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Abstract 54 

1. Increasing landscape heterogeneity by restoring semi-natural elements to reverse farmland 55 

biodiversity declines is not always economically feasible or acceptable to farmers due to competition 56 

for land. We hypothesized that increasing the heterogeneity of the crop mosaic itself, hereafter 57 

referred to as crop heterogeneity, can have beneficial effects on within-field plant diversity. 58 

2. Using a unique multi-country dataset from a cross-continent collaborative project covering 1451 59 

agricultural fields within 432 landscapes in Europe and Canada, we assessed the relative effects of 60 

compositional and configurational crop heterogeneity on within-field plant diversity components. 61 

We also examined how these relationships were modulated by the position within the field. 62 

3. We found strong positive effects of configurational crop heterogeneity on within-field plant alpha 63 

and gamma diversity in field interiors. These effects were as high as the effect of semi-natural cover. 64 

In field borders, effects of crop heterogeneity were limited to alpha diversity. We suggest that a 65 

heterogeneous crop mosaic may overcome the high negative impact of management practices on 66 

plant diversity in field interiors, whereas in field borders, where plant diversity is already high, 67 

landscape effects are more limited.   68 

4. Synthesis and applications. Our study shows that increasing configurational crop heterogeneity is 69 

beneficial to within-field plant diversity. It opens up a new effective and complementary way to 70 

promote farmland biodiversity without taking land out of agricultural production. We therefore 71 

recommend adopting manipulation of crop heterogeneity as a specific, effective management option 72 

in future policy measures, perhaps adding to agri-environment schemes, to contribute to the 73 

conservation of farmland plant diversity. 74 

Keywords: biodiversity conservation, crop mosaic, diversity partitioning, farmland, field border, 75 

landscape composition, landscape configuration, weed  76 
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Résumé 78 

1. Accroître l’hétérogénéité du paysage en restaurant les éléments semi-naturels pour enrayer le 79 

déclin de la biodiversité agricole n’est pas toujours économiquement faisable ou socialement 80 

acceptable pour les agriculteurs étant donné la compétition pour les terres. Nous faisons l’hypothèse 81 

qu’accroître l’hétérogénéité de la mosaïque de cultures, ci-après désignée par l’hétérogénéité des 82 

cultures, peut aussi avoir des effets bénéfiques sur la diversité des plantes au sein des parcelles. 83 

2. Par l’utilisation d’un jeu de données multi-pays issu d’un projet collaboratif trans-continental 84 

rassemblant 1451 parcelles agricoles distribuées dans 432 paysages d’Europe et du Canada, nous 85 

avons estimé les effets de la composition et la configuration de l’hétérogénéité des cultures sur les 86 

composantes de la diversité des plantes au sein des parcelles. 87 

3. Nous avons mis en évidence un fort effet positif de l’hétérogénéité de configuration des cultures 88 

sur la diversité alpha et beta des plantes, à l’intérieur des parcelles. Ces effets sont aussi importants 89 

que l’effet des éléments semi-naturels. Au niveau des bords de champs, l’effet de le hétérogénéité 90 

des cultures se limite à la diversité alpha. Nous suggérons qu’une mosaïque de cultures hétérogène 91 

peut atténuer l’effet négatif des pratiques de gestion sur la diversité des plantes à l’intérieur des 92 

parcelles, tandis qu’au niveau des bords de champs, où la diversité en plantes est plus élevée, les 93 

effets du paysage sont plus limités. 94 

Synthèse et applications. Notre étude montre qu’accroître l’hétérogénéité de configuration des 95 

cultures est bénéfique pour la diversité des plantes au sein des parcelles. Elle ouvre de nouvelles 96 

perspectives quant au maintien et à la restauration de la biodiversité agricole sans empiéter sur les 97 

surfaces de production agricole. C’est pourquoi nous recommandons de considérer la manipulation 98 

de l’hétérogénéité des cultures dans l’élaboration des mesures politiques, en complément des 99 

mesures agri-environnementales, pour contribuer à la conservation de la diversité des plantes en 100 

milieu agricole. 101 
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Mots-clés : adventice, bordure de champ, composition du paysage, configuration du paysage, 102 

conservation de la biodiversité, milieu agricole, mosaïque de cultures, partition de biodiversité  103 
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Introduction 104 

