
HAL Id: hal-02523144
https://hal.inrae.fr/hal-02523144

Submitted on 6 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Competition and water stress indices as predictors of
Pinus halepensis Mill. radial growth under drought

Manon Helluy, Bernard Prévosto, Maxime Cailleret, Catherine Fernandez,
Philippe Balandier

To cite this version:
Manon Helluy, Bernard Prévosto, Maxime Cailleret, Catherine Fernandez, Philippe Balandier. Com-
petition and water stress indices as predictors of Pinus halepensis Mill. radial growth under drought.
Forest Ecology and Management, 2020, 460, �10.1016/j.foreco.2020.117877�. �hal-02523144�

https://hal.inrae.fr/hal-02523144
https://hal.archives-ouvertes.fr


1 
 

Competition and water stress indices as predictors of Pinus halepensis Mill. radial growth 1 

under drought 2 

Manon HELLUY1,2,3*, Bernard PREVOSTO1, Maxime CAILLERET1, Catherine FERNANDEZ2, Philippe 3 

BALANDIER4 4 

 5 

1 Irstea UR RECOVER, 3275 Route de Cézanne, F-13182 Aix-en-Provence, France 6 

2 IMBE, Aix Marseille Université, Avignon Université CNRS, IRD, UMR 7263, 3 place Victor-Hugo, F-13331 7 

Marseille cedex 3, France 8 

  9 

4 Irstea, U.R. Forest Ecosystems, Domaine des Barres, F-45290 Nogent-sur-Vernisson, France 10 

 11 

*corresponding author 12 

 13 

E-mail addresses: manon.helluy@irstea.fr (M. Helluy) ; bernard.prevosto@irstea.fr (B. Prévosto), maxime.cailleret@irstea.fr 14 

(M. Cailleret); catherine.fernandez@imbe.fr (C. Fernandez); philippe.balandier@irstea.fr (P. Balandier) 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

Declaration of interest: none. 30 

mailto:bernard.prevosto@irstea.fr
mailto:maxime.cailleret@irstea.fr
mailto:catherine.fernandez@imbe.fr
mailto:philippe.balandier@irstea.fr


2 
 

Abstract 31 

The frequency, duration, and severity of drought events are expected to increase in the Mediterranean 32 

area as a result of climate change, with strong impacts on forest ecosystems and in particular individual tree growth. 33 

Tree growth response to drought is strongly influenced by local site and stand characteristics that can be quantified 34 

using competition indices (CIs) and water stress indices (WSIs). These indices have been widely used to predict 35 

tree growth; however, they are numerous, and few studies have investigated them jointly. In this context, we 36 

investigated the potential of using CIs and WSIs to investigate tree behaviour under drought. The main objective 37 

of this study was to quantify P. halepensis Mill. annual radial growth using tree size from the previous year, CIs 38 

and WSIs. 39 

We studied twelve 50-year-old Pinus halepensis plots located in the South-East of France distributed in 40 

different density treatments (light, medium and dense). At each plot, all trees were measured (height, 41 

circumference), spatialized and the ring-widths were measured for ~15 trees. We also developed a two-strata (over- 42 

and understorey) forest water balance model to simulate soil water content at a daily resolution based on stand 43 

characteristics (LAI values in particular) and soil properties. A mixed modelling approach was eventually used to 44 

investigate the drivers of P. halepensis annual radial growth and to test the performance of five CIs and four WSIs. 45 

 The best growth model included tree size, the sum of Basal Area of Larger trees in a 5m-radius (BAL; 46 

as CI), and the number of days that trees experienced water stress in a year (as WSI) as predictors. This model 47 

explained up to 56 % of the variance in observed pine tree growth, which increased up to 77% when the individual 48 

tree was included as a random effect on the intercept. We found that distance-independent CIs can perform as well 49 

as distance-dependent CIs in our study site. The duration of drought alone appeared to better predict tree growth 50 

than drought intensity and duration, or drought timing. The selected model led us to reaffirm the positive effect of 51 

thinning on tree secondary growth when facing long and intense drought.  52 

 53 

 54 

 55 
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1. INTRODUCTION 60 

 61 

Drought has been identified as the main concern for the current and future functioning of Mediterranean 62 

forest ecosystems (Peñuelas et al., 2017). It strongly impacts the physiological functions of Mediterranean tree 63 

and shrub species, limiting their annual growth (Barbeta et al., 2015; Borghetti et al., 1998; Gazol et al., 2018; 64 

Ogaya et al., 2003). Drought can also induce individual tree mortality and forest dieback in cases of long-term or 65 

extreme drought events (Allen et al., 2010; Carnicer et al., 2011; Greenwood et al., 2017; Hayles et al., 2007). 66 

Climate models project an increase in temperature – leading to increased potential evapotranspiration – combined 67 

with a decrease in precipitation for the Mediterranean area (Giorgi, 2006). This will likely lead to an increase in 68 

the duration, intensity and frequency of droughts (Cramer et al., 2018). In this context, understanding the processes 69 

underlying the response of trees to drought is not only important for fundamental knowledge, but also for forest 70 

management. Some forest management strategies have already been proposed to enhance Mediterranean forests’ 71 

growth productivity under dry conditions and to adapt them to climate change, in particular through the reduction 72 

of competition among trees by thinning (Aldea et al., 2017; Bréda et al., 1995; Calev et al., 2016; Sohn et al., 73 

2016; Vilà-Cabrera et al., 2018). 74 

Ecological competition is defined as a negative interaction between plants, which can be direct (direct 75 

contact, allelopathy) or indirect through the use of common resources (Connell, 1990), and can be intraspecific or 76 

interspecific. Thus, competition defines the pattern of net resource availability and is largely responsible for 77 

differences in individual growth among trees with varying social status and neighbourhoods (Calama et al., 2019). 78 

Competition is considered symmetric when competitors share resources in proportion to their size, while 79 

competition is considered to be asymmetric when large competitors capture a disproportionate share of contested 80 

resources over smaller competitors (Schwinning & Weiner, 1998). On one hand, trees’ modes of competition are 81 

driven by environmental factors and are linked to the most prevailing limiting factor (limitation-caused matter 82 

partitioning hypothesis; Pretzsch & Biber, 2010). Competition for belowground resources is often assumed to be 83 

symmetric – like in water-limited ecosystems (Pretzsch & Biber, 2010) e.g. Mediterranean ecosystems – while 84 

competition for light is asymmetric due to the directional component of light (Schwinning & Weiner, 1998). On 85 

the other hand, competition also modulates individual tree response to drought. For example, the reduction of 86 

competition by thinning tends to increase stand-level water availability (Bréda et al., 1995) and may alleviate 87 

drought-related reductions in tree growth (e.g., Aldea et al., 2017; Gavinet et al., 2015; Olivar et al., 2014; Sohn 88 

et al., 2016). In addition, trees can have various responses to drought depending on the species, their size and 89 
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social status. Some studies have demonstrated that large trees are less resilient to drought than smaller trees 90 

