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Abstract
The response of forest productivity to climate extremes strongly depends on ambient  
environmental and site conditions. To better understand these relationships at a  
regional scale, we used nearly 800 observation years from 271 permanent long-term 
forest monitoring plots across Switzerland, obtained between 1980 and 2017. We 
assimilated these data into the 3-PG forest ecosystem model using Bayesian infer-
ence, reducing the bias of model predictions from 14% to 5% for forest stem carbon 
stocks and from 45% to 9% for stem carbon stock changes. We then estimated the 
productivity of forests dominated by Picea abies and Fagus sylvatica for the period 
of 1960–2018, and tested for productivity shifts in response to climate along el-
evational gradient and in extreme years. Simulated net primary productivity (NPP) 
decreased with elevation (2.86 ± 0.006 Mg C ha−1 year−1 km−1 for P. abies and 0.93 ± 
0.010 Mg C ha−1 year−1 km−1 for F. sylvatica). During warm–dry extremes, simulated 
NPP for both species increased at higher and decreased at lower elevations, with re-
ductions in NPP of more than 25% for up to 21% of the potential species distribution 
range in Switzerland. Reduced plant water availability had a stronger effect on NPP 
than temperature during warm-dry extremes. Importantly, cold–dry extremes had 
negative impacts on regional forest NPP comparable to warm–dry extremes. Overall, 
our calibrated model suggests that the response of forest productivity to climate 
extremes is more complex than simple shift toward higher elevation. Such robust 
estimates of NPP are key for increasing our understanding of forests ecosystems 
carbon dynamics under climate extremes.
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1  | INTRODUC TION

Forests provide a wide range of ecosystem functions and services 
from global to local scale (Brockerhoff et al., 2017). It is therefore es-
sential to understand how forest ecosystem productivity responds to 
climate extremes across environmental gradients (Ciais et al., 2014; 
Cramer et al., 2001; Reichstein et al., 2013) and how those responses 
feed back to the climate system (Humphrey et al., 2018). Climate 
change can affect forests on various levels, for example, by modify-
ing the balance and interactions between direct abiotic constraints 
on tree growth (Cuny et al., 2019), shifting the timing of the growing 
season (Bigler & Bugmann, 2018), or altering disturbance regimes 
(Senf et al., 2018; Sommerfeld et al., 2018). Large-scale variations 
in forest ecosystem productivity have been primarily attributed to 
interactions between environmental constraints, namely tempera-
ture, water availability and demand and radiation (Beer et al., 2010; 
Jung et al., 2017; Seddon, Macias-Fauria, Long, Benz, & Willis, 2016), 
rather than to a single one. In particular, global warming amplifies 
water limitation as a key constraint for global forest ecosystem pro-
ductivity, and the spatial extent of drought-limited areas is increas-
ing (Allen et al., 2010; Babst et al., 2019; D'Orangeville et al., 2018; 
Nemani et al., 2003).

A diverse set of methods is currently used to quantify and project 
the impact of changing environmental constraints on forest ecosys-
tem productivity, including extensive collections of in situ obser-
vations (Babst et al., 2019; Charney et al., 2016; Clark et al., 2001; 
Klesse et al., 2018; Shestakova et al., 2019), remote sensing data 
(Beer et al., 2010; Jolly, Dobbertin, Zimmermann, & Reichstein, 2005; 
Nemani et al., 2003; Piao et al., 2014), or dynamic vegetation mod-
els (DVMs, e.g., Huang, Gerber, Huang, & Lichstein, 2016; Rollinson 
et al., 2017; Zhang et al., 2018). These and other studies identified 
important differences in the response of forests to environmen-
tal constraints, depending on ambient climate conditions. Forests 
growing in cold environments at high elevations and latitudes may 
benefit from higher temperatures because their productivity is pre-
dominantly limited by temperature and particularly by a short grow-
ing season. In contrast, forests at lower elevations may increasingly 
suffer from lack of soil water because warming causes an increase in 
atmospheric water demand, even if precipitation does not decrease 
(Körner & Paulsen, 2004). Accordingly, a recent research focus has 
been on warm and dry extremes, whereas cold and wet extreme 
events (e.g., Figure S1) have received less attention, despite their im-
portance (but see Chen et al., 2019; Vitasse et al., 2019). Moreover, 
the quantification of forest ecosystem productivity responses to cli-
mate extremes at high spatial and temporal resolution is still rare.