Since the mid-20th century, agricultural intensification has led to the conversion of complex mosaic 105 

agricultural landscapes into highly productive arable land, through field enlargement, expansion of 106 

crop areas and simplified crop rotations (Foley et al., 2011). The resulting landscape homogenization 107 

and increasing use of chemical inputs are recognized as major drivers of dramatic losses of farmland 108 

biodiversity and associated ecosystem services (Norris, 2008; Newbold et al., 2015). To stop or to 109 

reverse farmland biodiversity declines, several studies have recommended the restoration of 110 

landscape heterogeneity (Benton et al., 2003; Roschewitz et al., 2005). Increasing landscape 111 

heterogeneity by increasing the amount of semi-natural elements may, however, not be 112 

economically feasible or acceptable to farmers (Burton et al., 2008). Therefore, an alternative 113 

management strategy would be to consider whether increasing the heterogeneity of the crop mosaic 114 

itself in the landscape can provide equivalent benefits (Fahrig et al., 2011).  115 

Within-field plants, here defined as wild, unsown plants in agricultural fields, are an important 116 

component of farmland biodiversity. They play a crucial role in supporting biological diversity by 117 

providing food and shelter for a wide variety of animals such as auxiliary insects e.g. carabids, 118 

pollinators and birds (Marshall et al., 2003; Storkey, 2006; Bretagnolle and Gaba, 2015). While a large 119 

body of literature has focused on the effects of farming practices on within-field plant diversity, an 120 

increasing number of empirical studies suggest that landscape-scale factors should also be 121 

considered (Roschewitz et al., 2005; Solé-Senan et al., 2014; Alignier et al., 2017). 122 

The heterogeneity of the crop mosaic, hereafter referred to as crop heterogeneity, can be 123 

decomposed into two distinct components: compositional and configurational crop heterogeneity. 124 

Compositional crop heterogeneity refers to the composition of the crop mosaic, i.e. the diversity of 125 

crop cover types. Configurational crop heterogeneity refers to the shape and spatial arrangement of 126 

crop fields which can be measured as the mean size of fields or edge density (Fahrig et al., 2011). The 127 
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effects of compositional and configurational crop heterogeneity on species diversity are rarely 128 

disentangled because they are typically highly correlated (Kareiva et al., 2007).  129 

The few attempts to tease apart the effects of crop heterogeneity components on species diversity 130 

have found positive effects of compositional crop heterogeneity, i.e. Shannon crop diversity and/or 131 

configurational crop heterogeneity, i.e. edge density or mean field size, on predatory arthropods 132 

(Palmu et al., 2014; Fahrig et al., 2015; Bertrand et al., 2016; Bosem Baillod et al., 2017; Martin et al., 133 

2019), butterflies (Perović et al., 2015) and wild bees (Hass et al., 2018). Studies addressing this issue 134 

for the diversity of plants within agricultural fields are rarer (but see Fahrig et al., 2015).  135 

Both components of crop heterogeneity may theoretically benefit within-field plant diversity. Studies 136 

at the national scale in Europe have identified crop type as the most determinant factor of plant 137 

species composition within fields (Lososová et al., 2004; Fried et al., 2009). Therefore, diversifying 138 

crop types at the landscape scale, i.e. increasing compositional crop heterogeneity, should increase 139 

the plant species pool in the landscape by creating more niche opportunities (Benton et al., 2003; 140 

Marshall, 2009). By extension, the probability that new plant species (i.e. plant species that were not 141 

present already) immigrate into a field would be greater when the proportion and the diversity of 142 

alternative crop habitats in the landscape is increased, leading to higher local species richness 143 