(Castagneri et al., 2012; Sánchez-Salguero et al., 2015; Zang et al., 2012) while other studies have found the 91 

opposite pattern (Calama et al., 2019; Martin-Benito et al., 2011; Trouvé et al., 2017) or no difference between 92 

dominant and suppressed trees (Bello et al., 2019; Lebourgeois et al., 2014). These contrasting results can be 93 

explained by species-specific differences in shade- and drought-tolerance strategies, and by differences in the 94 

population and site characteristics, especially in the stand water balance, whose spatiotemporal dynamics is often 95 

not well quantified or considered.  96 

Considering the various relationships between competition and drought and their impacts on tree radial 97 

growth, models that aim to accurately predict individual tree growth or stand-scale productivity should take into 98 

account both competitive and climatic drivers at an annual resolution (Ameztegui et al., 2017). Including these 99 

drivers is important to correctly simulate (i) decadal and multi-decadal growth trends, which are strongly 100 

influenced by competition, (ii) the impacts of human and natural disturbances on the spatial arrangement of the 101 

stand and on the competition intensity experienced by each tree (e.g. after thinning or massive mortality), and (iii) 102 

the interannual variability in tree growth, which is mainly controlled by interannual climate variability (Calama et 103 

al., 2019; Condés & García-Robredo, 2012; Rathgeber et al., 2005; Sánchez-Salguero et al., 2015). This is 104 

especially important to improve empirical forest growth models that statistically link growth data with specific site 105 

and climatic conditions. Though empirical models are difficult to extrapolate, they are very precise under their 106 

calibration domain and are widely used for forest management planning (e.g. growth and yield models; see 107 

Weiskittel Jr et al., 2011). 108 

Several types of indices can be used in such empirical forest growth models to assess the competition and 109 

water stress experienced by a tree. Competition indices are often used to investigate the different modes of 110 

competition (Biging & Dobbertin, 1995; Prévosto, 2005). For example, asymmetric competition for light can be 111 

predicted using competition indices that derive from tree heights and crown sizes, while symmetric competition 112 

for belowground resources can be predicted using competition indices based on tree diameters, root mass, or 113 

rooting depths (Pretzsch et al., 2017). Many drought indices have been developed for modelling purposes. Speich 114 

(2019) classified these drought indices into four levels, from the least to the most integrative: (1) based on 115 

precipitation, (2) based on evaporative demand, (3) based on soil moisture storage and stand properties, and (4) 116 

based on physiological thresholds. Drought indices that are more mechanistic generally perform better at 117 

predicting tree growth than indices including precipitation and evaporative demand, or precipitation alone (Speich, 118 
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2019) as they better represent the actual water available for the plants (3 and 4) and the drought intensity they have 119 

experienced (4).  120 

In this study, we developed an empirical mixed modelling approach to predict individual Aleppo pine 121 

(P.halepensis Mill.) radial growth based on its size, neighbourhood, and climatic factors. We used five  competition 122 

indices (CIs) that are derived from different types of information in order to investigate the modes of competition 123 

of P.halepensis. Several water stress indices (WSIs), with contrasting levels of information were also used to 124 

investigate the influence of water stress induced both by soil and climatic factors on P.halepensis radial growth. 125 

We especially aimed at evaluating the potential of competition indices (CIs) and water stress indices (WSIs) jointly 126 

for predicting annual basal area increment (BAI) in Pinus halepensis under different thinning intensities, and 127 

selecting the best CI and WSI indices. Our main hypothesis were, as follows: 128 

(i) P.halepensis’ main mode of competition is symmetric; 129 

(ii) Soil water availability is a better predictor of P.halepensis growth than rainfall alone; 130 

(iii) The best pine growth model includes both competition indices and water stress indices. 131 

 132 

2. MATERIAL AND METHODS 133 

2.1. Study site and experimental design 134 

 135 

This study was conducted in Southern France in the ‘Saint Mitre’ experimental site, which is located 136 

about 30 km west of Marseille (43°27’0”N; 5°2’24”E). The area is flat and at a mean altitude of 130 m above sea 137 

level. The climate is Mediterranean, with warm, dry summers and cool, wet winters. The mean annual temperature 138 

is 15.3°C and mean annual precipitation is 562 mm (Istres weather station, 1985-2014; Appendix A). However, 139 

fluctuations in rainfall are frequently observed between years. For example, 2015 and 2016 received 660 mm and 140 

411 mm of rainfall, respectively. Soils are calcareous, with a sandy-loam texture (55% sand, 30% silt and 15% 141 

clay) and a mean depth of 60 cm before reaching the calcareous bedrock. The site is composed of a monospecific 142 

even-aged (~60 years old) Aleppo pine forest (Pinus halepensis Mill.) that has naturally regenerated after 143 

agricultural abandonment ~60 years ago. The understorey is mainly composed of Mediterranean oaks (Quercus 144 

ilex and Quercus coccifera), shrubs (e.g. Phillyrea angustiflia, Rosmarinus officinalis) and scarce herbaceous 145 

plants (e.g. Brachypodium retusum). 146 

Natural pine stands were thinned in 2007, leading to three different pine cover treatments and thus 147 

different competition situations: (i) light pine cover (basal area: 10.2 m².ha-1), (ii) moderate pine cover (19.2 148 
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m²/ha), (iii) dense pine cover (32.0 m²/ha; no thinning). Each treatment was replicated in four 25m × 25m plots 149 

(Appendix B). All pines were individually identified, geo-referenced in spring 2017 using a differential GPS 150 

(Trimble© TSC2, Trimble Inc, USA) and a laser distance meter (LaserAce® 300, Measurements Devices Ltd, 151 

UK). Their circumference at breast height (1.30m) and their height were measured in 2017 using a measuring tape 152 

and a rangefinder (Vertex III, Häglof, Sweden), respectively. 153 

 154 

2.2. Measurement of individual tree growth based on ring-width series  155 

 156 

 From September to October 2017, 1-2 cores were extracted at breast height using a Pressler increment 157 

borer from 15 randomly selected (co-)dominant Aleppo pines in the inner part of each of the 12 plots (20m*20m, 158 

to reduce border effect, Appendix C). Cores were mounted and sanded until ring boundaries were clearly visible. 159 

We used the WinDENDRO program (WinDENDROTM 2014, © Regent Instruments Canada Inc.) to measure ring 160 

widths at a resolution of 0.034 mm and visually cross-date each individual chronology. We removed the series 161 

that could not be accurately cross-dated (e.g. due to high polycyclism rate and/or high number of missing rings). 162 

Most of the removed trees were in the dense cover treatments, however at the end the distribution of individuals 163 

within the treatments was even (dense cover: 62 individuals; moderate cover: 58 individuals; light cover: 55 164 

individuals). In order to have a single series per tree, chronologies were averaged for each individual tree when 165 

two of them were available. This resulted in 175 individual tree-ring width series that were retained for the 166 

following analyses. 167 

To correct the trend associated with the geometrical constraint of adding a volume of wood to a stem of 168 

increasing radius, the tree-ring width series were converted into basal area increments (BAI) (Biondi & Qeadan, 169 

2008) using the following formula: 170 

 171 

[1]  𝐵𝐴𝐼 =  𝜋(𝑟𝑡
2 − 𝑟𝑡−1

2 )  172 

 173 

With 𝑟𝑡
2 and 𝑟𝑡−1

2 referring to the stem radii corresponding to years t and t-1, respectively.  174 

The BAI was then used to represent the annual individual tree growth. Only the data from 2008 to 2017 were used 175 

for the analyses, as the structure of the thinned stands was not known before that date. 176 

