have shown the potential of diatom 87 

metabarcoding for water quality assessment at small (Kermarrec et al., 2014; Zimmermann et al., 2015; 88 

Visco et al., 2015; Vasselon et al. 2017a) and regional scales (Apothéloz-Perret-Gentil et al., 2017; Rivera 89 

et al., 2018a; Vasselon et al., 2017b).  90 

Until now, the bioinformatics treatment of the various diatom metabarcoding studies carried out in 91 

French rivers and lakes was performed using Mothur software (Schloss et al., 2009). Here, precise 92 

settings were used, and the classical bioinformatics treatment used has been described (Keck et al., 93 

2018). The aim of this study was to optimize some of these settings in order to obtain metabarcoding 94 

assessment results as close as possible to those obtained through microscopy which is the reference 95 

methodology for water managers at present. Furthermore, since computational power is still a 96 

drawback —especially for large data sets coming from monitoring studies— we wanted to know if we 97 

could simplify bioinformatics treatment to be faster. In this sense, we ran tests by changing the 98 

following settings: a) confidence threshold for taxonomic assignment of DNA sequences called Individual 99 

Sequence Units (ISU, after Esling et al., 2015), b) clustering OTU methods, and c) confidence threshold 100 

for the taxonomic assignment of OTU data.  101 

We made these tests on 142 diatoms samples collected in 2016 from rivers from the French WFD 102 

monitoring network and compared the results to the morphological data. This comparison helped to 103 

select the nearest results to the microscopic analyses. We then applied this strategy on a larger set of 104 

447 diatom samples (305 samples from 2017 combined to the 142 samples from 2016) and combined 105 

those with the ones from 2016. Finally, we attempt to refine molecular inventories by considering the 106 

biovolumes of species. This made the HTS data more similar to microscope analyses after this 107 

transformation (Vasselon et al., 2018). These different strategies were compared to microscopy in terms 108 

of taxonomic composition, community structure, and biotic indices. 109 

 110 

2. Methodology 111 

2.1. Study sites and sampling 112 

In order to test diatom metabarcoding on a large geographical scale, 447 diatom samples were collected 113 

from the French river monitoring network that is composed of seven main basins (Adour-Garonne, 114 

Artois-Picardie, Loire-Bretagne, Rhin-Meuse, Rhône-Méditerranée, Corse, and Seine-Normandie). 115 

Samples were collected only from mainland during two sampling campaigns held in 2016 and 2017 116 

resulting in 142 and 305 samples, respectively (Figure 1). Sampling sites are part of the national river 117 

monitoring network funded by the Water Agencies and are monitored every year through microscope 118 

diatom analyses. Only a part of the monitoring network was analyzed. The site selection has been 119 

validated by experts at regional agencies (Direction Régional de l’Environnement, de l’Aménagement et 120 

du Logement). Sampling sites were located mainly in rivers presenting marked pollution gradients and in 121 

rivers weakly impacted by anthropogenic pressures (references sites). Finally, the entire river network of 122 

the eastern administrative divisions (départments) Ain, Jura, Haute-Savoie, Savoie, Rhône and Loire was 123 

sampled because it covers a large range of habitats (alpine, lowlands, agriculture, forest and densely 124 

urbanized), human densities, and pollution levels. 125 

Diatom sampling was performed following the French standard NFT 90 354 (Afnor, 2007) and the 126 

European standard (Afnor, 2014a). Briefly, diatoms were collected from at least five stones from the 127 



fast-flowing parts of the rivers. The upper surface of the stones was scrapped using a toothbrush to 128 

collect the biofilms containing diatoms. Biofilms were then fixed with ethanol (90%) to give a final 129 

concentration of at least 70%. Samples were stored in the dark at 7°C until molecular and microscope 130 

analyses.  131 

 132 

2.2. Morphological analysis 133 

Diatom valves were cleaned from environmental samples using 40% H2O2 and HCl. Clean valves were 134 

mounted in resin (Naphrax©). At least 400 valves from each sample were counted and identified using 135 

light microscopes (1000× magnification) according to European (Afnor, 2010) and French (Afnor, 2007) 136 

standards. The abundances of all observed taxa were expressed as relative counts. Identification to 137 

species level was done based on European floras such as Krammer and Lange-Bertalot (1986), Krammer 138 

and Lange-Bertalot (1988), Krammer and Lange-Bertalot (1991a), Krammer and Lange-Bertalot (1991b), 139 

Reichardt (1997), Lange-Bertalot et al.(2017) and according to the European standard Afnor (2014b). A 140 

list of the taxa and their relative abundances was produced for each of the samples. Morphological 141 

analyses were performed by private agencies following inter-calibration standards for diatom counting. 142 