(Auerbach and Shmida, 1987). Decreasing mean field size, i.e. increasing configurational crop 144 

heterogeneity, should promote the migration of short-distance dispersal plant species, facilitate their 145 

access to field interiors from neighbouring non-crop features or adjacent crop fields (i.e. cross-146 

habitat spillover; Tscharntke et al., 2012; Henckel et al., 2015) and increase local species richness in 147 

agricultural fields.  148 

In this paper, we assess the relative effects of compositional and configurational crop heterogeneity 149 

on within-field diversity of plants. We use a unique dataset from a cross-continent collaborative 150 

project (http://www.farmland-biodiversity.org/) covering 1451 agricultural fields, located in Europe 151 

and Canada, along uncorrelated gradients of compositional and configurational crop heterogeneity. 152 
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To our knowledge, this is the first multi-country study investigating how landscape heterogeneity of 153 

the crop mosaic is modulating alpha, beta and gamma diversity of plants in agricultural fields. We 154 

predicted that increasing compositional and configurational crop heterogeneity would increase 155 

within-field plant diversity. Field borders and field interiors may differ in non-crop plant diversity due 156 

to spatial differences in the impact of farming practices which is higher towards field interiors, and 157 

the limited plant seed dispersal from adjacent crop and non-crop features (José-María et al., 2010; 158 

Poggio et al., 2013). The spatial differences in plant diversity within fields can indeed be attributed to 159 

the higher efficacy of farming practices (crop sowing, fertilization and weed control) that may limit 160 

non-crop species occurrence in field interiors compared to field borders. Moreover, the importance 161 

of the surrounding landscape which is a source of species seed pool, is expected to decrease with 162 

increasing distance to field borders (José-María et al., 2010; Petit et al., 2013). We thus examined 163 

how relationships between crop heterogeneity and plant diversity were modulated by the position 164 

within the field. We predicted that the effect of compositional crop heterogeneity on alpha, beta and 165 

gamma plant diversity would be identical in field borders and interiors. Conversely, we predicted that 166 

the effect of configurational crop heterogeneity would be stronger on alpha, beta and gamma plant 167 

diversity in field borders than in field interiors due to higher probability of seed dispersal events from 168 

adjacent crop and non-crop features.  169 

Materials and methods 170 

Region and landscape selection 171 

The study was conducted in eight agricultural regions comprising seven regions in Europe and one 172 

region in eastern Canada (near Ottawa; Fig. 1). The European regions followed a south-to-north 173 

gradient, with four regions in France (near Arles, Niort, Rennes, Toulouse), one in England (centred on 174 

Ely, Cambridgeshire), one in Germany (near Goettingen) and one in Spain (near Lleida; Fig. 1). Within 175 

these agricultural regions, we selected a total of 432 1 km × 1 km landscapes, with 60 to 90 % of crop 176 

cover in each. These landscapes represented, by design, uncorrelated gradients of compositional 177 

crop heterogeneity, assessed by the Shannon diversity index of the crop cover types, and of 178 
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configurational crop heterogeneity, assessed by the total length of crop field borders (see Pasher et 179 

al., 2003 and Sirami et al., 2019 for details). The landscape selection process used the most recent 180 

remotely sensed data or land cover map available for each agricultural region (see Table S1 in 181 

Supporting Information).  182 

While land cover maps were adequate for landscape selection, their coarse spatial resolution did not 183 

allow for the accurate delineation of narrow strips of non-crop covers between fields. Thus, all 184 

landscapes were digitized from aerial photos to create detailed maps delineating all fields managed 185 

for agricultural production (including crops, and temporary and permanent grasslands), linear semi-186 

natural boundaries between crop fields and non-crop patches. Non-crop cover types included 187 

woodland, open land, wetland and built-up areas. Linear semi-natural boundaries included 188 

hedgerows, grassy strips and watery boundaries such as ditches. These maps were visually validated 189 

by field crews within each agricultural region before the sampling of the vegetation in a given 190 

landscape.  191 

Based on these more accurate and recent maps, several landscape variables were calculated. 192 