 177 

 178 
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 179 

2.3. Selection of the competition indices  180 

 181 

Competition was quantified using competition indices (CIs). CIs can also be classified into two 182 

categories: distance-dependent CIs based on the relative dimensions and the distance of a subject tree to its 183 

neighbours within a given radius; and distance-independent CIs based only on non-spatial and aggregated 184 

information on tree size and the number of trees in a given area. We used 5 different CIs based on the literature, 185 

using different types of information (distance, circumference, height) in order to compare their predictive power 186 

and to investigate the dominant mode of competition  (symmetric or asymmetric). In this study, we tested three 187 

distance-dependent indices (HEG to VER), and two distance independent indices (RS and BAL). The first CI (HEG) 188 

is a distance weighted size-ratio index, developed by Hegyi (1974). Because it uses tree circumferences, it is 189 

expected to account for symmetric competition: 190 

 191 

[2]  𝐻𝐸𝐺 =  ∑   
𝐶𝑗

2

𝐶𝑖
2.𝑑𝑖𝑠𝑡𝑖𝑗

𝑛
𝑗=1
𝑗≠𝑖

 192 

 193 

Ci is the circumference at breast height of the subject tree i, Cj is the circumference of the neighbour tree j, and 194 

dist is the distance between both trees i and j. 195 

The second and third indices were developed by Pukkala & Kolström (1987). They are based on the sum of 196 

horizontal or vertical angles that originate from the subject tree, spanning the circumference or the top of the crown 197 

of each neighbour tree (HOR and VER), respectively. HOR is based on the circumferences of all neighbours, and 198 

is expected to account for symmetric competition. In contrast, VER uses the height of taller neighbours and is 199 

expected to account for asymmetric competition: 200 

 201 

[3] 𝐻𝑂𝑅 =  ∑  2.  arctan (
𝐶𝑗

2.𝜋.𝑑𝑖𝑠𝑡𝑖𝑗

𝑛
𝑗=1
𝑗≠𝑖

) 202 

 203 

 [4] 𝑉𝐸𝑅 =  ∑  arctan (
𝐻𝑗−𝐻𝑖

𝑑𝑖𝑠𝑡𝑖𝑗

𝑛
𝑗=1
𝑗≠𝑖

𝐻𝑗>𝐻𝑖

) 204 
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With Hi and Hj corresponding to the heights of the subject and of the neighbour tree, respectively. 205 

The fourth index is the Relative Spacing (RS) index developed by Schröder & Gadow (1999). This index is 206 

computed at the plot scale, which leads to a single plot-level value: 207 

 208 

[5]  𝑅𝑆 =  
√10000

𝑁⁄

𝐻𝑑
) 209 

 210 

With N the number of stems per hectare and Hd the dominant stand height. The dominant stand height is usually 211 

defined as the height of the 100 tallest trees in one hectare; however for our study we took the 5 tallest trees in 212 

each plot. 213 

The last index was first developed by Wykoff et al. (1982), and corresponds to the total basal area of trees that are 214 

larger than the subject tree (also called Basal Area of Larger trees; BAL). It is expected to account for asymmetric 215 

competition as only large trees are taken into account, but also for symmetric competition, as it is size-related: 216 

 217 

[6]  𝐵𝐴𝐿 =  ∑
𝐶𝑗

2

4𝜋

𝑛
𝑗=1
𝑗≠𝑖

𝐶𝑗>𝐶𝑖

 218 

 219 

 We computed the values of the distance-dependent competition indices (HEG, HOR, VER) for different 220 

competition radii (from 1 meter to 8 meters), and then calculated the correlation coefficients between the mean 221 

BAI for 10 years and the competition index. We then selected a competition radius of 5 meters for the three 222 

distance-dependent indices (see Appendix D). In total, we produced five competition indices for each individual 223 

tree. We did not have height and circumference data for all individual trees between 2008 and 2017, but as the 224 

stands are quite homogeneous and major changes in the stand composition and structure did not occur between 225 

2007 and 2017 (Appendix F) we made the very likely assumption that individual CIs remained constant over this 226 

period.  227 

 228 

2.4. Water Balance model 229 

 230 

 The effects of the climate, stand, and soil properties on drought characteristics can be integrated into a 231 

forest water balance model. We thus developed a two-strata forest water balance model, i.e. over- and understorey 232 
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are considered (adult tree canopy only composed of Aleppo pines; shrubby mixed understorey), based on Granier 233 

et al., (1999), which computes daily variations in soil water content. The model uses daily temperatures and rainfall 234 

data as inputs, and some site and stand parameters such as soil depth, maximum and minimum extractable soil 235 

water (from soil texture analyses), fine root distribution, soil porosity, and stand Leaf Area Index (LAI). Istres 236 

weather station (12 km NW of the site) provided the climatic data over the entire study period and global radiation 237 

data came from Marignane station (14km E of the site). The PET was computed using the radiation-based method 238 

of Turc (Turc, 1961) in the absence of wind data recorded on-site. Soil samples were collected in 2014 and 2017. 239 

In 2014, 2 plots per treatment were sampled; in each of the selected plots 6 soil samples at three soil depths were 240 

collected for texture analysis. In 2017, 5 soil pits were dug into the treatments and 30 soil samples of constant 241 

volume (3 soil depths and 2 samples per depth) were collected to measure the bulk density, the content in coarse 242 

elements and in fine roots (Table 1). The soil properties were considered as constant among the plots, except for 243 

soil depth. Water buckets were computed for each soil layer (Jabiol et al., 2009) and aggregated at the plot scale. 244 

Transmitted radiation was measured every minute for 48 hours during two successive clear days of April 2017 in 245 

9 plots (3 plots/treatment) using 6 solarimeter tubes (PAR/LE Solems) per plot and 2 solarimeter tubes in open 246 

conditions, in order to compute transmitted radiation. Based on this transmitted radiation, LAI was then calculated 247 

using the Norman & Jarvis (1975) equations. A relationship between stand basal area and the LAI values was 248 

established to model the changes of LAI through time. The LAI was later used to compute the rainfall interception 249 

of the Aleppo pine canopy and the understorey using the model proposed by Molina & del Campo (2012). Rainfall 250 

interception, transpiration of the two strata, and the soil water dynamics were computed and provided daily 251 

variations of soil water content and relative extractable water (Prévosto et al., 2018) (REW, daily extractable water 252 

standardized by maximum water extractable;  Figure 1). 253 

 254 

 Table 1: Soil characteristics incorporated for each layer of each plot in the water balance model. Only variations 255 

in layer thickness was incorporated within plots. 256 

Soil characteristics Layer 1 Layer 2 Layer 3 

Fine roots (%) 58.4 22.4 19.2 

Coarse elements (%) 9.5 8.9 8.9 

Bulk density (g/cm3) 1.33 1.44 1.56 

Sand (%) 53.8 52.8 49.7 

Clay (%) 12.5 15.03 16.04 
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Silt (%) 34.5 32.1 34.4 

Plot number 1 2 3 4 5 6 7 8 9 10 11 12 

Soil total depth (cm) 58 38 64 69 68 61 66 59 57 71 67 43 

Layers thickness (cm) 19.3 12.7 21.3 23 22.7 20.3 22 19.7 19 23.7 22.3 14.3 

 257 

 258 

Figure 1: Variations in rainfall, potential evapotranspiration (PET) and relative extractable water (REW) calculated using the 259 

water balance model from between 2008 and 2017.  260 

2.5. Water stress indices (WSI) 261 

 262 

 For each plot and each year, we used four different WSIs using different levels of information i.e. soil 263 

and/or climatic constraints. The first three WSIs derive from the forest water balance to account for climate and 264 

local conditions, while the fourth WSI derives directly from climatic data. We assumed that a drought had occurred 265 

when the soil REW dropped below a threshold of 0.4, as proposed by Granier et al. (1999), a threshold that has 266 

been successfully applied in other empirical and modelling studies (Bello et al., 2019; Forner et al., 2018; Granier 267 
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et al., 2007; Speich, 2019). The first WSI cumulates the daily differences between REW and the 0.4 threshold of 268 