 143 

2.3. Molecular analysis  144 

DNA extraction was performed twice. Samples from the first sampling campaign (2016) were extracted 145 

using the GenElute TM-LPA protocol described in Chonova et al. (2016). Several samples from this 146 

campaign could not be amplified because they were loaded with humic acids known to be PCR 147 

inhibitors. As a result, non-amplified samples and samples from the second sampling campaign (2017) 148 

were extracted using the commercial DNA extraction kit Macheray-Nagel NucleoSpin® Soil kit (MN-Soil) 149 

including a column purification step to remove PCR inhibitors. For each sample, 2 ml of biofilm was 150 

centrifuged at 13,000 rpm for 30 min at 4°C. After centrifugation, the supernatant containing ethanol 151 

was removed, and the pellet was used as a starter for DNA extraction. Extractions were performed 152 

following the manufacturer’s instructions. Some authors (Deiner et al., 2015) have shown the impact of 153 

extraction protocols on biodiversity assessment in rivers, but others (Vasselon et al., 2017a) showed 154 

that the choice of the extraction method has no impact on the diatom indices calculated for quality 155 

assessment even if relative abundances of some taxa can be slightly affected by the methods. For 156 

sequencing all samples in a single Illumina Miseq run, HTS libraries were prepared using two successive 157 

PCR steps as described in Keck et al. (2018):  158 

PCR1: DNA extracts were amplified in triplicate using the equimolar mixes of Diat_rbcL_708F_1, 708F_2, 159 

708F_3 and R3_1, R3_2 as forward and reverse primers, respectively (Vasselon et al., 2017b) allowing 160 

one to focus on a short fragment of the rbcL plastid gene (312 bp). Half of the P5 161 

(CTTTCCCTACACGACGCTCTTCCGATCT) and P7 (GGAGTTCAGACGTGTGCTCTTCCGATCT) Illumina adapters 162 

were included to the 5′part of the rbcL forward and reverse primers, respectively. PCR1 amplifications 163 

were performed in a final volume of 25 μl following mix and reaction conditions used previously 164 

(Vasselon et al., 2017a, b) except for the number of amplification cycles which was set to 33.  165 

PCR2: The three PCR1 replicates prepared for each DNA sample were pooled and sent to the “GenoToul 166 

Genomics and Transcriptomics” platform (GeT‐PlaGe, Auzeville, France) where subsequent laboratory 167 

preparations were performed. PCR1 amplicons were purified and used as templates in the PCR2 that 168 

used Illumina tailed primers targeting the half of P5 and P7 sequences. Finally, all generated PCR2 169 

amplicons were dual-indexed and pooled into a single tube. The final pool was sequenced on an Illumina 170 

MiSeq platform using the V3 paired-end sequencing kit (250 bp × 2). Raw sequencing data is available on 171 

https://data.inra.fr/dataset.xhtml?persistentId=doi%3A10.15454%2F9EG5Z4 172 

 173 

2.4. Sequencing data processing  174 



Sequencing data processing was conducted in two stages. We first tested 16 bioinformatics strategies to 175 

produce diatom floristic lists for the 142 samples collected in 2016. We used a Dell Precision, Tower 176 

7910 workstation (16 processors, 2.60 GHz, 64 Go RAM). Second, the bioinformatic strategy showing the 177 

nearest results to microscopy was adopted to produce diatom floristic lists for the 447 samples 178 

sequenced during this study (campaigns in 2016 and 2017). Bioinformatics treatment was performed in 179 

Mothur software (Schloss et al., 2009) based on the bioinformatics treatment presented previously 180 

(Keck et al., 2018) and summarized in Figure 2. 181 

 182 

Classical sequence data processing 183 

The Genotoul sequencing platform (GeT-PlaGe, Auzeville, France) provides for Miseq sequencing 184 

demultiplexed and overlapped fastq files. They are the starting point of our bioinformatics treatment. 185 

For each fastq file, DNA reads are filtered by length and quality according to the following criteria: 186 

minimum length = 250 bp, Phred quality score >23 over a moving window of 25 bp, maximum 1 187 

mismatch in forward primer sequence, homopolymers <8 bp. In addition, any sequences containing 188 

ambiguous base calls are removed (maxambig=0). Then, all the resulting fasta files are combined and 189 

de-replicated to keep only unique sequences (ISU) with read abundances >2. This step enables to 190 

remove low abundant reads mainly related to sequencing and PCR errors, with the added 191 

benefit of saving processing time during the next steps of the bioinformatics treatment.  192 

Next, the Vsearch algorithm detects and removes chimeric DNA sequences. Then, taxonomic assignment 193 

of ISU is performed using the naive Bayesian method (Wang et al., 2007) with a confidence score 194 

threshold of 85% (i.e. in a bootstrap, the percentage of times that the sequence must match to the same 195 

taxonomy in order to be assigned a definitive taxonomic name), and the DNA reference library for 196 

diatoms Diat.barcode (formerly called R-Syst::diatom in Rimet et al., 2016). Only the DNA sequences 197 

belonging to diatoms (Bacillariophyta) are kept for further analysis. Subsequently, a similarity distance 198 

matrix is generated using the dist.seqs command. Based on this distance matrix, sequences belonging to 199 

closely related groups are clustered into OTUs using the furthest neighbor algorithm at a 95% similarity 200 

level. OTUs containing one single sequence (singletons) are removed, and a list of the OTUs and their 201 

relative abundances is produced for each of the samples based on read abundances per OTU.  202 

Molecular taxa lists are then created by providing a taxonomy to each OTUs using the classify.otu 203 

command with a consensus confidence threshold of 80% (i.e. consensus taxonomy of ISU within each 204 

OTU) (Schloss et al., 2009). Finally, a DNA representative sequence is determined for each OTU using the 205 

get.oturep command in Mothur. Based on this workflow, sequencing data from the first sampling 206 

campaign (2016) was processed by changing different settings at different levels of the original 207 

workflow as described below.  208 

 209 

2.4.1. Test on taxonomic assignment threshold of filtered ISU 210 

The different tests were performed on 142 demultiplexed and overlapped fastq files delivered by the 211 