Compositional crop heterogeneity was assessed using the Shannon diversity index of agricultural 193 

cover types as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  −∑ 𝑝𝑝𝑖𝑖 ln 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1  where 𝑝𝑝𝑖𝑖  is the proportion of crop cover type i (including 194 

grasslands) in the agricultural mosaic. Configurational crop heterogeneity was measured as the total 195 

field border length (TBL). TBL was the sum of perimeters of all fields within the 1 x 1 km landscape 196 

minus the length of perimeters artificially created by intersection with the limits of the 1 km × 1 km 197 

landscape. The percentage of semi-natural cover types (SemiNatCover) was calculated as the sum of 198 

the proportions of woodland, open land and wetland in the landscape. The length of semi-natural 199 

boundaries (SemiNatBound) was calculated as half of the sum of the perimeter of woody, grassy and 200 

watery boundaries in the landscape. We checked for correlations among landscape variables to avoid 201 

distortion in models caused by multi-collinearity. There was no collinearity between SHDI and TBL 202 

(Pearson correlation test, r = 0.01, P = 0.62; Fig. S1). Due to strong correlation between 203 
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SemiNatBound and TBL (r = 0.70, P < 0.01; Table S2), only TBL was kept in further analyses. We used 204 

a subset of our dataset for which SemiNatBound and TBL were not strongly correlated, to verify that 205 

this correlation did not affect our conclusions (see Appendix S1 in Supporting Information). The 206 

average value and range of the four landscape variables are presented in Table 1. 207 

Sampling site selection 208 

Within each landscape, we selected three to four sampling sites. Sampling sites were fields managed 209 

for agricultural production including crops, temporary and permanent grasslands. Fields were 210 

selected such that at least one contained the dominant crop type in the region, the other fields being 211 

representative of crops present within the focal landscape (Table S3). Fields were at least 200 m 212 

apart, at least 50 m away from the border of the 1 km × 1 km landscape and at least 50 m away from 213 

large non-crop cover type patches such as woodland. We selected fields bordered by a similar 214 

boundary types within each region, i.e. only grassy strips or hedgerows, wherever possible. In total, 215 

1451 agricultural fields were sampled. 216 

Vegetation sampling 217 

Within each sampling site, we surveyed within-field plant species along two parallel, 1 m wide and 50 218 

m long transects, one located on the field border, the other within the field interior resulting in 2788 219 

transects surveyed. Transects were about 25 m distant from each other. We sampled five plots (4 m 220 

× 1 m) along each transect, i.e. 20 m² per transect (Fig. 2). Note that in Ottawa, transects were 2 m 221 

wide and the field border transect encompassed part of the boundary vegetation. We verified that 222 

this slight difference in sampling protocol did not affect our conclusions (Appendix S2). Percentage 223 

cover of all vascular plant species was recorded. We conducted these plant surveys over two years 224 

between 2011 and 2014, each sampling site being sampled only within a single year. Surveys were 225 

conducted once before crop harvesting, except in Ely, Goettingen and Ottawa where surveys were 226 

conducted twice (Table S4). In those regions, we pooled within-field plant data from the two visits 227 
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per year and retained the total number of plant species for each sampled plot. Plant nomenclature 228 

followed TaxRef (Gargominy et al., 2014). 229 

Data analysis 230 

Following Whittaker (1972), we used the multiplicative diversity partitioning method to assess plant 231 

species diversity components where β = γ/α. Gamma diversity (γ) was the total number of species 232 

across all plots sampled in a given transect and alpha (α) diversity was the number of within-field 233 

plant species present in each plot averaged across the five plots per transect (Fig. 2). This measure of 234 

beta diversity (β) describes variation in plant species composition in the whole transect by 235 

comparison with an average plot.  236 

We analysed variations in alpha, beta and gamma plant diversity using linear mixed-effects models 237 

(LMMs). Compositional and configurational crop heterogeneity (SHDI and TBL), and their interaction 238 

with within-field position (field border versus field interior, POS) and the proportion of semi-natural 239 

cover types (SemiNatCover) were included as fixed effects. To allow for direct comparison of the 240 

estimated coefficients and for rigorous treatment of interactions (Grueber et al., 2011), all response 241 

variables (alpha, beta and gamma diversity) and explanatory variables were centred and scaled 242 

across all regions. The partially cross-nested random structure (due to transects being sampled in the 243 

same field and different crop types being sampled in different regions, as well as different crop types 244 

being sampled in landscapes of the same region) was taken into account in the random structure of 245 

the models. The model formula was: 246 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1: 𝑦𝑦 ~ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑃𝑃𝑃𝑃𝑆𝑆 + 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:𝑃𝑃𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑇𝑇𝑇𝑇:𝑃𝑃𝑃𝑃𝑆𝑆 +247 

𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆:𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆:𝑃𝑃𝑃𝑃𝑆𝑆 +248 

(1|𝑅𝑅𝑀𝑀𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅/𝑇𝑇𝑆𝑆𝑅𝑅𝑀𝑀𝑛𝑛𝑛𝑛𝑆𝑆𝑝𝑝𝑀𝑀) +  (1|𝑅𝑅𝑀𝑀𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅/𝑆𝑆𝑆𝑆𝑀𝑀𝑝𝑝 𝑆𝑆𝑦𝑦𝑝𝑝𝑀𝑀)) + (1|𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀)  249 

Visual inspection of residual plots reveal no large deviations from homoscedasticity or normality. We 250 

then performed a multi-model inference procedure based upon the bias-corrected Akaike 251 
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information criterion (AICc). We built all possible alternative candidate models based on the linear 252 

additive functions of explanatory variables. We averaged the parameters of all models for which the 253 

respective variables were present. We considered variables as significant when confidence intervals 254 

did not include zero (Burnham and Anderson 2002). Finally, we estimated variance explained by 255 

models using the marginal and conditional pseudo-R2 statistic (Nakagawa and Schielzeth, 2013). 256 

Statistical analyses were carried out using the “lme4” package for mixed models (Bates et al., 2015) 257 

and “MuMIn” for multimodel inference (Barton, 2017) in R 3.2.3 (R Core Team, 2015). 258 

Results  259 

We recorded a total of 899 plant species across the eight agricultural regions. Each region contained 260 

16 – 33 % of the total species richness.  261 

Alpha diversity ranged from 0.4 to 42 and averaged 10.5 (SE 6.5) in field border transects. Alpha 262 

diversity ranged from 0.2 to 30.6 and averaged 5.8 (SE 5.2) in field interior transects. Within-field 263 

position (POS) had a strong independent effect on alpha diversity (Table 2). Alpha diversity was twice 264 

as high in field borders as in field interiors. Configurational crop heterogeneity (TBL) had a significant 265 

effect through an interaction with within-field position (POS). TBL had a strong positive effect on 266 

alpha diversity in field interiors but no effect on alpha diversity in field borders (Fig. 3; Appendix S3). 267 

SemiNatCover also had a positive effect on alpha diversity, alone or in interaction with POS  (Table 2; 268 

Appendix S3). 269 

Beta diversity ranged from 1 to 5 and averaged 1.95 (SE 0.44) in field border transects and 2.13 (SE 270 

0.85) in field interior transects. Within-field position (POS) had a strong independent effect on beta 271 

diversity (Table 2). The only landscape variable to have a significant effect on beta diversity was 272 

configurational crop heterogeneity (TBL), through an interaction with within-field position (POS). 273 

However, when separating field border transects and field interior transects, the effects of TBL were 274 

no longer significant (Appendix S3). SHDI and SemiNatCover, alone or in interaction, had no 275 

significant effect on beta diversity (Table 2). 276 
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Gamma diversity ranged from 1 to 65 in field border transects and from 1 to 50 in field interior 277 

transects. Gamma diversity was on average twice as high in field borders (mean 19.4 SE 10.7) as in 278 

field interiors (mean 10.8 SE 9.2). Configurational crop heterogeneity (TBL) had significant interacting 279 

effects with POS on gamma diversity (Table 2). TBL had strong positive effects on gamma diversity in 280 

field interior transects but no effect on gamma diversity in field border transects (Fig. 5; Appendix  281 