REW, and indicates both drought intensity and duration (INT, Figure 3): 269 

 270 

[7]  𝐼𝑁𝑇 = ∑(0.4 − 𝑅𝐸𝑊𝑖) for 𝑅𝐸𝑊𝑖  ≤ 0.4 271 

 272 

With i the day of the year. 273 

The second WSI only represents the drought duration (DUR) and corresponds to the number of days that REW is 274 

below 0.4 (Figure 2). The third WSI accounts for drought duration and timing (TIM), and was adapted from the 275 

seasonal water stress index developed in Mina et al. (2016). For each season, we produced an intermediate WSI, 276 

which is the number of water stress days divided by mean soil water content (𝑆𝑊𝐶) during the given period. We 277 

then totalled all of the seasonal WSIs to obtain the annual WSI: 278 

 279 

[8]  𝑇𝐼𝑀 = ∑(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑆 𝑑𝑎𝑦𝑠

𝑆𝑊𝐶
)𝑠𝑒𝑎𝑠𝑜𝑛 280 

 281 

The fourth WSI corresponds to annual rainfall (RAIN). Many studies have used seasonal rainfall instead of annual 282 

rainfall when investigating P. halepensis radial growth (i.e. Olivar et al., 2012; Pasho et al., 2012), however after  283 

preliminary analyses, we found that for our study site, annual rainfall was a better predictor of growth than seasonal 284 

rainfall (Appendix A).  285 

 286 

 287 

 288 

Figure 2: Graphical explanation of the WSIs construction. Example for year 2014. REW does not start at 1 every year, it goes 289 

on from year to year. 290 
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 We did not include temperatures in our model for two reasons. Firstly, P.halepensis is thermophilous and 291 

is thus expected to be sensitive to cold temperatures, which could negatively affect its growth. However, such 292 

temperatures are not seen at our study site (Appendix A). Secondly, during preliminary analyses, annual minimum 293 

and maximum temperatures were found to be poor predictors of tree growth and were thus removed from the final 294 

analyses (Appendix D). 295 

 296 

2.6. Statistical analyses, growth models and indices selection 297 

 298 

 Kruskal-Wallis non-parametric tests followed by Dunn’s test were performed to explore the effect of the 299 

cover treatments on BAI, using the {dunn.test} package (Dinno, 2017) from the open-source R statistical software 300 

(R Core Team, 2017).  301 

Simple linear regressions were used to explore the relationships between tree BAI and the different 302 

CIs/WSIs. To jointly test the influence of both competition and water stress on P. halepensis tree growth, we 303 

developed linear mixed-effect models using the {lme4} and {lmerTest} packages (Kuznetsova et al., 2017). Natural 304 

logarithm transformations were used to satisfy the assumptions of linearity and normality of the residuals, the 305 

‘LogSt’ function from the {DescTools} package (Signorell et al., 2019) being specifically used to account for null 306 

CI values. This led to the following model equation: 307 

 308 

[9]  log(𝐵𝐴𝐼𝑖,𝑡) = 𝑘 + ∝ log(𝐵𝐴𝑖,𝑡−1) + 𝛽 log(𝐶𝐼𝑖) +  𝛾 log(𝑊𝑆𝐼𝑡) + 𝛿𝑖  +  𝜀      309 

 310 

Where k, ∝, β and γ are the fixed parameters, BAIi,t the basal area increment (mm²) of the tree i during the year t, 311 

BAi,t-1 the tree basal area of previous year t-1 (m²), CIi, a competition index, WSIt a water stress index of the year 312 

t, i the random effect estimated for the intercept with tree as a grouping factor, and  is the residual error. BA was 313 

included in the models to account for the effect of tree size on current annual growth. We included trees nested 314 

into the plot, plots alone, or trees alone as a random effect on the intercept term; however after preliminary analysis 315 

we retained the tree random effect alone as it performed better. Similarly, we added a tree random effect on the 316 

parameters (slope), however all of these random effect models failed to converge. Finally, the tree random effect 317 

on the intercept term was the only to be retained. We also investigated the interaction between competition and 318 

water stress, but the interaction was not significant and only the additive models were retained. 319 
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All of the possible combinations of CIs and WSIs as explanatory variables were tested, and the optimal CI 320 

and WSI were selected using the Akaike’s Information Criterion (AIC) with maximum likelihood fitting (MLE) 321 

as only our fixed effects differed between models. The parameters of the best model were fitted using restricted 322 

maximum likelihood (REML). We used the marginal r-squared (variance explained by the fixed effects only) and 323 

the conditional r-squared (variance explained by both fixed and random effects) using the R package {MuMIn} 324 

(Barton, 2018) as indicators of model performance. The marginal r-squared of the best model were bootstrapped 325 

using the R package {boot} to produce confidence intervals and to evaluate the model’s robustness (Canty & 326 

Ripley, 2019; Davison & Hinkley, 1997). The bootstrap was stratified (strata: individual tree) and based on 2000 327 

replicates. Conditional r-squared were not used for the bootstrap, as this method does not correctly estimate the 328 

variance in a random effect model, in particular when the variables are not independent and identically distributed 329 

(McCullagh, 2000).The normality of the residuals and multicollinearity of the explanatory variables were tested 330 

using Shapiro-Wilk test and the Variance Inflation Factor, respectively. To evaluate the effect of the selected 331 

variables on the standardized-BAI, effect plots were produced using the R package {effect} (Fox & Weisberg, 332 

2018a, 2018b). 333 

  334 

3. RESULTS 335 

3.1. Temporal variability in tree BAI 336 

 337 

 Over the 2008-2017 study period, there was a consistent increasing gradient of BAI from the control to 338 

the light cover treatment (Figure 3), confirmed by the Kruskal-Wallis test and Dunn’s test: significant differences 339 

were found between the three treatments for all years (Kruskal-Wallis statistics: Chi square = 466.99, df = 2, p-340 

value < 2.2e-16). There was high variability between years with 2016 and 2017 being the least productive years.  341 
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 342 

Figure 3: Variations of tree basal area increment (BAI ; mm²) between 2008 and 2017 among the cover treatments resulting 343 

from different thinning intensities (Dense, Moderate, Light). Medians, 1st and 3rd quartiles are presented. Decline in growth 344 

in 2016 and 2017 is a climatic trend, these years being both extremely dry (411mm and 311mm, respectively).  345 

 346 

3.2. Linear regressions with one-single explanatory variable 347 

 348 

BAI was negatively correlated with the CIs 1, 2, 3 and 5 – indicating that the higher the competition 349 

experienced by the tree is, the lower its growth rates are (Figure 4, r² from 0.218 to 0.377). On the contrary, when 350 

