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ARTICLE

Low growth resilience to drought is related
to future mortality risk in trees
Lucía DeSoto et al.#

Severe droughts have the potential to reduce forest productivity and trigger tree mortality.

Most trees face several drought events during their life and therefore resilience to dry

conditions may be crucial to long-term survival. We assessed how growth resilience to severe

droughts, including its components resistance and recovery, is related to the ability to survive

future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites

(22 species, >3,500 trees). We found that, across the variety of regions and species sampled,

trees that died during water shortages were less resilient to previous non-lethal droughts,

relative to coexisting surviving trees of the same species. In angiosperms, drought-related

mortality risk is associated with lower resistance (low capacity to reduce impact of the initial

drought), while it is related to reduced recovery (low capacity to attain pre-drought growth

rates) in gymnosperms. The different resilience strategies in these two taxonomic groups

open new avenues to improve our understanding and prediction of drought-induced

mortality.

https://doi.org/10.1038/s41467-020-14300-5 OPEN

#A full list of authors and their affiliations appears at the end of the paper.

NATURE COMMUNICATIONS |          (2020) 11:545 | https://doi.org/10.1038/s41467-020-14300-5 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5814-5865
http://orcid.org/0000-0002-5814-5865
http://orcid.org/0000-0002-5814-5865
http://orcid.org/0000-0002-5814-5865
http://orcid.org/0000-0002-5814-5865
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Forests provide essential ecosystem services1–4, yet are
strongly threatened by deforestation, fragmentation and
climate change5,6. Particularly, drought events associated

with increasing temperatures have the potential to reduce forest
productivity and prompt tree mortality in many areas of the
world7–10. Models of climate change predict significant increases
in the frequency, duration and severity of droughts in vast regions
of the globe11. Alleviating negative effects of climate change on
forests requires global and long-term strategies12. Therefore, there
is an urgent need to better understand the processes underlying
drought-induced tree mortality worldwide as a prerequisite to
adapt forest management strategies to climate change.

Many studies have assessed the physiological mechanisms
related to carbon and water economy, underlying drought-
induced mortality with the aim of developing reliable, mechan-
istic indicators of mortality risk (e.g. refs. 13–16). Other efforts
have been directed towards more empirical indicators, usually
based on radial growth as a compound measure of tree vitality
(e.g. refs. 17–22). An important factor to consider is that, while
severe drought may trigger tree mortality within a population,
some trees can be less vulnerable to dry conditions than others
and survive14,23–25. Since most trees face several drought events
during their lives, high resilience to drought might determine
long-term tree survival.

Resilience describes the capacity of a system to maintain its
functions after the impact of an exogenous disturbance26. Some
studies suggested that low resilience to drought may boost tree
mortality risk27–29. However, to our knowledge, no study has
evaluated the direct linkage between resilience to drought and
future mortality risk mainly because it is difficult to empirically
evaluate both resilience and mortality on the same individual tree.

Short- and long-term responses of trees to drought can be
assessed using tree-ring data, allowing a retrospective quantifi-
cation of drought effects at annual resolution for numerous
individuals, sites and species (e.g. refs. 30,31). Growth resilience
can be defined as the capacity of a tree to reach growth rates
similar to those prior to drought. Defined this way, resilience
encompasses the capacity to reduce the impact of the disturbance,
i.e. resistance, and the ability to return to pre-disturbance growth
levels after drought, i.e. recovery32,33. These two components of
resilience may vary within taxonomic groups. Pinaceae species
(gymnosperms) tend to show stronger and longer legacies in
radial growth after drought (slower recovery) than Fagaceae
species (angiosperms)30,34. Nonetheless, little is known about

how these legacies affect the ability of trees to cope with future
drought events in terms of mortality risk, which would determine
long-term demographic responses.