A challenge in this context is the synthesis of various and often 
heterogeneous datasets into a product that summarizes our best 
knowledge about the dynamics and climate sensitivities of forest 
ecosystems and that can be used for projections. DVMs can achieve 
this purpose, especially when coupled with various types of mon-
itoring data (Hartig et al., 2012). We refer to this process as data 
assimilation (also “model–data fusion” or "inverse modeling"; see 
Keenan, Davidson, Moffat, Munger, & Richardson, 2012). Data 

assimilation can help to better estimate the true ecosystem state, 
its dynamics, and the associated uncertainties (Keenan, Carbone, 
Reichstein, & Richardson, 2011; Lahoz, Khattatov, & Menard, 2010; 
Niu et al., 2014). Data assimilation can also reduce uncertainties in 
many areas of the modeling process, for example, via initial state 
updating (data assimilation in a narrow sense), parameter estima-
tion (model–data fusion, model calibration), input updating, and 
error correction (Houser, De Lannoy, & Walker, 2010). Recent re-
search in forest ecosystem sciences emphasizes parameter es-
timation techniques to better constrain DVMs (LeBauer, Wang, 
Richter, Davidson, & Dietze, 2013; Luo et al., 2011; MacBean, Peylin, 
Chevallier, Scholze, & Schürmann, 2016; Peng, Guiot, Wu, Jiang, & 
Luo, 2011; Scholze, Buchwitz, Dorigo, Guanter, & Quegan, 2017), 
which has led to the development of online and offline data assim-
ilation systems (Anderson et al., 2009; Dietze, Lebauer, & Kooper, 
2013; Huang et al., 2019; Peylin et al., 2016). Parameter estimation 
via data assimilation helps to estimate the statistical distribution 
of model parameter values such that model outputs better reflect 
the currently available information (Hartig et al., 2012; Huang et al., 
2019). Bayesian inference has often been recommended as the most 
useful technique to achieve these goals (Hartig, Dislich, Wiegand, 
& Huth, 2014; van Oijen, 2017). Despite the fact that this method 
allows us to combine multiple data sources and types, most studies 
have focused on the local scale. Hence, an important step forward is 
now to use large and diverse datasets in combination with DVMs at 
the regional scale (Cailleret, Bircher, Hartig, Hülsmann, & Bugmann, 
2019; Fer et al., 2018; Minunno, Peltoniemi, et al., 2019; Thomas 
et al., 2017; Van Oijen et al., 2013).

We assimilated extensive and long-term forest ecosystem mon-
itoring data into the 3-PG forest ecosystem model (Landsberg & 
Waring, 1997). With the parameterized model, we assessed how 
forest productivity responds to climate extremes across environ-
mental gradients in Switzerland. Switzerland is a highly suitable 
case study for this purpose, because its elevational gradients span 
a range of bioclimatic conditions that are comparable to at least 
1,800  km of latitudinal gradient in Europe (Halbritter, Alexander, 
Edwards, & Billeter, 2013), but within a small geographic area. This 
alleviates the need to control for different synoptic drivers, con-
tinentality, population genetic differences, etc. To constrain the 
parameter distributions of 3-PG and estimate their uncertainty 
ranges, we compiled monitoring data for two dominant European 
species (Picea abies (L.) H. Karst. and Fagus sylvatica L.) from 271 
sites, totaling almost 800 observation years. We then used the con-
strained model parameter distributions to test for shifts in forest 
productivity responses to climate extremes across environmental 
gradients. Specifically, we addressed the following questions: (a) 
What is the contrast in climate response at low versus high eleva-
tion and in average versus extreme years? (b) How strong are NPP 
anomalies during warm versus cold extremes and what is the spa-
tial extent of the affected area? Answering these questions helps 
us to better understand and anticipate possible trajectories of for-
est ecosystem productivity in a warmer and more variable future 
climate.
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2  | MATERIAL S AND METHODS