GeT-PlaGe sequencing platform (paired sequences overlap > 140 bp and mismatches < 0.1 %). Quality 212 

filter conditions for each fastq file remained equal to the classical bioinformatics treatment described 213 

previously except that the min length changed from 250 to 280 pb. After quality filtering, dereplication, 214 

and chimera removal, the resulting ISU were assigned a taxonomy using the Diat.barcode library 215 

(version 7 updated in May 2017 available at: https://www6.inra.fr/carrtel-collection_eng/Barcoding-216 

database/) and the naïve Bayesian method (Wang et al., 2007). We tested three taxonomic assignment 217 

thresholds from loose stringency to high stringency: 60% (loose), 70% (intermediate), and 85% (high). A 218 

list of taxa and their relative abundances based on read abundances was produced for each of the 219 

samples for each taxonomic assignment threshold (60 inventory, 70 inventory and 85 inventory) (Figure 220 

2). Several different methods are available in Mothur to assign a taxonomy to the sequences. We 221 



selected the Bayesian method because of its accuracy and its swiftness (Wang et al., 2007) and also 222 

because is the default taxonomical assignment method proposed by Mothur. 223 

  224 

2.4.2. Test on clustering sequences into OTUs  225 

A similarity distance matrix was generated using the dist.seqs command for each fasta file resulting from 226 

the taxonomic assignment of the ISU at different taxonomic thresholds (60, 70, and 85%). Based on 227 

these distance matrices, reads were clustered into OTUs at a 95% similarity level. Two clustering 228 

algorithms were tested: Furthest Neighbor and OptiClust. While Mothur proposed several different 229 

algorithms to cluster DNA sequences into OTUs (Opticlust, average neighbor, furthest neighbor, nearest 230 

neighbor, Vsearch agc and Vsearch dgc), we chose to compare only these two algorithms. This is mainly 231 

because the Furthest neighbor has been used so far to generate diatom molecular inventories in 232 

previous studies (Vasselon et al., 2017b; Keck et al., 2018; Rivera et al. 2018a; 2018b) and because 233 

OPtiClust is a relatively new algorithm that can create more robust OTUs than other clustering methods 234 

(e.g. average neighbor, furthest neighbor, nearest neighbor, Vsearch agc, Vsearch dgc, Usearch agc, 235 

Usearch dgc, Sumaclust and Swarm) (Westcott and Schloss, 2017). Furthermore, OptiClust is the default 236 

clustering algorithm proposed by Mothur. After clustering, OTUs containing one-single sequence 237 

(singletons) were removed. A list of the OTUs and their relative abundances—based on read 238 

abundances per OTU— was produced for each of the samples for each clustering method. The results 239 

were compared to microscopy in terms of community structure. 240 

2.4.3. Test on taxonomic assignment of OTUs 241 

Molecular taxa lists were created for each clustering method by getting a consensus taxonomy for each 242 

OTU. This was done by using the classify.otu command. Two taxonomic assignment thresholds were 243 

tested: 60% (loose stringency) and 80% (high stringency). A list of taxa and their relative abundances 244 

based on read abundances was produced for each taxonomic assignment threshold for each clustering 245 

method (Inv.60_60_F, Inv.60_80_F, Inv.70_60_F, Inv.70_80_F, Inv.85_60_F, Inv.85_80_F, (Inv.60_60_O, 246 

Inv.60_80_O, Inv.70_60_O, Inv.70_80_O, Inv.85_60_O, Inv.85_80_O) (Figure 2). 247 

 248 

2.4.4. Test on taxonomic assignment of raw ISU  249 

Next, we tried to avoid sequence filtering and sequence clustering into OTUs to see if bioinformatics 250 

treatment could be simplified and generate molecular inventories for biomonitoring purposes. Here, we 251 

used the 142 fastq files provided by the platform and conducted a de-replication step skipping the 252 

quality filters and removing the chimeras. The resulting ISU were then assigned a taxonomy at a 253 

stringent threshold of 85% using the naive Bayesian method (Wang et al., 2007) and the Diat.barcode 254 

library (version 7 updated in May 2017). A list of taxa and their relative abundances based on raw ISU 255 

abundances was produced for each of the samples (Raw inventory) (Figure 2) and compared to the 256 

morphological inventory.  257 

 258 

2.5. Comparison of bioinformatics strategies to microscopy 259 

2.5.1. Comparison of diatom assemblages’ structures of bioinformatic strategies to microscopy 260 

The structure of the diatom assemblages obtained from both morphological and molecular approaches 261 

for each bioinformatics treatment was compared using a Mantel test (Pearson correlation coefficient). 262 

Diatom assemblages were expressed in relative abundance of species in each sample (relative 263 



abundances based on frustules counts for microscopy and sequences reads for molecular data). Diatom 264 

assemblages obtained with microscopy and the 16 different bioinformatics strategies were compared 265 

with Bray-Curtis distance to produce distance matrices. These distances matrices were then used to 266 

perform Mantel tests between the morphological and the molecular floristic inventories (statistical 267 

software PAST 3.14, (Hammer et al., 2001)).  268 

 269 

 270 

2.5.2. Comparison of the water quality assessment  271 

The molecular inventories resulting from each bioinformatics treatment as well as morphological 272 

inventories were used to calculate the IPS diatom index (“Indice de Polluosensibilité spécifique”) 273 