S3). SemiNatCover, alone or in an interaction with POS, had a significant and positive effect on 282 

gamma diversity (Table 2; Appendix S3). 283 

Discussion 284 

This study provides the first multi-country evidence that crop heterogeneity drives plant diversity 285 

within agricultural fields. As hypothesized, we showed that responses of within-field plant diversity 286 

to crop heterogeneity were modulated by the position within the field.  287 

Alpha and gamma plant diversity increased with increasing configurational crop heterogeneity in 288 

field interior transects. Because of their high disturbance levels compared to natural ecosystems, 289 

agricultural fields are usually seen as depauperate features sheltering only a small proportion of the 290 

regional plant species pool (Landis and Marino, 1999). Heterogeneous agricultural landscapes 291 

contain a diversity of crop types which can enlarge the landscape-level plant species pool from which 292 

local communities are drawn (Tscharntke et al., 2005), resulting in higher local species richness. The 293 

strong positive effect of increasing configurational crop heterogeneity on alpha and gamma plant 294 

diversity in field interior transects is consistent with the findings of Fahrig et al. (2015) and Sirami et 295 

al. (2019). In landscapes with higher field border length, the probability of short-distance dispersal 296 

events being successful is enhanced. Thus, immigration towards the inner field from the 297 

neighbourhood is facilitated through mass effect (Schmida et al., 1985; Henckel et al., 2015). 298 

However, this result questions the viability of plant populations in the inner field if viable source 299 

populations  were not maintained in the neighbourhood. The fact that beta diversity decreased with 300 

increasing configurational crop heterogeneity in field interior transects suggests that landscape 301 
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effects override the effects of spatial variability in within-field management practices classically 302 

resulting in high spatial variability in plant communities in field interiors (Gaméz-Virués et al., 2015). 303 

However, when separating field border and field interior transects, this effect was no longer 304 

significant. 305 

In contrast, we observed no effect of configurational crop heterogeneity on plant diversity (alpha and 306 

gamma) in field borders. However, we detected a positive effect of compositional crop heterogeneity 307 

on alpha diversity, about half the effect of semi-natural cover when focusing only on field borders 308 

(Appendix S3). This suggests that landscape effects are more limited where plant richness is already 309 

high. Indeed, field borders are known to act as reservoir and corridor from and by which plant 310 

species may disperse (Marshall and Moonen 2002). Therefore, the maintenance of landscape 311 

connectivity through high field border length in agricultural landscapes is important to conserve 312 

diverse plant communities. 313 

The discrepancy in the response of within-plant diversity to configurational crop heterogeneity 314 

between field borders and field interiors can be seen as a compensation for disturbances (through 315 

intensive management practices) by complex, high diversity crop mosaics (Tscharntke et al., 2005). 316 

Previous work suggested differences in impacts of farming practices within fields (Poggio et al., 2013) 317 

with lower intensity of farming practices such as herbicide applications near field borders (Marshall 318 

and Moonen, 2002). We thus propose that, in field interiors where disturbance level is higher and 319 

colonization by short-distance dispersal events from surrounding patches more limited, increasing 320 

configurational crop heterogeneity would be more effective in enhancing species richness and 321 

diversity. Conversely, in field borders where disturbance level is lower and short-distance seed 322 

dispersal events are facilitated, increasing configurational crop heterogeneity would not result in 323 

locally enhanced plant diversity because plant diversity is already high. We could not properly test 324 

this hypothesis as spatial information about management practices was not available. However, 325 

assuming spatial heterogeneity in management impact between field borders and field interiors, our 326 
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results are important for agri-environment schemes. They confirm that conservation of plant 327 

biodiversity in agricultural systems requires a landscape perspective (Tscharntke et al., 2005). 328 

Besides the influence of configurational crop heterogeneity, we also detected a significant and 329 

positive effect of the amount of semi-natural cover types in the landscape on alpha and gamma 330 

diversity. This effect was slightly stronger than the effect of crop configurational heterogeneity 331 

(Table2). This result provides additional evidence that increasing the amount of semi-natural cover in 332 

the landscape enhances local diversity in agroecosystems (Tscharntke et al., 2005; Concepción et al., 333 

2012).  334 

Finally, we showed that main relationships between crop heterogeneity and plant diversity hold true 335 

when accounting for crop type identity, or when focusing only on cereal fields, the most dominant 336 

crop type across our eight regions, or on grasslands (Appendix S4). However, the crop heterogeneity 337 

component differed with crop type, with a positive effect of crop compositional heterogeneity in 338 

cereals but a positive effect of configurational crop heterogeneity in grasslands. Further research is 339 

needed to identify the conditions (pedo-climatic context, crop type) and mechanisms involved, to 340 

understand under when, increasing crop heterogeneity benefits plant diversity.  341 