2.1 | Monitoring data

We used data from 271 permanent forest monitoring plots cover-
ing the actual habitat of P. abies (N = 237) and F. sylvatica (N = 34; 
Figure 1) across Switzerland. The datasets cover the period from 
1980 to 2017 and include selected plots from the Swiss National 
Forest Inventory (NFI; Fischer & Traub, 2019), the Experimental 
Forest Management (EFM) network (Forrester, Nitzsche, & Schmid, 
2019), the Long-term Forest Ecosystem Research Network (LWF; 
Etzold, Waldner, Thimonier, Schmitt, & Dobbertin, 2014; Schaub, 
Dobbertin, Kräuchi, & Dobbertin, 2011; Thimonier et al., 2010), 
and one forest site from the Swiss FluxNet (Etzold et al., 2011; 
Zielis et al., 2014). We used eight variables that describe stand 
stocks and characteristics: stem biomass (SB), foliage biomass, 
root biomass, number of trees, average diameter at breast height 
(1.3 m; DBH), basal area (BA), leaf area index (LAI), and gross pri-
mary production (GPP). To calculate the stand-level stocks, we 
applied the biomass equations developed for European forests 
following Forrester, Tachauer, et al. (2017) for each measured tree, 
and summed it up to the stand level in Mg dry matter/ha. The first 
observations on each monitoring plot were used to initialize the 
3-PG model runs (see below).

2.2 | National Forest Inventory

The Swiss NFI records the current state of forests on a regular 
grid of 1.4 km covering about 6,500 permanent monitoring plots 
that have been measured since 1983 (Brändli, 2010; Fischer & 
Traub, 2019). Each plot is remeasured every 10 years, with a one-
time change in timing due to a switch from a periodic to a con-
tinuous survey in the fourth NFI phase (i.e., since 2009). The NFI 
plot design comprises nested circular plots, such that every tree 
with a DBH  ≥  12  cm is recorded within an inner 200  m2 circle 
(radius = 7.98 m), and every tree with a DBH ≥ 36 cm is recorded 
within a 500 m2 circle (radius = 12.62 m). For every individual tree, 

the position, DBH, status, and species are recorded. In addition, 
tree height (H) and crown length (Hc) are measured on a subset 
of trees. Age is estimated based on a regression model that was 
fit to the data obtained either from counting tree rings or count-
ing layers of whorling branches (for the P. abies trees) directly on 
the plot (Brassel & Lischke, 2001). Management and mortality on 
each individual monitoring plot were derived from inventory data. 
The specific year of management interventions and the timing of 
tree mortality were randomly assigned between two consecu-
tive inventories, as the exact dates are unknown. The monitor-
ing plots for this study were selected using the following criteria:  
(a) monospecific even-aged stands of either P. abies or F. sylvatica, 
(b) at least two consecutive remeasurements were available, (c) no 
ingrowth during the selected period, (d) no obvious measurement 
errors or missing measurement, and (e) stand age estimation was 
available for the first observation used. Based on these criteria, we 
retained 176 (P. abies N = 147, F. sylvatica N = 29) NFI plots, in total 
accounting for 451 observation years. The time span between the 
first and the last measurement ranged between 4 and 35 years.

2.3 | Experimental Forest Management

The EFM project has been collecting growth and yield data for more 
than a century (Forrester et al., 2019). The EFM network currently 
includes 459 permanent monitoring plots, which are measured every 
5–12  years, depending on their growth rates, stand age, and re-
search objectives. The EFM monitoring plots are of varying size with 
precisely defined boundaries, within which all individual trees with a 
DBH ≥ 8 cm are measured. For each tree, the position, DBH, status, 
and species are recorded. In addition, H and Hc are measured for a 
subset of trees. Age is estimated based on the planting date in even-
aged stands. Management (thinning type and timing) is recorded for 
each individual monitoring plot and is done in the same year as the 
measurements. The monitoring plots for this study were selected 
based on the same criteria used for NFI monitoring plots. Based 
on those criteria, 94 plots remained in our analysis (P. abies N = 89,  
F. sylvatica N = 5), in total accounting for 331 observation years. The 

F I G U R E  1   Location of the 271 
monitoring plots (dots) distributed 
across the potential habitats (colored 
background) of Picea abies and Fagus 
sylvatica dominated forests in Switzerland 
(a). Potential habitats are based on the 
MoGLI projections (Wüest et al., 2020). 
(b, c) Distribution of the selected plots 
(colored dots and contours) compared to 
all potential habitats in Switzerland (gray 
dots and contours) along the annual mean 
temperature and annual precipitation sum 
gradients
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time span between the first and the last measurement ranged be-
tween 5 and 30 years.