Here we took advantage of a recently assembled pancontinental
database22 to study the relationship between past resilience to
drought and mortality risk under subsequent drought events. The
database contains tree-ring width (TRW) series for surviving and
dead trees from 118 sites and >3500 individuals around the globe
(mostly from the temperate, Mediterranean and boreal ecosys-
tems of the Northern hemisphere), including 22 species (8
angiosperms and 14 gymnosperms; Fig. 1, Supplementary
Data 1). Because surviving and dead trees were sampled con-
currently at the same sites (matched-pairs case–control study),
this database is ideal to assess and compare growth patterns of
trees before mortality22. We quantified tree resilience to drought
using three indices that were proposed by Lloret et al.33 and
calculated them on time series of both TRW and basal area
increment (BAI). The indices are: (1) resistance, the ratio between
radial growth during the drought year and radial growth in the
period immediately before; (2) recovery, the ratio between radial
growth in the period immediately after the drought and radial
growth during the drought year; and (3) resilience, the ratio
between post-drought and pre-drought radial growth. Based on
mixed-effect models, we then analysed the relationships between
these three resilience indices and future mortality risk, also
accounting for the effects of taxonomic group (angiosperms vs.
gymnosperms) and several variables characterising environ-
mental conditions and tree size (see “Methods”).

We hypothesised that trees that ultimately died during drought
events (hereafter now-dead trees) were already less resilient to
droughts that occurred decades before their death, relative to
surviving trees from the same population. We also expected that
the nature of this relationship would differ between angiosperm
and gymnosperm trees, due to their contrasting trait syndromes
and drought response strategies30,34,35. Finally, we assessed how
the relationship between drought resilience and future mortality
risk depends on (i) the long-term water availability of each site
(characterised by the aridity index calculated as the ratio between
precipitation and potential evapotranspiration (PET)), (ii) the
intensity of the drought event under consideration and (iii) soil
properties.

Our findings confirm that trees that died during water
shortages were less resilient to previous non-lethal droughts,
relative to coexisting surviving trees of the same species. This is,
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to our knowledge, the first empirical evidence linking low growth
resilience to past droughts with increased mortality risk across
tree species and regions. Although this result is consistent for
angiosperms and gymnosperms, we show that the key component
of resilience that is involved (resistance vs. recovery) differs
between these two taxonomic groups. This is in accordance with
the fundamental differences in their drought response strategies,
such as avoidance of hydraulic failure or allocation to carbon
storage.

Results
Mortality risk is associated with low resilience to drought. Our
results show that trees that died because of drought were indeed
less resilient to previous droughts occurring decades before their
death, relative to coexisting surviving trees of the same species
(Fig. 2a). This pattern is observed across the variety of regions we
studied and for most of the species we sampled (Fig. 1 and
Supplementary Fig. 4) and it is consistent for both gymnosperms
and angiosperms (Table 1 and Supplementary Table 1). Within
sites, differences in drought resilience between coexisting trees
may be caused by differences in micro-environmental conditions,
such as competition and intra-plot heterogeneity in soil proper-
ties (extrinsic), or in traits that determine the plant water and
carbon economies (intrinsic)14,36,37. When xylem growth rates
(and consequently tree-ring formation) decrease as a result of
drought, water transport as well as carbon availability are com-
promised, potentially affecting subsequent growth38. This is
because xylem is the responsible tissue for long-distance transport
of sap from roots to leaves and for storage of large amounts of
carbohydrates. Drought-related reductions in radial growth may
not only reflect direct (deleterious) effects on turgor-driven cell
growth or carbon availability but may also cause structural
adjustments, such as plastic changes in resource allocation
because of dry conditions37. These two effects are difficult to
disentangle under field conditions. However, the fact that sus-
tained declines of TRW are associated with increased mortality
risk22 coupled with our finding of lower resilience linked to
higher mortality risk indicates that deleterious effects probably
might be dominant in this case. Therefore, the relationship
between resilience in xylem growth to past droughts and future
susceptibility to drought may provide a valuable and generalisable
proxy for future mortality risk assessment at the individual tree
level.