(Cemagref, 1982). This diatom index is widely used in Europe and elsewhere for river quality assessment 274 

(Rimet, 2012). It classifies the ecological quality of water courses into five categories via a scale that 275 

ranges from 1 to 20 (1 - 4.9: bad; 5 - 8.9: poor; 9 - 12.9: moderate; 13 - 16.9: good; 17 - 20: very good). 276 

IPS was calculated via the OMNIDIA software version 6.0 (Lecointe et al., 1993). 277 

A Spearman correlation test was performed between the molecular IPS scores obtained with each 278 

bioinformatics treatment and the morphological IPS scores to assess the effect of bioinformatics on 279 

water quality assessment. These analyses were performed in the statistical software R (version 3.5.2) 280 

using the R Stats Package (R Core Team, 2018).  281 

 282 

2.6 Application of the best strategy to a large set of diatom samplings 283 

The best bioinformatics strategy was identified as the one showing the highest correlations obtained 284 

with the Mantel tests (assemblages’ structures) and the highest correlation for water quality assessment 285 

(IPS diatom indices). We first applied this bioinformatics strategy to assess the ecological quality of all 286 

the 447 samples collected in 2016 and 2017.  287 

Second, we transformed the sequence abundances with the correction factor adapted to diatoms 288 

(Vasselon et al., 2018) to make the relative abundances of species from the molecular inventories more 289 

similar to those obtained with microscopy. Indeed, microscope analyses are based on frustule counts 290 

and do not consider the biovolum of species in the abundance assessment of species; sequence 291 

abundances from HTS depends on species biovolumes and their proportions in the sample (Vasselon et 292 

al., 2018). This factor considers the biovolume of species. We propose the modification below: 293 

���2 = 10�.�
��∗
���
������� ������������, !"#
 294 

We then modified the sequence abundances: 295 

$%&'(')& *)+,)-.) /0,-&/-.) =
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���2
 296 

We calculated the diatom indices based on these modified sequences using OMNIDIA software version 297 

6.0 (Lecointe et al., 1993). We then compared the results of the quality assessment obtained with 298 

unmodified and modified (CFv2) sequence abundances. Slopes obtained from the linear regressions 299 

between microscopic and molecular diatom indices (with or without transformation with CFv2) were 300 

compared in R software using the library lsmeans (for the ANOVA, we used the “anova” function, and 301 

for slopes comparison we used the “pairs” function). We used libraries psych and data.table for 302 

correlation coefficient comparison (“paired.r” function). 303 

 304 



3. Results 305 

For microscope analyses, 841 taxa —mostly identified at species level— were observed for a total of 306 

364.398 frustules for the 447 samples from 2016 and 2017 sampling campaigns. For the molecular 307 

analyses, 20,588,593 sequences were obtained from 3 different runs (one for the samples carried out in 308 

2016 and two for the samples carried out in 2017); the three runs were of good quality and could be 309 

used for subsequent analyses.  310 

3.1 Comparison of diatom species compositions  311 

The dominant taxa detected with the 16 bioinformatics strategies were similar. However, there were 312 

important differences in the proportions of taxa after the taxonomic assignment of OTUs created with 313 

OptiClust algorithm. Indeed, Achnanthidium sp., Gomphonema sp., Achnanthidum pyrenaicum and 314 

Nitszchia sp. were detected in greater proportions compared to the other bioinformatics strategies 315 

(Figure 3).  316 

The number of detected species varied across bioinformatics strategies (Figure 4). Taxonomic 317 

assignment of raw ISU resulted in the detection of a higher number of species compared to the other 318 

treatments followed by the taxonomic assignment of filtered ISU at a threshold of 60%.  319 

The proportion of unclassified sequences also varied across bioinformatics strategies. The greatest 320 

number of unclassified sequences was obtained with taxonomic assignment of raw ISU (Figure 4). The 321 

taxonomic assignment of filtered ISU at a threshold of 60% resulted in the smallest number of 322 

unclassified sequences compared to the remaining bioinformatics treatments. The number of 323 

unclassified sequences resulting from the taxonomic assignment of OTUs created with OptiClust 324 

algorithm were very different depending on the OTUs assignment threshold) (Figure 4). 325 

 326 

3.2 Comparison of assemblages’ structures  327 

We tested 16 bioinformatic treatments and found that the molecular inventory resulting from the 328 

taxonomic assignment of filtered ISU at a threshold of 60% correlated better to the morphological 329 

inventory according to the Mantel test results (R60= 0.60, Figure 5). The weakest correlation was with 330 

taxonomic assignment of OTUs created with OptiClust algorithm at an assignment threshold of 85 and 331 

80% (R85_80_O= 0.37, Figure 5). 332 

The number of generated OTUs differed depending on the clustering algorithm and the sequence 333 

taxonomic assignment threshold. The furthest neighbor created fewer OTUs than OptiClust (Figure 6) 334 

and allowed taxonomic assignment of a greater number of taxa (Figure 4). Furthermore, the furthest 335 

neighbor provided a slightly better characterization of diatom communities than OptiClust. 336 