Conclusions and management implications  342 

Our study provides the first multi-country evidence that heterogeneity of the crop mosaic itself can 343 

provide additional benefits to semi-natural elements for the maintenance of plant diversity within 344 

agricultural fields. Our findings support the importance of adopting a landscape perspective in policy 345 

measures, perhaps adding to agri-environmental schemes, to preserve within-field plant diversity 346 

and by extension, associated ecosystem services (Tscharntke et al., 2005).  347 

The length of field borders benefits plant diversity as much as semi-natural cover. Thus, managing 348 

configurational crop heterogeneity opens new effective and complementary approaches to farmland 349 

biodiversity conservation (Fahrig et al., 2015; Batáry et al., 2017; Solé-Senan et al., 2018; Martin et al. 350 
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2019; Sirami et al., 2019). By increasing plant diversity within-field, the increase of field border length 351 

may also contribute to increase the provisioning and spatial continuity of floral resource for 352 

organisms ensuring ecological functions beneficial to agricultural production, such as pollination and 353 

pest regulation (Vialatte et al., 2017). To do so will require the development of policy measures 354 

aiming at increasing configurational crop heterogeneity such as changing field shape to increase field 355 

border length, restoring margins or sowing in-field strips while maintaining habitats for viable source 356 

plant populations. Such policies could be favourably perceived by farmers and constitute a valuable 357 

alternative to agri-environmental schemes as they do not require taking land out of agricultural 358 

production and as machinery efficiency does not decrease significantly in smaller fields (Rodríguez 359 

and Wiegand, 2009). Isolating economic effects of landscape fragmentation, Latruffe and Piet (2014) 360 

showed that decreasing field size reduces productivity as well as total technical efficiency (that is to 361 

say whether farmers operate their farm efficiently and whether the farm’s production scale is 362 

optimal) but increases gross product and profitability.  363 

We are aware that these recommendations may have trade-offs. We recognize that reversing the 364 

trend of the loss of plant diversity in agro-ecosystems is not usually within the farmers‘ top 365 

objectives and that there may be a conflict between weed management and biodiversity 366 

conservation. We argue that the choice of cropping systems (which includes crop rotation) and 367 

specific management strategies can help determine the pool of non-crop species present in each 368 

field (Smith and Mortensen, 2017). Furthermore, the maintenance of higher crop diversity can help 369 

prevent the development of single, problematic weed species in the long term (Melander et al., 370 

2005, Blackshaw et al., 2007, Smith and Mortensen, 2017). We also recognize that increasing the 371 

amount of field borders (to increase configurational crop heterogeneity) might have negative side 372 

effects on natural areas. Despite extensive research showing that vegetated field borders contribute 373 

to reduce pesticide transport by run-off, some authors reported that field borders might also 374 

consitute a source of pollutant run-off (e.g. Sheppard et al., 2006). Biodiversity  in natural areas may 375 

then be at significant ecotoxicological risk from drift nearby such borders. In conclusion, managing 376 
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heterogeneity of the crop mosaic itself appears as a promising alternative way to preserve farmland 377 

biodiversity even in landscapes dominated by intensively cultivated lands. 378 
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List of tables 543 

Table 1. Average and range of landscape explanatory variables across all regions. 544 

Code Variable Mean ± SE Min Max 
SHDI Shannon crop diversity index 1.02 ± 0.39 0 2.03 
TBL Total length of crop borders (in kilometers) 19.25 ± 7.71 5.76 60.13 
SemiNatCover Proportion of semi-natural cover types (in %) 12.72 ± 9.03 0 49.52 
SemiNatBound Length of semi-natural boundaries (in kilometers) 5.63 ± 3.82 0 29.79 