Angiosperms and gymnosperms differ in their strategies. We
find that the absolute values of resilience, as well as the overall
relationship between resilience and future mortality risk, are
similar for angiosperms and gymnosperms (Table 1). This is
noteworthy, considering the well-known differences in drought
resilience strategies and related traits between these two taxo-
nomic groups15,35,39,40. However, the specific associations
between survival and the components of resilience (resistance and
recovery) differ between angiosperms and gymnosperms (Table 1,
Fig. 2b, c). Surviving angiosperm trees were more resistant to
droughts occurring some decades before but show similar
recovery capacity compared to now-dead trees (Fig. 2b). Surviv-
ing gymnosperm trees also show slightly increased resistance, but
the main difference between surviving and now-dead gymnos-
perms is that surviving trees recovered better from previous
droughts (Fig. 2c). These patterns are consistent regardless of the
response variable used to characterise resilience (TRW or BAI;
Supplementary Tables 3 and 4; Supplementary Fig. 2). Limited
resistance implies low capacity to reduce the impact of the
drought in now-dead angiosperms, whereas limited recovery

entails reduced ability to return to the pre-drought state in now-
dead gymnosperms (Fig. 3).

Previous research suggests that hydraulic failure alone can
usually explain drought-induced mortality in angiosperms,
whereas in gymnosperms the carbon economy may also be
involved15. This is consistent with narrower hydraulic safety
margins (i.e., the buffer between minimum water potential
experienced by the tree in the field and the empirical threshold of
water potential for rapid loss of vascular function caused by
embolism) in angiosperms compared to gymnosperms39,40.
However, this difference must be interpreted with caution due
to the difference in the critical percentage loss of hydraulic
conductivity causing mortality in these two groups41. Despite the
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Fig. 2 Differences in resilience, resistance and recovery between now-
dead and surviving trees. a Differences in resilience between now-dead
and surviving trees. Differences in b resistance and c recovery between
now-dead and surviving trees as a function of the taxonomic group
(angiosperms vs. gymnosperms). The data are presented as model-
adjusted, back-transformed least-square means ± 95% confidence intervals
(Table 1). Resilience, resistance and recovery indices were computed from
tree-ring width (TRW) series of surviving (grey squares) and now-dead
(red squares) trees. Asterisks indicate significant pairwise differences in
least square means between now-dead and surviving trees (t or χ2 test
in LMM: *P < 0.05; **P < 0.01; ***P < 0.001). Panels are separated by
taxonomic group only when differences between angiosperms and
gymnosperms are significant (Table 1). Source data are available in Digital.
CSIC repository (https://doi.org/10.20350/digitalCSIC/10536).
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high recovery capacity of angiosperms, differences in their ability
to resist previous droughts are carried over and eventually result
in either death or survival when trees are exposed to an even
more severe subsequent drought.

In gymnosperms, negative effects on growth may persist
beyond 4 years after the drought in now-dead trees, implying
long-term legacy effects22,30. The gymnosperms that recovered
less are more prone to die one or more decades after the severe
droughts we studied (Fig. 3b, Supplementary Fig. 3). The greater
importance of recovery in gymnosperms is consistent with the
fact that their internal carbon reserves may be severely impacted
under extreme drought15. Recovery of gymnosperms from
drought may be compromised by their low capacity to refill
embolized xylem tracheids42, by their small fraction of

parenchyma tissue associated with lower levels of carbohydrate
storage in stems43,44 and by their dependence on carbohydrate
reserves to regrow new xylem after hydraulic failure45. We,
however, acknowledge that differences between angiosperms and
gymnosperms could also influence the slower recovery in the
latter, including their typically evergreen leaf habit (all gymnos-
perms included in our study were evergreen, whereas all
angiosperms except Nothofagus dombeyi were deciduous)46.
Further research is needed to identify the mechanisms underlying
drought legacy effects in gymnosperm growth.

Soil but not aridity and size affect resilience to drought.
Despite the large variation in climate across our study sites

Table 1 Summary of the fitted linear mixed model of resilience, resistance and recovery.