 337 

 338 

3.3 Comparison of quality assessment  339 

Morphological and molecular IPS scores obtained with each bioinformatic strategy were compared using 340 

Pearson’s correlation coefficient. The best correlation was obtained with the IPS scores calculated from 341 

the molecular inventory resulting from the taxonomic assignment of filtered ISU at a loose threshold of 342 

60% (IPS_60; R2= 0.60) (Figure 7). The worst correlation was obtained with IPS values calculated from 343 

molecular inventories of raw ISU (IPS_Raw; R2= 0.14).  344 



Tables 1 and 2 summarize the results of the statistical analyses given above. Table 1 shows that 345 

when the stringency of the taxonomic assignment threshold increases from 60% to 85%, the number 346 

of unclassified sequences increased. In contrast, the number of detected species, together with the 347 

correlation between metabarcoding and microscopy diatom assemblages as well as IPS scores 348 

decreased. Table 2 shows that the number of unclassified sequences is lower for filtered ISU and 349 

Furthest Neighbor strategies, while the number of detected species is higher for raw and filtered ISU 350 

strategies. Correlation between diatom indices obtained in microscopy and metabarcoding is higher 351 

with filtered ISU and Furthest Neighbor strategies. Correlation between diatom assemblages 352 

obtained in metabarcoding and microscopy is lower with the Opticlust strategy. Finally, when 353 

comparing calculation times, we observe that the filtered ISU strategy is two times longer than the 354 

raw ISU strategy and that the Furthest Neighbor and Opticlust strategies are at least five times 355 

longer than the raw ISU strategy. 356 

 357 

3.4 Application of the best bioinformatics strategy to a large set of diatom samplings 358 

The best bioinformatics strategy was the one based on filtered ISU with the loose taxonomic 359 

assignment threshold (60%). We applied this selected strategy to calculate the IPS values for all 447 360 

samples (campaigns 2016 and 2017) (Figure 8). We also transformed the quantification of the 361 

molecular inventories with CFv2 (based on species biovolumes) and calculated the IPS values for all 362 

samples again. We then compared these two strategies: the correlation coefficients to microscopy of 363 

both methods are not significantly different (p>0.05); however, the slope of the data transformed 364 

with CFv2 is significantly higher (ANOVA, p<0.001; slope comparison p < 0.001). 365 

We then compared the water quality classes obtained from microscope counts to the quality classes 366 

obtained with this bioinformatics strategy: one is based on non-transformed data (Table 3a), and the 367 

other is based on data transformed with the correction factor CFv2 (Table 3b). 64% of the samples 368 

were assigned to the same quality class with the untransformed data; 66% were in the same quality 369 

class with the transformed data (CFv2).  370 

 371 

4. Discussion  372 

4.1 Diatom species compositions obtained in microscopy differed from those obtained in 373 

metabarcoding 374 

Of all the produced inventories, the one obtained with microscopy appears to be the most distinct from 375 

all others produced with metabarcoding in terms of number of detected taxa and in terms of relative 376 

abundances of the taxa. Even if most of the dominant species detected in metabarcoding were the same 377 

than those observed in microscopy, there was a difference in terms of abundances. The dominant 378 

species observed in microscopy were small species such as Achnanthidum minutissimum, A. 379 

pyrenaicum, and Amphora pediculus; those in metabarcoding had large biovolumes such as Melosira 380 

varians. This is because diatom taxa abundance is calculated from the number of DNA reads in 381 

metabarcoding, whereas in microscopy it is calculated from the number of individuals (frustules). 382 

The number of copies of the rbcL gene is correlated to cell biovolume; hence, metabarcoding 383 

overestimates the abundances of big species compared to small ones in comparison to morphology 384 

(Vasselon et al., 2018). To limit this difference, a correction factor was proposed (Vasselon et al., 2018) 385 

to transform the proportion of sequences to enable a better comparability between morphological and 386 

molecular inventories. This correction factor was applied in the framework of this study allowing a 387 



better assessment of the relative abundance of species obtained with HTS in a more similar way to 388 

microscopy (see section 4.3).  389 

The overall number of species determined in microscopy was much greater than the number of species 390 

detected in metabarcoding. This is due to several reasons. First, diatom frustules from dead cells in the 391 

collected biofilms can be detected in microscopy but not in metabarcoding because the DNA is already 392 

degraded. This has already been observed by Kermarrec et al. (2014) in rivers and by Rivera et al. (2018) 393 

in lakes. Second, the reference barcoding library is incomplete. Indeed, a significant proportion of 394 

species observed in microscopy could not be detected in metabarcoding because their barcode was not 395 

present in the Diato.barcode (version 7) despite a significant effort to complete it (Rimet et al., 2018). 396 

Third, microscope determinations were carried out by people from different laboratories with 397 

potentially differing identification skills as already shown in inter-calibration exercises (Kahlert et al., 398 

2009). This artificially increase the number of species detected in microscopy. Fourth, resolution of the 399 

rbcL barcode (312 bp) might not be sufficient to distinguish all taxa. In some cases, we can probably only 400 

identify taxa at genus level. Fifth, the sequencing depth might not be sufficient to properly detect the 401 

full diatom diversity—especially regarding low abundant and small taxa. This is not a problem for water 402 

quality assessment since biotic indices values mostly depend on abundant taxa, but this may impact the 403 

number of species detected (Zaheer et al., 2018). Regardless of the bioinformatics strategy used, these 404 

reasons make microscopic and metabarcoding analyses different. 405 

However, we could have obtained an opposite result where the number of species detected with 406 

metabarcoding may be larger than microscopy. Indeed, the presence of persisting free-floating DNA 407 