RS increased (the relative spacing between trees), the BAI increased as well: the wider the spacing between trees 351 

is, the greater the BAI is (r² = 0.209). 352 

 353 



15 
 

 354 

Figure 4:  Tree Basal Area Increment (BAI) relative to Competition Indices (CIs). Curve fits in the graphs are separate linear 355 

regressions, from HEG to BAL: log(BAI) = -1.063 log(HEG) + 6.517, r² = 0.377; log(BAI) = -1.078 log(HOR) + 7.520, r² = 0.228; 356 

log(BAI) = -0.582 log(VER) + 6.200, r² = 0.218; log(BAI) = 2.657 log(RS) + 8.068, r² = 0.209; log(BAI) = -1.925 log(BAL) + 6.612, 357 

r² = 0.291. All slopes are significantly different from zero (p < 0.001) 358 

As indicated by the different linear regressions, there was a negative relationship between the BAI and 359 

the WSIs (except for RAIN; Figure 5), which indicates that when the water stress increases, the BAI decreases (r² 360 

from 0.248 to 0.260). In contrast, when rainfall increases (RAIN) the BAI increases as well, though the relationship 361 

is weaker (r² = 0.101). 362 
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 363 

Figure 5: Tree Basal Area Increment (BAI) relative to Water Stress Indices (WSIs). Curve fits in the graphs are separate linear 364 

regressions, from INT to RAIN: log(BAI) = -1.657 log(INT) + 13.020, r² = 0.255; log(BAI) = -1.813 log(DUR) + 16.074, r² = 0.260; 365 

log(BAI) = -1.915 log(TIM) + 13.077, r² = 0.248; log(BAI) = 1.032 log(RAIN) + 0.049, r² = 0.101. All slopes are significantly 366 

different from zero (p < 0.001) 367 

 368 

3.3. Linear mixed-effects models with multiple explanatory variables: selection of the indices 369 

 370 

 For the single variable models, HEG (Hegyi competition index) and DUR (number of days that trees 371 

experienced water stress) were the best explanatory indices (38% and 16% of the variance explained, respectively). 372 

HEG and DUR were still the best predictors when BA was included in the mixed models (38% and 53% of the 373 

variance explained by the HEG and DUR models, respectively). However, WSIs and BA combined were better 374 

predictors of growth than CIs and BA together (RAIN excluded), the marginal R² ranged from 43% to 53% for the 375 

WSIs and from 30% to 40% for the CIs, respectively. When three explanatory variables were included, the best 376 

five models included BA, DUR and different variants of the CIs (Table 2). In the best model, BAL – sum of the 377 

basal area of larger trees – and DUR – the number of water stress days – were selected together. The fixed effects 378 
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of this model explained 56% of the total variance (marginal r-squared), with a narrow confidence interval (0.516-379 

0.576; obtained from bootstrapping), highlighting its low dependency on the characteristics of the input dataset 380 

and its high robustness. Finally, the inclusion of the random effect considerably improved the models explaining 381 

a large proportion of the remaining variance (e.g. 22% for the best model). 382 

 383 

Table 2: Linear mixed-effects models of the annual tree basal area increment (BAI) as a function of the basal area of the 384 

previous year (BA) and the different indices produced previously (CI and WSI). Selected models are in bold in their group; the 385 

final selected model is in bold and red. 386 

Models (with tree as a random effect on the 

intercept) 

Marg. R² Cond. R² AIC ∆i 

log(BAI) ~ log(HEG) 0.378 0.678 3438.12 0.00 

log(BAI) ~ log(BAL) 0.291 0.677 3478.62 40.50 

log(BAI) ~ log(VER) 0.229 0.677 3502.86 64.74 

log(BAI) ~ log(HOR) 0.219 0.677 3506.58 68.46 

log(BAI) ~ log(RS) 0.210 0.677 3509.45 71.33 

log(BAI) ~ log(DUR) 0.161 0.776 2798.09 0.00 

log(BAI) ~ log(INT) 0.154 0.770 2839.22 41.12 

log(BAI) ~ log(TIM) 0.149 0.768 2853.73 55.64 

log(BAI) ~ log(RAIN) 0.102 0.790 2893.81 95.72 

log(BAI) ~ log(BA) + log(HEG) 0.376 0.899 3276.37 0.00 

log(BAI) ~ log(BA) + log(BAL) 0.328 0.908 3303.17 26.79 

log(BAI) ~ log(BA) + log(HOR) 0.305 0.929 3366.63 90.26 

log(BAI) ~ log(BA) + log(VER) 0.309 0.931 3373.32 96.95 

log(BAI) ~ log(BA) + log(RS) 0.304 0.935 3390.50 114.13 

log(BAI) ~ log(BA) + log(DUR) 0.527 0.755 2704.38 0.00 

log(BAI) ~ log(BA) + log(TIM) 0.516 0.745 2761.41 57.04 

log(BAI) ~ log(BA) + log(INT) 0.434 0.719 2802.18 97.80 

log(BAI) ~ log(BA) + log(RAIN) 0.125 0.877 2885.25 180.88 

log(BAI) ~ log(BA) + log(BAL) + log(DUR) 0.556 0.773 2672.26 0.00 

log(BAI) ~ log(BA) + log(HEG) + log(DUR) 0.561 0.781 2681.25 8.99 

log(BAI) ~ log(BA) + log(VER) + log(DUR) 0.561 0.781 2681.25 8.99 

log(BAI) ~ log(BA) + log(HOR) + log(DUR) 0.547 0.767 2691.22 18.96 



18 
 

log(BAI) ~ log(BA) + log(RS) + log(DUR) 0.542 0.765 2701.21 28.95 

log(BAI) ~ log(BA) + log(BAL) + log(TIM) 0.545 0.764 2729.16 56.90 

log(BAI) ~ log(BA) + log(HEG) + log(RAIN) 0.424 0.854 2731.59 59.33 

log(BAI) ~ log(BA) + log(VER) + log(RAIN) 0.424 0.854 2731.59 59.33 

log(BAI) ~ log(BA) + log(HEG) + log(TIM) 0.552 0.773 2735.99 63.73 

log(BAI) ~ log(BA) + log(VER) + log(TIM) 0.552 0.773 2735.99 63.73 

log(BAI) ~ log(BA) + log(BAL) + log(INT) 0.481 0.770 2742.56 70.30 

log(BAI) ~ log(BA) + log(HEG) + log(INT) 0.505 0.788 2742.82 70.56 

log(BAI) ~ log(BA) + log(VER) + log(INT) 0.505 0.788 2742.82 70.56 

log(BAI) ~ log(BA) + log(HOR) + log(TIM) 0.537 0.758 2747.50 75.23 

log(BAI) ~ log(BA) + log(RS) + log(TIM) 0.533 0.756 2756.83 84.57 

log(BAI) ~ log(BA) + log(BAL) + log(RAIN) 0.344 0.865 2767.70 95.43 

log(BAI) ~ log(BA) + log(HOR) + log(INT) 0.471 0.751 2773.10 100.84 

log(BAI) ~ log(BA) + log(RS) + log(INT) 0.469 0.746 2788.17 115.91 

log(BAI) ~ log(BA) + log(HOR) + log(RAIN) 0.281 0.865 2816.03 143.77 

log(BAI) ~ log(BA) + log(RS) + log(RAIN) 0.273 0.852 2829.26 157.00 

Abbreviations: Marg. R² the marginal r-squared (accounting for the fixed effects); Cond. R² the conditional r-squared 387 