Std. β CI df t/χ2 P

Resilience
Fixed effects

(Intercept) −0.062 −0.121, −0.004 72.9 −2.00 0.049
Surviving −0.091 −0.142, −0.037 2623.9 −3.43 0.001
DBHi −0.001 −0.001, 0.000 2536.1 −4.04 <0.001
Δtime 0.001 0.000, 0.002 1920 2.48 0.013
Aridity 0.011 −0.056, 0.076 36.7 0.28 0.783
Soil fertility −0.002 −0.011, 0.008 26.7 −0.39 0.698
Surviving ×Δtime 0.001 0.000, 0.002 3008.7 2.83 0.005
Surviving × aridity 0.063 0.027, 0.097 3143.6 3.51 <0.001
Surviving × soil fertility −0.015 −0.021, −0.008 2679.8 −4.63 <0.001

Random effects
Genus (species (site)) 3 739 <0.001

No. of trees/sites/species/genus 3207/104/21/10
R2m/R2c/ΔAIC 0.06/0.3/22.2

Resistance
Fixed effects

(Intercept) −0.207 −0.317, −0.077 36.9 −3.41 0.002
Surviving 0.026 −0.009, 0.061 3557.8 1.47 0.143
Gymnosperms 0.017 −0.066, 0.100 19.7 0.37 0.714
Aridity 0.037 −0.102, 0.146 34.3 0.63 0.531
Soil fertility 0.016 0.001, 0.036 28.6 2.16 0.039
Surviving × gymnosperms −0.035 −0.061, −0.009 3551.6 −2.66 0.008
Surviving × aridity 0.028 −0.008, 0.065 3565.1 1.52 0.129

Random effects
Genus (species (site)) 3 1293 <0.001

No. of trees/sites/species/genus 3660/118/22/10
R2m/R2c/ΔAIC 0.04/0.47/18.3

Recovery
Fixed effects

(Intercept) 0.141 0.066, 0.216 29.4 3.56 0.001
Surviving −0.022 −0.047, 0.002 3623.8 −1.78 0.074
Gymnosperms −0.025 −0.109, 0.059 22.1 −0.56 0.578
Soil fertility −0.016 −0.031, −0.003 34.4 −2.40 0.022
Surviving × gymnosperms 0.037 0.0100, 0.065 3628.1 2.65 0.008
Surviving × soil fertility −0.006 −0.011, 0.000 3637.4 −2.07 0.039

Random effects
Genus (species (site)) 3 1092 <0.001

No. of trees/sites/species/genus 3733/118/22/10
R2m/R2c/ΔAIC 0.04/0.42/4.6

The response variables are log-transformed resistance, recovery and resilience computed for tree-ring width (TRW) data, assuming a Gaussian error distribution with an identity link. The fixed part of the
model included status (now-dead or surviving), taxonomic group (angiosperm or gymnosperm), diameter at breast height (DBHi, cm), time period between drought event and last year recorded in each
individual tree ring-width series (Δtime, years), average ratio between precipitation and potential evapotranspiration (aridity) for the period 1970–2000, a measure of soil fertility, and interactions
between status and other fixed effects. The random part of the model included site nested within species nested within genus. The intercept corresponds to the reference status (now-dead) and
taxonomic group (angiosperms). This summary corresponds to the reduced model (the full model is presented in Supplementary Table 1; for model selection, see Supplementary Table 2). Values
represent the standardised estimates of regression coefficients (std. β), 95% confidence intervals (CIs), the t statistic or χ2 statistic and the associated P value of significance (bold type for significant
fixed effects, P < 0.05). Estimates of regression coefficients for the intercept were not standardised. The signs indicate the direction of the effects. R2m is the marginal R2, R2c is the conditional R2, ΔAIC is
the increment on AIC values with respect to that of the model without status (Supplementary Table 2). The low marginal R2 explained by the fixed effects of the reduced models might be a consequence
of data heterogeneity, with high variation within species and sites22. Nevertheless, differences between statuses were detected, and smaller AICs and larger differences (ΔAIC) > 2.0 related to models
without status indicate that models including status showed higher explanatory power69
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(Fig. 1), we do not find consistent effects of aridity on growth
resilience and its components. On the one hand, we find a sig-
nificant positive interaction between tree status and aridity on
resilience and, to a lower extent, on resistance (Table 1, Supple-
mentary Fig. 6), suggesting that surviving trees in more humid
sites are more resilient due to a better capacity to resist the initial
drought impact. On the other hand, recovery is always inde-
pendent from aridity, and aridity has no effect on resistance when
BAI is used as a measure of growth instead of TRW (Supple-
mentary Table 3). Recent large-scale studies reported that resis-
tance increases with the ratio between soil moisture and PET,
whereas resilience increases with precipitation34,47. Results con-
cerning the recovery appear mixed, with slower30 or faster34,48