(extracellular DNA) coming from diatoms cells living in the upper part of the sampling sites may distort 408 

the results since this free DNA will be detected in metabarcoding but not in microscopy. Furthermore, 409 

microscopy might not be sufficient to detect all the biodiversity present in the sample since 410 

morphological counts are limited to 400 valves compared to metabarcoding which provides thousands 411 

of sequences for a single sample. In our study we analysed 364.398 frustules vs. 20,588.593 sequences, 412 

the microscopic depth is 56 times lower. Despite this, microscopy is still the gold standard for water 413 

managers at present. 414 

4.2 Compared to microscopy, some bioinformatics strategies gave more similar assemblage structures 415 

and water quality assessments 416 

To the best of our knowledge, apart from the study of Tapolczai et al. (2019), there are no studies 417 

comparing different bioinformatics treatments of diatom sequencing data for monitoring purposes. 418 

Here, we compared 16 bioinformatics strategies to microscopy in terms of diatom assemblages’ 419 

structure and water quality assessment. We noted differences in terms of species detected, community 420 

structures, and water quality depending on the strategy selected. Some of the tested strategies should 421 

be avoided while others are preferred to keep our results comparable to microscopy. 422 

 423 

 424 

4.2.1 Which OTU clustering algorithm was the best? 425 

Molecular inventories resulting from the taxonomic assignment of OTU data created with the Furthest 426 

neighbor algorithm gave the most similar results to microscope inventories in terms of structure of 427 

diatom assemblages and water quality assessment compared to the OptiClust algorithm. Opticlust is 428 

widely used in virology (e.g. Romano et al. (2017)), medicine (e.g. Wong et al. (2017)), and ecology 429 

(Probandt et al., 2018), and few studies have assessed its capacities compared to other algorithms 430 

(Westcott and Schloss, 2017). These results indicate that the Furthest Neighbor is recommended in our 431 

case, which confirms a previous decision to use it for diatom metabarcoding in biomonitoring (Keck et 432 

al., 2018) and Rivera et al. (2018b). However, in another ecological context, a recent study using 433 

OptiClust as clustering algorithm provided coherent results between morphological and molecular water 434 



quality assessment using diatoms (Mortágua et al., 2019). The results of our work show that the 435 

recommended OTU assignment threshold for the establishment of molecular inventories using the 436 

Furthest Neighbor as a clustering algorithm has a less stringent taxonomic threshold (60% for both 437 

sequences and OTU assignments).  438 

 439 

4.2.2 Was OTU clustering necessary for diatom biomonitoring? 440 

We observed good correlation between microscope inventories and inventories obtained from 441 

bioinformatic strategies calculating OTUs. However, we observed same good correlations between 442 

morphological and molecular IPS scores with the simple strategy using filtered ISU and a loose 443 

taxonomic assignment threshold of 60%. This shows that we can bypass the OTU calculation step to 444 

establish a molecular-based inventory for biotic indices. This saves time and computing power during 445 

bioinformatics data processing because the similarity distance matrix calculation is avoided. This result is 446 

in the same line of the strategies followed by recent pipelines that do not cluster sequences into OTUs 447 

like DADA2 (Callahan et al., 2016) where the authors show that OTUs underutilize the quality of modern 448 

sequencing (like Illumina technology) by “precluding the possibility of resolving fine-scale variation”; this 449 

variation can be important for ecological studies. Moreover, the number of taxa taxonomically assigned 450 

with filtered ISU was higher than with OTUs strategies. These additional taxa were important to consider 451 

because this strategy produces a water quality assessment that is closer to that obtained with the 452 

microscope. 453 

 454 

4.2.3 Was ISU filtering necessary for diatom biomonitoring? 455 

The diatom assemblages could be nicely characterized by simplifying to the extreme sequence 456 

processing and directly assigning the ISU without any quality filters (raw data). The results were quite 457 

comparable to those obtained in microscopy. However, IPS scores resulting from this bioinformatic 458 

strategy were badly correlated to the IPS morphological scores compared to all other strategies. 459 

Taxonomic assignment of filtered ISU showed a slightly better correlation to microscopy in terms of 460 

structure and water quality assessment regardless of the taxonomic assignment threshold selected. This 461 

means that for biomonitoring purposes, sequences must be filtered in terms of quality, length, and 462 

chimeras should be removed. If not, the results are far from what is expected by standardized 463 

biomonitoring approaches currently based on microscopy.  464 

 465 

4.2.4 Shall we select a stringent or a loose taxonomic assignment threshold? 466 

The taxonomic assignment thresholds (minimum percentage of times that a sequence must match the 467 

same taxonomy in order to be assigned) played an important role in the final molecular inventories. 468 

Loose assignment thresholds imply a greater ability to detect species from an environmental sample but 469 

with a higher probability of misallocation of the taxonomic name. On the other hand, with a stringent 470 

assignment threshold, the ability to detect species from an environmental will be reduced because the 471 

individuals in the environment will be assigned only if they are very similar to those in the reference 472 

database (in terms of barcode sequence). In return, we will be more confident in the identification. 473 