(accounting for the fixed and random effects); AIC the Akaike Information Criterion; ∆i the difference in AIC with respect to 388 

the best fitting model of each category delimited by plain black lines. 389 

 390 

Table 3: Estimated coefficients, standard errors (Std. errors) and p-values for the best model. The variances of 𝜀𝑟𝑎𝑛 and 𝜀𝑟𝑒𝑠 391 

are shown as well. 392 

log(𝐵𝐴𝐼𝑖,𝑡) = 𝑘 + ∝ log(𝐵𝐴𝑖,𝑡−1) + 𝛽 log(𝐵𝐴𝐿) +  𝛾 log(𝐷𝑈𝑅)  𝛿𝑖  𝜀 

Parameters Estimates Std. errors P value Variance Variance 

k 15.974 0.409 < 2e-16 * 

0.206 0.212 

α 0.410 0.064 6.29e-10 * 

β -1.027 0.175 1.94e-08 * 

γ -1.497 0.048 < 2e-16 * 

*significant correlation (p < 0.01) 393 

 394 
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3.4. Predicted effects of the main variables from the best model on growth 395 

 396 

All of the variables of the best final model significantly affect individual BAI (Table 3). Basal area in the 397 

previous year (BAt-1) had a positive effect on BAI (Table 3 & Figure 6). From 0.01 m² to approximately 0.04 m², 398 

BAt-1 had a strong positive effect on BAI. This positive effect became relatively lower with higher variability 399 

between 0.04 m² and 0.10 m² due to sparse data. Both BAL and DUR had a negative effect on BAI overall. DUR 400 

had a negative effect on BAI with low variability. BAL had a strong negative effect on BAI with high variability 401 

between 0 and 1 and a more neutral negative effect on BAI with higher variability when BAL ranged between 1 402 

and 3. 403 

 404 

Figure 6: Predicted effects of BAt-1, BAL, and DUR on standardised BAI estimated using the best three-variable model (table 2). 405 

Shaded areas around the curves represent the confidences intervals of the mean (95%). Straight lines above the x-axis 406 

represent the distribution of the measured data.  407 

 The relationship between BAL and DUR is only additive, which means that pine growth response to 408 

drought is the same under different levels of BAL. However, BAL reduces growth, i.e. the higher the BAL the 409 

lower the growth (Figure 8). For example, when drought duration equals 200 days in a year, pine trees experiencing 410 

no competition at all increase annual pine growth by 1mm², while pines experiencing strong competition (BAL = 411 
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3) would decrease annual pine growth by 0.4 mm² (Figure 7). It also shows that strong competition reduces the 412 

number of water stress days pine trees can tolerate in a year before BAI is considerably affected (i.e. when 413 

standardized BAI drops below 0). In our example, when BAL = 3, standardized BAI drops below 0 after 150 water 414 

stress days. When BAL = 1, standardized BAI drops below 0 only after 200 water stress days. Finally, when BAL 415 

= 0, standardized BAI never goes below 0 (Figure 8). 416 

 417 

Figure 7: Predicted effects of the number of days with water stress (DUR) on standardised BAI according to different fixed 418 

values of Basal Area of Larger trees (BAL; in colors), estimated using the best three-variables model (table 2). Shaded areas 419 

around the curves represent the 95% confidences intervals of the mean effects (means are the coloured curves). The mean 420 

standardized growth (horizontal line) and the value of DUR=200 is indicated in red (vertical line) (see also comments in the 421 

text) 422 

4. DISCUSSION 423 

4.1. Competition indices 424 

 425 

In this study, the Hegyi competition index (HEG) was selected as the best predictor of individual annual 426 

BAI among the competition indices for the one-variable and the two-variable models, followed by the basal area 427 

of larger trees (BAL; BAL), the angles CIs (i.e. HOR and VER), and the relative spacing CI (RS). This suggests 428 

that competition would mainly be symmetric, i.e. the system is limited by water. However, the BAL was selected 429 

as the best predictor of BAI among the CIs in the three-variable models, followed closely by the Hegyi CI (HEG), 430 
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and the vertical angles (VER). This suggests that part of the competition explained by certain CIs (i.e. HEG) could 431 

be taken into account by WSIs. In other words, this indicates that some CIs do indeed reflect the competition for 432 

water. The poor performance of RS can be explained by its generality as it provides a single competition value for 433 

all trees within a given plot, which does not accurately represent the actual competition experienced by each 434 

individual tree. 435 

The three best CIs (BAL, HEG and VER) correspond to three different methods of computing competition; 436 

despite this, BAL, HEG and VER have similar BAI predictive power, with a marginal r-squared of about 56%. 437 

HEG only relies on circumference and should indicate symmetric competition for belowground resources, while 438 

BAL also relies on circumferences but only incorporates trees larger than the subject tree, reflecting both 439 

asymmetric and symmetric competition. VER uses tree height, which is more subject to measurement errors, but 440 

is more representative of competition for light (e.g. asymmetric competition) than circumference. We investigated 441 

the relationship between height and circumference. However, no clear relationship was detected (Appendix G), 442 

indicating that both represent different aspects of competition with water stress indices explaining yet another 443 

aspect of competition. It also highlights the fact that CIs can share some information, as competition can never be 444 

defined as completely size-symmetric or completely size-asymmetric (Schwinning & Weiner, 1998). Hence, our 445 

hypothesis (i) is not entirely verified: P.halepensis’ mode of competition seems to be asymmetric, but this is 446 

contradicted by the good performance of the HEG index. 447 

Moreover, BAL is distance-independent, while HEG and VER are distance-dependent. The fact that a 448 

distance-independent CI and distance-dependent CIs have similar predictive power is not straightforward. In most 449 

cases and especially in heterogeneous stands, distance-dependent competition indices appear to be more correlated 450 

with tree growth, as they consider the spatial arrangement of the trees within a stand (Contreras et al., 2011; 451 

Pukkala & Kolström, 1987; Rouvinen & Kuuluvainen, 1997). However, results from other studies suggest that 452 

neither distance-independent indices nor distance-dependent indices perform universally better (our study; Biging 453 

& Dobbertin, 1995; Prévosto, 2005). These contrasting results suggest that a single best CI for all sites and all 454 

species may not exist. In fact, CIs are most likely species-specific, and depend on local site conditions. For 455 

example, Contreras et al. (2011) found that the best predictor of BAI of Pinus ponderosa, Pseudotsuga menzisii 456 

and Larix occidentalis was the horizontal angles CI. Cattaneo et al. (2018) found that the Hegyi CI was the best 457 

predictor of Pinus pinea and Pinus halepensis radial growth, compared to asymmetric competition indices. In our 458 

study, the stands are quite homogeneous and major changes in the stand composition and structure did not occur 459 

between 2007 and 2017 (Appendix F). Therefore, if we aim to successfully predict tree growth over a long-term, 460 
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and especially growth release after neighbourhood mortality, the Hegyi competition index may be more suitable. 461 

However, to simulate short-term radial growth, testing several different CIs would be a valuable approach as their 462 

predictive power could differ between species and stand spatial arrangements. 463 

 464 

4.2. Water stress indices 465 

 466 

Our results suggest that the growth of P. halepensis is largely controlled by soil water content rather than 467 

annual precipitation alone, which verifies our second hypothesis and is in accordance with Alfaro-Sánchez et al. 468 