recovery in dry than in wet forests. These contrasting findings
may indicate that vulnerability to drought is to some extent
decoupled from the exposure to climatic water deficits precisely
because species distributions reflect (and tend to adjust to) the
long-term climatic environment. Consistent with this view,
hydraulic safety margins have been shown to be similar across
biomes regardless of their rainfall environment39. Moreover,
differences between studies could be explained by different biotic
and abiotic conditions, experimental designs and modelling
approaches. Overall, a universal pattern of the relationship
between local climate and resilience remains hitherto inconclusive
and deserves further investigation.

It is noteworthy that resilience and its components are also
independent of the intensity of the drought (measured as the
absolute Standardised Precipitation Evapotranspiration Index
(SPEI)49 or the SPEI difference between the relevant periods;
see “Methods” and Table 1 and Supplementary Tables 2–4). This
is consistent with a recent global study that did not find a strong
link between the magnitude of the legacy effects after drought and
its intensity30.

Soil properties influence growth responses to drought. Soil
fertility increases resistance but reduces recovery, particularly in
surviving trees. These opposing effects determine a neutral effect
of soil fertility in the resilience of now-dead trees and a negative
effect on the resilience of surviving trees (Table 1, Supplementary
Fig. 6). The latter effect is consistent with a detrimental role of
high nutrient availability on drought survival due to preferential
biomass allocation aboveground50. It is also important to
consider that drought can have direct effects on soil fertility51

and on the composition of soil bacterial and fungal commu-
nities52, which may underlie some of the legacy effects on tree
growth reported in this study and elsewhere30.

Finally, resilience but not its components is negatively related
to tree size (diameter at breast height (DBH); Table 1,
Supplementary Fig. 6). Similarly, several studies reported higher
sensitivity to drought in larger trees, particularly in the
tropics53,54, probably due to hydraulic limitations related to tree
height55. However, note that tree size and age effects may be
confounded and cannot be disentangled in purely observational
studies such as ours56.

Discussion
Even though previous studies have related tree growth patterns to
drought-induced mortality both at local and global scales17–22,
our study provides, to our knowledge, the first empirical evidence
linking low growth resilience to past droughts (sensu Lloret
et al.33) with increased risk of tree mortality across species and
regions. We acknowledge that the spatial coverage of our data set
is limited largely to temperate, Mediterranean and boreal biomes,
although it encompasses substantial variation in geographic and
climatic conditions within these regions (Fig. 1). Lack of infor-
mation from the tropics reflects current tree-ring data avail-
ability57. Expanding this type of analysis to tropical forests should
be possible in the near future due to the renewed interest and
methodological developments in tropical dendroecology58.

We also show that the ability to resist the immediate impacts of
drought is linked to long-term mortality risk in angiosperms,
whereas recovery capacity appears to control the likelihood of
drought-induced mortality in gymnosperms. Our results confirm
that growth resilience to past and current droughts should be
considered as a promising proxy to assess future mortality risk at
the individual tree level, bringing new tools to identify early
signals of mortality and improving our capacity to forecast forest
die-off under future climates.