Indeed, the number of detected species decreased when the stringency of the taxonomic assignment 474 

threshold increased (60, 70 to 85%; see Table 1). Similarly, the correlation between diatom assemblages 475 

obtained via metabarcoding and microscopy decreased. The same was observed for diatom indices. This 476 



indicates that flexibility is important for an efficient identification, and thus the assignment threshold 477 

should remain loose (i.e. 60%).  478 

These results should be seen in the perspective of phylogeny and ecology of diatoms: phylogenetically 479 

related diatom species have a better chance of sharing similar ecologies (Keck et al., 2016). In particular, 480 

one can predict the ecology of unassigned sequences from the ecology of their phylogenetically-related 481 

species (Keck et al., 2018). In our case, we showed that it is preferable to have a rather flexible 482 

identification in a biomonitoring framework (loose threshold i.e., 60%), to detect more species, even if 483 

some may be badly identified. This makes it possible to give a species name to more environmental 484 

sequences, and thus to have a more robust diatomic index value, i.e., because it will be based on a 485 

larger number of environmental sequences. It is better to keep the sequences misidentified to a 486 

phylogenetically neighbor species than not identifying the species at all. This is because neighbor species 487 

usually share the same pollution sensitivities, and such information is important to keep for diatom 488 

index calculations. 489 

 490 

4.3 Application to a large monitoring scale 491 

In order to calculate the diatom indices values (IPS) on the large monitoring data set of 447 samples, we 492 

selected the filtered ISU strategy because it gave the most similar results to microscopy; and we chose 493 

the loose (60%) taxonomic assignment threshold since it gave the best results. The correlation between 494 

the IPS values obtained in metabarcoding and microscopy was high (R²: 69%). This correlation was 495 

similar when we transformed the sequence abundances with a correction factor that considers 496 

biovolumes of species (Vasselon et al., 2018); however, the slope of the correlation was closer to 1, 497 

which made this last strategy even more comparable to microscopy. The percentage of sampling sites 498 

sharing the same quality class between microscopy and metabarcoding was high (64% for non-499 

transformed data and 66% for CFv2 transformed data); 72% of cases had an index value difference 500 

between microscopy and metabarcoding less than 1 point (the IPS ranged from 0 to 20 points). Our 501 

metabarcoding results are much more similar to microscopy than prior biomonitoring works (e.g., 502 

Vasselon et al., 2017b; Rivera et al., 2018). This was made possible by progressive methodological 503 

developments in different areas: barcode selection (Kermarrec et al., 2013), DNA extraction 504 

methodology (Vasselon et al., 2017a), update of rbcL primers (Vasselon et al., 2017b), quantification 505 

correction factors based on species biovolumes (Vasselon et al., 2018), and completion of the reference 506 

database (F. Rimet et al., 2018).  507 

5. Conclusions and perspectives 508 

These optimizations demonstrate how metabarcoding can complement or even replace microscopic 509 

analyses for biomonitoring (e.g., Hering et al., 2018), but some work remains. First, reference barcoding 510 

libraries are still incomplete (Weigand et al., 2019), and a concerted international effort is needed such 511 

as the Diat.barcode initiative (Rimet et al., 2018; international initiative to curate and complete a 512 

reference library of barcodes for diatoms). Hopefully, protocols will soon be transferred to water 513 

managers and companies in charge of aquatic ecosystem monitoring (Hering et al., 2018). This process 514 

started for diatoms according to acceptance from the European Standardization Committee of protocols 515 

for diatom sampling and reference barcoding libraries (CEN, 2018a; CEN, 2018b), but all other items in 516 

the workflow still need to be standardized. The DNA-based methods for diatom water quality 517 

assessment will enter the era of routine use and will surely change the way water managers work (Keck 518 

et al., 2017). 519 

 520 
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Figure 1. Geographic location of France in Europe (a) and geographic location of the 
sampling sites in France (b). Grey dots indicate sites sampled in 2016, black dots indicate 
sites sampled in 2017.
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Figure 2. Overview of the 16 bioinformatic strategies tested. The bioinformatics strategy used in Keck et 
al. (2018) corresponds to Inv.85_80_F. Detailed descriptions of each bioinformtics strategy is given in 
section 2,4
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Figure 3. Relative abundances of diatom taxa (genera and species) detected 
with microscopy and with the 16 bioinformatics strategies. Only taxa with 
proportions over 2% are given. Even if dominant taxa are similar between 
bioinformatics strategies there are considerable differences in the 
proportion of taxa obtained with the OptiClust algorithm compared to the 
other bioinformatics strategies. Microscopy also gives very different 
proportions of various taxa compared to all the bioinformatics strategies.
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Figure 4. Number of unclassified and detected taxa (species and genera) with 
microscopy and with the 16 different bioinformatics strategies. Taxonomic 
assignment of raw sequences resulted in the higher number of unclassified 
sequences. For the filtered ISU and the Furthest neighbor strategies less unclassified 
sequences are obtained when taxonomic assignment thresholds are lower. For the 
OptiClust strategy the number of unclassified varies greatly with no clear pattern.
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Figure 5. Comparison of diatom assemblages structures obtained with the 16 different bioinformatics 
strategies and microscopy. Diatoms assemblages for microscopy are expressed in relative abundances of 
frustules per species in each sample and for bioinformatics strategies they are expressed in relative 
abundances of sequences per species in each sample. R is the Pearson correlation coefficient calculated 
using a Mantel test, between microscopy and the bioinformatics strategy considered (Bray-Curtis 
distances). Note that OptiClust provided the weakest correlations with microscopy. ISU strategies give
similar correlations than Furthest neighbor strategies.
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Figure 6 . Comparison of the diatom assemblages’ structures obtained with the 6 different 
bioinformatics strategies based on OTUs clustering and microscopy. Diatom assemblages 
for OTUs clustering strategies are expressed in relative abundances of sequences per 
OTUs in each sample and for microscopy they are expressed in relative abundances of 
frustules per species in each sample. R is the Pearson correlation coefficient calculated 
using a Mantel test, between microscopy and the bioinformatics strategy 
considered (Bray-Curtis distances). The number of OTUs created with each pipeline is 
also indicated. Note that OptiClust provided the weakest correlation with microscopy and 
generated more OTUs than Furthest neighbor.
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Figure 7 . Correlation between the water quality assessment obtained with microscopy (x axis) 
and the 16 different bioinformatic strategies (y axis). The biotic diatom index IPS (indice de 
Polluosensibilité Spécifique, Cemagref 1982) was calculated. IPS scores vary from 1 (bad quality 
status) to 20 (good quality status). IPS scores calculated from ISU with any quality filters (raw 
data) were poorly correlated to microscopy. Furthest neighbor and filtered ISU strategies 
provided similar results and were better correlated to microscopy than OptiClust.