  545 
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Table 2 : Model-averaged standardized estimates and P values from LMMs of alpha, beta and gamma 546 

within-field plant diversity in relation to compositional and configurational crop heterogeneity, 547 

within-field position and the amount of semi-natural cover. Data are from 2788 transects pertaining 548 

to 432 1 km x 1 km landscapes in eight agricultural regions. Six transects were sampled in each 549 

landscape, one at the edge and one in the interior of each of three agricultural fields. Each transect 550 

contained five plots, over which the diversity measures were calculated (see Fig 1). SHDI : Shannon 551 

crop diversity index, TBL: Total length of crop borders, SemiNatCover: Proportion of semi-natural 552 

cover types in the landscape, POS: within-field position, ns: not significant, *: P < 0.05, **: P < 0.01, 553 

***: P < 0.001.  554 

  Alpha diversity   Beta diversity   Gamma diversity 
  Estimate SE P value   Estimate SE P value   Estimate SE P value 
Intercept 0.358 0.142 * 

 
-0.113 0.102 ns 

 
0.401 0.143 ** 

SHDI 0.031 0.027 ns 
 

0.017 0.027 ns 
 

0.043 0.027 ns 
TBL -0.022 0.036 ns 

 
0.045 0.040 ns 

 
0.007 0.036 ns 

SemiNatCover 0.303 0.030 *** 
 

-0.035 0.028 ns 
 

0.292 0.029 *** 
POS [interior] -0.790 0.025 *** 

 
0.267 0.034 *** 

 
-0.842 0.025 *** 

SHDI x TBL 0.001 0.022 ns 
 

0.036 0.023 ns 
 

0.010 0.021 ns 
SHDI x POS 0.043 0.026 ns 

 
0.012 0.035 ns 

 
0.048 0.025 ns 

TBL x POS 0.213 0.026 *** 
 

-0.125 0.034 *** 
 

0.170 0.026 *** 
SemiNatCover x SHDI 0.017 0.022 ns 

 
-0.020 0.022 ns 

 
0.016 0.021 ns 

SemiNatCover x TBL -0.025 0.023 ns 
 

0.008 0.023 ns 
 

-0.026 0.022 ns 
SemiNatCover x POS -0.346 0.026 *** 

 
-0.018 0.039 ns 

 
-0.337 0.026 *** 

            Conditional R² 0.57 
   

0.18 
   

0.57 
 Marginal R²   0.22       0.02       0.24   
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Figure captions 555 

Figure 1. Location (nearest big city) of the eight study sites in a) Europe and b) eastern Ontario, 556 

Canada (sample landscapes spread through the shaded region of Ontario, with arrow pointing at the 557 

largest city, Ottawa, at the north edge of the region for context). c) Illustration of the location of 1 km 558 

x 1 km sample landscapes in one of the eight regions (near Rennes in Brittany, France). 559 

Figure 2. Illustration of the sampling design and within-field plant diversity components. Within each 560 

sampling site, we surveyed within-field plant species along two transects, one located on the field 561 

border, the other within the field interior. Gamma diversity (γ) was the total number of species 562 

across all plots sampled in a given transect and alpha (α) diversity was the number of within-field 563 

plant species present in each plot averaged across the five plots per transect. Beta diversity (β) 564 

describes how many more species are present in the whole transect than at an average plot. 565 

Figure 3. Interaction plot of the effect on alpha diversity (i.e. mean plot species diversity) of within-566 

field plants with configurational crop heterogeneity measured as the total crop border length (TBL), 567 

according to within-field position. The dotted line fits field interior transects whereas the solid line 568 

fits field border transects. Grey zones delimit the confidence intervals at 95%. Note that variables are 569 

centred and scaled. 570 

Figure 4. Interaction plot of the effect on beta diversity (i.e. ratio between gamma and alpha 571 

diversity) of within-field plants with configurational crop heterogeneity measured as the total crop 572 

border length (TBL), according to within-field position. The dotted line fits field interior transects 573 

whereas the solid line fits field border transects. Grey zones delimit the confidence intervals at 95%. 574 

Note that variables are centred and scaled. 575 

Figure 5. Interaction plot of the effect on gamma diversity (i.e. total number of species across all five 576 

plots sampled in a transect) of within-field plants with configurational crop heterogeneity measured 577 

as the total crop border length (TBL), according to within-field position. The dotted line fits field 578 
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interior transects whereas the solid line fits field border transects. Grey zones delimit the confidence 579 

intervals at 95%. Note that variables are centred and scaled. 580 
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