Methods
Growth data. We selected TRW (mm) data sets from the pancontinental database
compiled by Cailleret et al.22, for which (i) both dying and surviving trees growing
together at the same site were cored, (ii) all individual TRW series had been
successfully cross-dated and (iii) mortality was mainly induced by drought, solely
or in combination with other factors, such as bark beetles, fungi or mistletoes6

(Fig. 1, Supplementary Data 1). The database included 127 sites mostly located in
the boreal, temperate and Mediterranean biomes of North America and Europe.
We used two metrics of tree growth, TRW and BAI (mm2). Although TRW and
BAI show size and age effects, BAI reduces the pure geometric effect associated
with the increase in tree DBH.

Drought characterisation. To explore the effect of drought on tree growth, we
used the SPEI as a drought metric49. The SPEI is a multi-scale drought index
calculated from the monthly difference between precipitation and PET. The

Angiosperms
0.2

0.0

–0.2

–0.4

–0.6

0.2

0.0

–0.2

–0.4

–0.6

–4 –2 0
Years

lo
g 2

 (
gr

ow
th

 r
at

e)

2 4

Gymnosperms

Fig. 3 Growth patterns before, during and after the drought event studied
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Source data are available in Digital.CSIC repository (https://doi.org/
10.20350/digitalCSIC/10536).
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specific SPEI index we employed uses precipitation data from the Climate Research
Unit (CRU TS 3.22) data set and PET data from the FAO-56 Penman–Monteith
estimation, with a spatial resolution of 0.5°. Positive and negative SPEI values
correspond to relatively wet and dry conditions, respectively. The SPEI can be
computed at different time scales to characterise the duration and intensity of
droughts because the SPEI value assigned to a particular month is calculated based
on the averaged SPEI values of a time window covering the previous n months. For
each study site, SPEI values from 1901 to 2013 with a 1- to 24-month time win-
dows were obtained from SPEIbase v.2.3 (2014, http://hdl.handle.net/10261/
104742). The SPEI has been used for large-scale and long-term studies because it
allows the comparison among sites with contrasting climates and accounts for
timing and duration of drought during the current and previous years59.

Selecting the SPEI time windows. Extreme drought events were detected by
combining information from growth and SPEI time series. We selected the optimal
time window of SPEI that maximised the goodness-of-fit of a linear model between
SPEI and the residual chronology of standardised growth for each site. We con-
sidered different SPEI time windows for each site because species and biomes
respond to drought at specific time scales24,59. First, we standardised the TRW
series with the R package “dplR”60 in the R environment61. Each individual TRW
series was fit to a cubic smoothing spline (the frequency response was set to 0.50 at
a wavelength of 67% of the time span of each series). An autoregressive model was
then applied to the individual fitted series and the residuals of the resulting model
were standardised by dividing them by the mean. Finally, a residual chronology for
each site was obtained by averaging the individual residual indices using Tukey’s
biweight robust mean. This standardisation was flexible enough to preserve high-
frequency climatic information while removing the low-frequency variability
caused by tree age or size, or by external disturbances62,63.

Second, we used monthly SPEI values for 24 different month scales (from
1 month to 2 years), ending in 5 target months corresponding to summer and early
autumn (from June to October for the sites located in the Northern Hemisphere
and from December of the previous year to May of the current year of ring growth
in the Southern Hemisphere). For each site, we analysed the relationship between
the residual chronology and the 120 different SPEI windows (5 target months ×
24 month scales) for the common period (1931–1980) using linear regression
models. For each of the 120 linear models per site, residual chronologies were the
response variable and the SPEI for a given time window was the fixed explanatory
variable. A Gaussian error distribution with an identity link was used. We
compared model performance using the Akaike Information Criterion (AIC) to
select the best model for each site, and its corresponding SPEI time window was
used for the subsequent analyses (see Supplementary Data 2).