Figure 8. Correlation between morphological and molecular IPS 
scores. The best bioinformatics strategy was the one based on 
filtrated ISU with a taxonomic assignment of 60%. IPS scores vary 
from 1 (bad quality status) to 20 (good quality status). (a) Molecular 
IPS were calculated with untransformed data (b) Molecular IPS were 
calculated with data transformed with CFv2 (this transformation 
takes into account biovolume of species). Correlation within 
molecular and morphological IPS values from not transformed (a) 
and transformed data (b) was the same. However, the slope of the 
correlation is higher with transformed data (b).
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Table 1. Summary table comparing taxonomic assignment thresholds of filtered sequences. Codes 

signification: “-“: low, “~”: intermediate, “+”: high 

 

              Taxonomic assignment threshold 

 60% 70% 85% 

Number of unclassified sequences - ~ + 

Number of detected species + ~ - 

Correlation between diatom assemblages obtained in microscopy and 

in metabarcoding (relative abundances of diatom taxa)  

 

+ ~ - 

Correlation between diatom assemblages obtained in microscopy and 

in metabarcoding (relative abundances of OTUs)  

 

+ ~ - 

Correlation between IPS scores obtained in microscopy and 

metabarcoding 

+ ~ - 

 

  



Table 2. Summary table comparing bioinformatics treatments. Codes signification: “-“: low, “~”: 

intermediate, “+”: high, “++”: very high, “n/a”: not applicable. Calculation time is given as an 

indicative basis, calculation were carried out with a Dell Precision, Tower 7910 workstation (16 

processors, 2.60 GHz, 64 Go RAM). 

 

 

 Bioinformatics strategies 

 Raw ISU Filtered ISU Furthest 

Neighbor 

OptiClust 

Number of unclassified sequences + - - ~ 

Number of detected species ++ + ~ - 

Correlation between diatom assemblages obtained in 

metabarcoding (relative abundance of taxa) and microscopy 

+ ~ ~ - 

Correlation between diatom assemblages obtained in 

metabarcoding (relative abundance of OTUs) and microscopy  

n/a n/a + + 

Correlation between microscopy and molecular IPS scores  - + + - 

Calculation time (computing hours) ~3h30 ~7h00 ~ 19h00 

 

~ 19h00 

 

  



Table 3: Confusion matrix comparing quality classes obtained with the diatom index IPS calculated 

from microscopy and from the best bioinformatics strategy (filtrated sequences, 60%). (a) Quality 

classes obtained with the best bioinformatics strategy when data are not transformed with species 

biovolumes, (b) quality classes obtained with the best bioinformatics strategy when data are 

transformed with species biovolumes using the correction factor CFv2. Quality classes boundaries: 1: 

bad quality [1; 5[, 2: poor quality [5; 9[, 3: moderate quality [9; 13[, 4: good quality [13; 17[, 5: high 

quality [17; 20]. 

 

(a)  Quality classes obtained with the best bioinformatic strategy 

  1 2 3 4 5 

Quality classes 

obtained with 

microscopy 

1 100.0 0.0 0.0 0.0 0.0 

2 4.5 54.5 27.3 13.6 0.0 

3 0.0 10.1 62.4 27.5 0.0 

4 0.0 0.0 16.8 82.6 0.5 

5 0.0 0.0 2.3 56.2 41.5 

 

 

(b)  Quality classes obtained with the best bioinformatic strategy 

and data were transformed with the biovolume correction 

factor CFv2 

Quality classes 

obtained with 

microscopy 

 1 2 3 4 5 

1 100.0 0.0 0.0 0.0 0.0 

2 4.5 77.3 0.0 18.2 0.0 

3 0.0 14.7 59.6 25.7 0.0 

4 0.0 1.1 24.5 71.2 3.3 

5 0.0 0.0 2.3 35.4 62.3 

 

 

 