(2018), Misson et al. (2004), Rathgeber et al., (2005) and Vennetier et al. (2018). Soil water availability is more 469 

biologically meaningful than annual precipitation alone, as it not only integrates water inputs (rainfall and 470 

interception by the canopy), but also the soil water content (e.g., according to soil depth and texture), and water 471 

loss through vegetation (evapotranspiration, which depends on PET, a combination of atmospheric temperature, 472 

air relative humidity and solar radiation). Indeed, atmospheric conditions also play an important role in regulating 473 

stomatal conductance. For example, Maseyk et al. (2008) found in the case of P.halepensis that, irrespective of 474 

soil moisture, leaf vapour pressure deficit greatly influenced stomatal conductance when REW was above 0.2. In 475 

general, vapour-pressure deficit was found to limit tree growth and was therefore advised to be considered in forest 476 

models (Novick et al., 2016; Sanginés de Cárcer et al., 2018).  477 

 Among the water stress indices tested, drought duration alone (DUR) better predicted P. halepensis BAI 478 

than an index that combines drought timing (TIM), or duration and intensity (INT). Similarly, preliminary analyses 479 

revealed that the annual water stress indices performed better than the seasonal indices tested (Appendix A), which 480 

is the reason why we chose to use annual indices over seasonal indices. This would suggest that P. halepensis uses 481 

water whenever it is available, with no distinction for the time of the year. These results were not expected as 482 

drought timing is known to have a differential impact on cambial activity, and thus ring-width (Campelo et al., 483 

2007; Mina et al., 2016, Raventós et al., 2001). In the case of P. halepensis, Pasho et al., (2012) demonstrated that 484 

cumulative precipitations from winter to spring drive secondary growth of the same year. However, Rathgeber et 485 

al., (2005) found that the duration and intensity of the drought was the main predictive factor of P. halepensis 486 

growth, although they did not investigate the effect of drought duration alone.  487 

In our study, the fact that drought duration alone better predicted Aleppo pine growth than an index that 488 

also integrates drought intensity could suggest that its cambial activity may be more sink-limited than source-489 

limited. In other words, it may be more limited by the drought-induced loss of cell turgor in the cambium than by 490 
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the carbon availability through photosynthesis and carbon reserves (Fatichi et al., 2013; Lempereur et al., 2015). 491 

In this sink-limited approach, there is no notion of drought intensity: as soon as the REW drops below 0.4, 492 

xylogenesis stops, even though the stomata can still be open and allow carbon assimilation and transpiration. 493 

Indeed, there is evidence that cambial and leaf growth are inhibited sooner than photosynthesis when water stress 494 

increases (Hsiao et al., 1976; Lempereur et al., 2015; Muller et al., 2011; Tardieu et al., 2011). 495 

 As P. halepensis is known to strongly control its transpiration through stomata closure, a strategy to 496 

reduce water stress (Melzack et al., 1985), we could also hypothesise – as another way of explaining our results – 497 

that P. halepensis closes its stomata as soon as there is water stress, and thus stops growing. However, Maseyk et 498 

al. (2008) found that P. halepensis transpiration follows the same trend as described in Granier et al. (1999): 499 

transpiration decreases linearly after reaching REW = 0.4. This threshold therefore seems accurate when looking 500 

at tree transpiration; however, it might not be appropriate when linking it to tree growth. Despite the fact that P. 501 

halepensis is well studied (Baquedano & Castillo, 2007; Froux et al., 2005; Hover et al., 2017; Klein et al., 2011; 502 

Melzack et al., 1985; Ungar et al., 2013), there is a need for more physiological studies investigating the non-503 

linear, threshold-based relationship between secondary growth and drought for this species. To achieve this, 504 

several different approaches could be envisaged, such as using photosynthetic rate as a proxy for carbon 505 

assimilation, or by investigating water-use efficiency. A promising approach would be to investigate the link 506 

between cambial activity and drought stress experienced by the tree by combining leaf water potential (Ψpd) and 507 

dendrometer data that has been pre-analysed to remove shrinking-expansion phases arising from changes in the 508 

water content in the elastic tissue of the stem (Balducci et al., 2019; Zweifel et al., 2006). For instance, Lempereur 509 

et al. (2015) found that the summer interruption of Quercus ilex growth was associated with a threshold of -1.1 510 

MPa and remained nil for values of Ψpd ranging from −1.1 to −4 MPa, well before transpiration ceased and 511 

cavitation occurred.  512 

 Finally, our results suggest that water availability is a better predictor of annual tree growth than 513 

competition alone, which can be explained by high climatic interannual variability, while CIs remained constant. 514 

Our findings also suggest that WSIs and CIs together are the best predictors of Aleppo pine radial growth, 515 

confirming our final hypothesis (iii). 516 

 517 

 518 

 519 

 520 
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4.3. Inter-individual variability 521 

 522 

 Finally, as indicated by the large proportion of the variance explained by the random effect of the tree 523 

individual on the intercept (22% for the best model), there was a high inter-individual variability in P. halepensis 524 

radial growth within our study population. The Western European population of P. halepensis is considered to 525 

have very low genetic diversity (Soto et al., 2010). However, it has high phenotypic plasticity, which has been 526 

demonstrated many times for various traits at different spatial scales and climatic conditions (Baquedano et al., 527 

2008; Choat et al., 2018; de Luis et al., 2013; Rathgeber et al., 2005; Vizcaíno-Palomar et al., 2016; Voltas et al., 528 

2015; Voltas et al., 2018). In our study, all P. halepensis individuals were within the same forest area and were 529 

approximately the same age; we can therefore assume that they are part of the same genetic population. The high 530 

variability in individual tree growth could therefore be explained by phenotypic variations that arose due to the 531 

micro-local heterogeneity in abiotic and biotic factors, which could not be investigated in this study (e.g., presence 532 

of pathogens, varying water availability at the individual level due to small-scale changes in slope or soil properties 533 

and that is not considered in the WSIs). For example, we considered the understorey as a uniform patch ergo the 534 

competition applied by the understorey was also considered to be uniform. These results highlight the importance 535 

of considering variations in local conditions to accurately represent existing environmental heterogeneity (Ettl & 536 

Peterson, 1995). 537 

 538 

4.4. Management perspectives 539 

 540 

The importance of thinning has already been supported by many other studies investigating forest 541 

management practices for adaptation to climate change (Aldea et al., 2017; Calev et al., 2016; Millar et al., 2007; 542 

Olivar et al., 2014; Vilà-Cabrera et al., 2018). In particular, thinning has been found to have a positive effect on 543 

biomass accumulation of young Aleppo pines, which is even more marked at dry sites (Alfaro-Sánchez et al., 544 

2015). However, the results available in the literature are not as clear when looking at the effects of thinning on 545 

microclimatic variables.  For instance, forest thinning has been found to have a limited impact on 546 

evapotranspiration (Liu et al., 2018), which was explained by the rapid recovery of understorey vegetation in the 547 

thinned plots. The importance of accounting for understorey evapotranspiration was also highlighted by Simonin 548 

et al. (2007) who found a substantial contribution of understorey evapotranspiration to stand evapotranspiration. 549 

Mediterranean forests often present a well-developed shrubby understorey which influences the microclimate 550 
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(Prévosto et al., 2019) and therefore needs to be taken into account for forest management. Our empirical growth 551 

model integrates this understorey layer and all of the variables associated with it (evapotranspiration, transpiration, 552 

rainfall interception) to compute the soil water availability at the stand level. Because water-stress was quantified 553 

through a soil water budget model based on functional processes, this model can provide useful insights to forest 554 

managers despite the fact that it was calibrated on a short time period and at a single site. Firstly, managers should 555 

focus on soil water storage rather than precipitations alone to quantify drought situations. This is clearly more 556 

complicated, but the use of forest models can be a useful alternative for assessing soil moisture and predicting tree 557 

growth. Our empirical pine tree growth model can provide useful information for forest managers of 558 