Detecting extreme drought events. We selected a single drought event for each
site because the frequency and intensity of drought events can differ among sites49.
The drought event was selected within a 30-year period following two steps. First,
to discard exceptional long mortality periods, we excluded now-dead trees that died
>50 years before the last death event recorded at a given site. Second, to avoid
selecting drought events either too close or too distant in time to the mortality
event, we limited the time period from 10 to 40 years before the first tree dying in
each site (Supplementary Fig. 1). Within this period, we selected one drought event
per site following two criteria: (1) SPEI less than the 10th percentile of the site-
specific SPEI distribution (Supplementary Fig. 1a), and (2) abnormal low growth in
the same year or in the year after (mean TRW of the site was reduced >5% relative
to the average TRW of the 4 previous years). Growth reductions the year after the
drought were rare but were considered, because depending on drought timing and
the species tolerance, some trees might show a delay in their growth response to
drought64 (e.g. Supplementary Fig. 1b). After discarding 9 sites that did not meet
the latter criteria, we considered 118 sites with 2456 and 1454 co-occurring, sur-
viving and now-dead trees, respectively, of 22 species (8 angiosperms and 14
gymnosperms) for the subsequent analyses (Supplementary Fig. 1, Supplementary
Data 1 and Data 2).

Computing indices of resistance, recovery and resilience. We computed
resistance, recovery and resilience indices as proposed by Lloret et al.33, considering
4 years before and after the drought event in agreement with Anderegg et al.30.
Other periods around the studied drought (from 1- to 8-year period) were also
analysed resulting in similar outcomes (Supplementary Fig. 3).

The resilience indices were computed as:

Resistance ¼ Dr=PreDr ð1Þ

Recovery ¼ PostDr=Dr ð2Þ

Resilience ¼ PostDr=PreDr ¼ resistance ´ recovery ð3Þ

where PreDr was defined as mean raw TRW of the preceding 4-year period, Dr as
raw TRW of the drought year and PostDr as mean raw TRW of the subsequent 4-
year period. All indices were also calculated using BAI as a measure of growth.

Climate covariate. To account for climate diversity found across the study
populations, we used the Global Aridity Index that provides high-resolution (30
arc-seconds) raster climate data for the 1970–2000 period65. The Global Aridity
Index is the ratio between mean annual precipitation and mean annual reference
evapotranspiration, based upon the implementation of the Penman Monteith
Evapotranspiration equation for reference crops and using the WorldClim 2.0 data
(http://worldclim.org/version2). The aridity index indicates rainfall over potential
vegetation water demand (aggregated on an annual basis), and its value thus
increases under more humid conditions and decreases with more arid conditions.

Soil covariate. We accounted for the variation in soil properties by means of two
high-resolution soil databases from the International Soil Reference and Infor-
mation Centre (ISRIC–World Soil Information). First, we used the WISE30sec
database (WISE Soil Property Databases) that comprises a set of harmonised soil
profiles at 30 arc seconds (~1 km at the equator), including 20 soil properties
derived from statistical analyses of ca. 21,000 soil profiles (https://www.isric.org/
explore/wise-databases)66. Second, we used SoilGrids, a global gridded soil
information system at 250 m that provides global predictions for standard
numeric soil properties at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm)
and depth to bedrock based on ca. 150,000 soil profiles (https://www.isric.org/
explore/soilgrids)67. We included ten soil characteristics to describe soil fertility in
the study populations: organic carbon (g kg−1), total nitrogen (g kg−1), carbon/
nitrogen ratio, bulk density (kg dm−3) and available water capacity (from −33 to
−1500 kPa; cmm−1) from WISE30sec database and absolute depth to bedrock
(cm), pH measured at 200 cm and clay, silt and sand content (%) measured at 60
cm from the SoilGrids250m database. We conducted an ordination analysis of
these soil characteristics at the study sites using principal component analysis
(PCA) with the “FactoMineR” R package68 in the R environment61. The first
component of this PCA explained 55% of the variance and was positively asso-
ciated with nitrogen concentration, organic content and available water capacity
(Supplementary Fig. 5). This component was interpreted as indicator of soil fer-
tility and included as an explanatory variable in our statistical models.

Comparison between surviving and now-dead trees. We analysed growth dif-
ferences between coexisting now-dead and surviving trees for the three different
response variables (resistance, recovery and resilience) around a severe drought
previous to the mortality event, using linear mixed models (LMMs). Resistance,
recovery and resilience were log-transformed to satisfy normality of the LMM
residuals and considered as the response variables assuming a Gaussian error
distribution with an identity link. In the initial full LMM, the included fixed effects
were: (1) tree status (surviving vs. now-dead), (2) taxonomic group (angiosperms
vs. gymnosperms), (3) DBH in the year of the drought event (DBHi, where i refers
to the target drought event); (4) the relative intensity of the drought event,
expressed as the SPEI value during the drought event (SPEIi) and the SPEI dif-
ference corresponding to each metric, for resistance,

SPEIdiff resist ¼ SPEIi � PreSPEI ð4Þ
for recovery,

SPEIdiff recov ¼ PostSPEI� SPEIi ð5Þ
and for resilience,

SPEIdiff resil ¼ PostSPEI � PreSPEI ð6Þ
(5) the length of the time period between the drought event and the last year

recorded in the ring-width series of each tree (Δtime), to control for temporal
effects (mortality risk might be more related to a drought that occurred 10 years
ago than 40 years ago); (6) the average ratio between precipitation and PET as a
measure of climatic aridity; (7) the first principal component of the soil PCA as a
measure of soil fertility; and (8) all the interactions between tree status (surviving
vs. now-dead) and each of the other fixed effects. Because of the strong collinearity
between SPEIi and SPEIdiffresist (R2= 0.88, P < 0.001, N= 5928) and between SPEIi
and SPEIdiffrecov (R2=−0.89, P < 0.001, N= 5928), we only considered the effect
of both SPEIi and SPEIdiffresil for the resilience LMM (SPEIdiffresil vs. SPEIi; R2=
−0.24, P > 0.05, N= 5928). In all LMMs, random effects were estimated for the
intercept with site nested in species and species nested in genus as grouping factors.
We simplified each full LMM (Supplementary Table 1) by removing the least
significant terms until a minimum adequate model (in terms of AIC) was
identified69 (see Supplementary Table 2 for model selection).

Identical analyses were also performed for resilience indices based on BAI
instead of TRW (Supplementary Tables 3–5; Supplementary Fig. 2). In all cases,
data exploration, model fitting, variance analyses and pairwise differences between
the effects were computed with the R library “HighstatLib”70 and the R packages
“lme4”71, “car”72, “emmeans”73 and “effects”74 in the R environment61.

Additional models. We tested the effects of the source of mortality and the
interaction between taxonomic group and aridity on resilience indices based on
TRW. We used additional models separately from the main models for the sake of
clarity.
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We fitted models including the additional source of mortality (Supplementary
Data 1) as reported in the original studies (cf. Cailleret et al.22) as fixed effect
(Supplementary Tables 6–8). These models did not perform better compared to the
selected models reported in Table 1 and Supplementary Table 1 (see
Supplementary Table 2 for model comparison), and hence this variable was not
included in our final models.

We fitted models including the interaction between taxonomic group and
aridity index to account for a potential covariation between these two variables.
This interaction was never significant, and the AIC of the corresponding models
was always slightly higher than that of the full model. We therefore did not include
the interaction between taxonomic group and aridity index in the final models (see
Supplementary Tables 2 and 9).

Note that all additional models were first compared with the full models
(Supplementary Table 1) and then with reduced models (Table 1) when the effect
of the newly added variables was significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support this study are available in the Plant Trait database (TRY), https://
www.try-db.org/. The source data of Figs. 2 and 3 are available in Digital.CSIC
repository (https://doi.org/10.20350/digitalCSIC/10536).
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