Mediterranean forests. For example, with ongoing climate change, the number of water stress days is expected to 559 

increase (IPCC, 2014) and according to our model, this will correspond to an abrupt decline in tree annual growth 560 

if the number of water stress days exceeds roughly 200 days (Figure 6). Our results suggest that reducing 561 

competition by thinning could alleviate the negative effect of drought (Figure 7). For example, in dense stands 562 

with a mean BAL = 3 (corresponding to our dense cover), 150 days of drought in a year is already predicted to 563 

lead to an abrupt decline in tree growth in our conditions. Thinning dense stands, leading to moderate to light cover 564 

(mean BAL = 1) would reduce the impact of the water stress and increase annual pine growth by 0.7 mm². This 565 

study further highlights the positive effects of thinning, especially in regard to alleviating drought-related stress. 566 

  567 
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 825 

SUPPLEMENTARY MATERIAL 826 

Appendix A: Ombrothermic diagram based on records from the study period (Istres weather station, 2008-827 

2017). Below the figure are some additionnal data concerning annual rainfall. 828 

 829 

 830 

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Annual 

rainfall (mm) 

751 583 630 503 326 598 797 660 411 311 

 831 
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Appendix B: Location of the 12 plots used in the study. Treatments are, as follow: dense cover (black squares), 832 

medium cover (grey squares) and light cover (white squares). 833 

 834 
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Appendix C: Location of the selected trees for the dendroecological analysis. “Plot 2” is from the light cover 849 

treatment, “Plot 3” is from the dense cover treatments, “Plot” 9 is from the medium cover treatment. The dots 850 

represent the trees, the size of a dot represent the size (circumference) of the trees. The highlighted dots are the 851 

trees that were selected for the analysis. 852 

 853 
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Appendix D: Selection of the competition radius. The correlation coefficient is the mean BAI for 10 years 869 

divided by a competition index (for example here it is Hegyi competition index) according to the competition 870 

radius used for the computation of the competition index. Curve fit: Correlation coefficient = 0,654606 * (1 - exp(-871 

0,445734 * competition radius)). We chose a competition radius of 5 meters, as the correlation coefficient only 872 

slightly increased after 5 meters (asymptote at y = 7), and because of the sampling design (the trees that were cored 873 

were selected in the 20m*20m inner plot and the inventories were done in a 25 m * 25 m area). 874 

 875 
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Appendix E: Results from the models tested during the preliminary analysis. Linear mixed-effects models of 885 

the annual tree basal area increment (BAI) as a function of the basal area of the previous year (BA) and the different 886 

indices, both annual and seasonal. BAL is the BAL CI, taken here as an example. The annual WSIs are the rainfall, 887 

the maximum temperature (max T), the minimum temperature (min T), the average temperature (avg T), and INT 888 

taken here as an example of the WSIs retained for the final analyses. The seasonal WSI are ordered according to 889 

the season (winter, spring, summer and autumn). The best models according to AIC are in bold. 890 

Models (with tree as random effect on the intercept) Marg. R² Cond. R² AIC 

log(BAI) ~ log(BA) + log(IC5) + log(INT) 0.48 0.77 2735.3 

log(BAI) ~ log(BA) + log(IC5) + log(Rainfall) 0.34 0.87 2767.7 

log(BAI) ~ log(BA) + log(INT) 0.43 0.72 2795.8 

log(BAI) ~ log(INT) 0.16 0.77 2831.9 

log(BAI) ~ log(BA) + log(Rainfall) 0.12 0.88 2885.3 

log(BAI) ~ log(Rainfall) 0.10 0.79 2893.8 

log(BAI) ~ log(BA) + log(IC5) + log(autumn INT) 0.34 0.86 2900.3 

log(BAI) ~ log(BA) + log(IC5) + log(winter Rainfall) 0.33 0.90 2949.6 

log(BAI) ~ log(BA) + log(IC5) + log(summer Rainfall) 0.34 0.92 2969.3 

log(BAI) ~ log(BA) + log(autumn INT) 0.15 0.90 3031.4 

log(BAI) ~ log(autumn INT) 0.10 0.75 3052.8 

log(BAI) ~ log(BA) + log(IC5) + log(summer INT) 0.33 0.85 3059.5 

log(BAI) ~ log(BA) + log(IC5) + log(max T) 0.36 0.94 3076.3 

log(BAI) ~ log(BA) + log(winter Rainfall) 0.22 0.94 3079.9 

log(BAI) ~ log(BA) + log(summer Rainfall) 0.26 0.96 3103.2 

log(BAI) ~ log(BA) + log(IC5) + log(spring INT) 0.32 0.81 3154.8 

log(BAI) ~ log(winter Rainfall) 0.07 0.75 3161.9 

log(BAI) ~ log(BA) + log(summer INT) 0.12 0.86 3184.3 

log(BAI) ~ log(summer INT) 0.09 0.72 3190.3 

log(BAI) ~ log(BA) + log(IC5) + log(autumn Rainfall) 0.31 0.85 3207.1 

log(BAI) ~ log(BA) + log(max T) 0.30 0.97 3213.7 

log(BAI) ~ log(BA) + log(IC5) + log(min T) 0.35 0.93 3256.0 

log(BAI) ~ log(BA) + log(spring INT) 0.20 0.62 3262.4 
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log(BAI) ~ log(summer Rainfall) 0.05 0.73 3263.2 

log(BAI) ~ log(spring INT) 0.07 0.71 3264.5 

log(BAI) ~ log(BA) + log(IC5) + log(avg T) 0.32 0.90 3293.8 

log(BAI) ~ log(BA) + log(IC5) + log(winter INT) 0.32 0.90 3295.4 

log(BAI) ~ log(BA) + log(IC5) + log(spring Rainfall) 0.33 0.91 3303.3 

log(BAI) ~ log(BA) + log(autumn Rainfall) 0.11 0.86 3329.8 

log(BAI) ~ log(autumn Rainfall) 0.04 0.72 3334.4 

log(BAI) ~ log(BA) + log(min T) 0.30 0.97 3393.2 

log(BAI) ~ log(BA) + log(avg T) 0.24 0.94 3427.3 

log(BAI) ~ log(BA) + log(winter INT) 0.24 0.94 3428.4 

log(BAI) ~ log(BA) + log(spring Rainfall) 0.25 0.95 3437.5 

log(BAI) ~ log(max T) 0.01 0.69 3491.4 

log(BAI) ~ log(winter INT) 0.01 0.69 3514.7 

log(BAI) ~ log(avg T) 0.01 0.69 3524.2 

log(BAI) ~ log(spring Rainfall) 0.00 0.68 3554.1 

log(BAI) ~ log(min T) 0.00 0.68 3568.6 

Abbreviations: Marg. R² the marginal r-squared (accounting for the fixed effects); Cond. R² the conditional r-squared 891 

(accounting for the fixed and random effects); AIC the Akaike Information Criterion;  892 
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Appendix F: Comparison of the distribution of tree circumferences between 2007 and 2017.  906 
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Appendix G: Circumferences plotted against heights for all of the individuals used in the study. These are 921 

measurements taken from 2017.  922 

 923 