2.4 | Long-term Forest Ecosystem Research and 
Swiss FluxNet

In the LWF network, information on tree growth and crown condi-
tion as well as on the nutrient cycle and the ecosystem water balance 
is collected to assess the impact of environmental changes on forest 
functioning (Etzold et al., 2014; Schaub et al., 2011; Thimonier et al., 
2010). The LWF network includes 19 permanent monitoring plots, 
on which monitoring data have been recorded every 1–5 years, since 
1994. The LWF uses a standardized protocol for data collection 
based on the International Co-operative Programme on Assessment 
and Monitoring of Air Pollution Effects on Forests (UNECE ICP 
FOrests Programme Co-ordinating Centre, 2016). The monitoring 
plots for this study were selected based on the same criteria used 
for the NFI and EFM plots and one plot remained (P. abies N = 1). The 
retained LWF P. abies plot (Davos CH-Dav) is also part of the Swiss 
FluxNet ecosystem-scale CO2 and H2O vapor eddy-covariance flux 
measurement network (Etzold et al., 2011), providing measurements 
of net ecosystem production, GPP, and ecosystem respiration.

2.5 | Dynamic vegetation model

3-PG is a process-based forest ecosystem model that consists of five 
submodels in a causal chain, starting with light absorption and as-
similation, and ending with the conversion of biomass into output 
variables (Landsberg & Waring, 1997; Sands & Landsberg, 2002).  
A simple structure, readily obtainable input data, and a low number 
of parameters have facilitated the widespread use of 3-PG in various 
forest types around the world (Gupta & Sharma, 2019). Initially de-
veloped for simulating evergreen, even-aged, monospecific forests, 
the model has recently been further developed for deciduous, une-
ven-aged, and mixed-species forests (Forrester & Tang, 2016). It is a 
cohort-based, non-spatially explicit model with a monthly time step. 
Each cohort can be a different species and/or age class. Stand-level 
calculations avoid the propagation of potential errors when scaling 
up from higher resolution calculations (e.g., leaves or trees) while 
providing outputs at the level required for this study (Landsberg & 
Waring, 1997; Pretzsch, Forrester, & Rötzer, 2015).

The first of the five submodels predicts light absorption and GPP 
using a species-specific canopy quantum efficiency (αC). The αC is 
reduced in response to limitations imposed by temperature, frost, 
vapor pressure deficit (VPD), soil moisture, soil nutrient status, at-
mospheric CO2, and stand age (Almeida, Landsberg, & Sands, 2004; 
Landsberg & Waring, 1997; Sands & Landsberg, 2002). NPP is cal-
culated as a fixed fraction of GPP (Waring, Landsberg, & Williams, 
1998) and is distributed to roots, stems, and foliage by the sec-
ond submodel. Partitioning to aboveground versus belowground 
biomass depends on soil nutrient status, VPD, and soil moisture, 

while partitioning between stems and foliage depends on tree  
size, with larger trees partitioning a lower proportion of NPP to 
foliage compared to smaller trees (Landsberg & Waring, 1997; 
Sands & Landsberg, 2002). The third submodel simulates density- 
dependent mortality, which is calculated using the −3/2 self- 
thinning law by Yoda (1963). In the fourth submodel, which calculates 
the water balance, the Penman–Monteith equation is used to calcu-
late transpiration and soil evaporation, which are added to canopy 
interception to predict evapotranspiration. Canopy conductance gc 
is determined using a species-specific maximum gc, LAI and limita-
tions caused by VPD, soil moisture, atmospheric CO2, and stand age. 
Changes in soil water storage are calculated as the difference be-
tween evapotranspiration and rainfall; any excess of the maximum 
soil water holding capacity is drained off (Sands & Landsberg, 2002). 
The fifth submodel converts biomass into output variables such as 
mean tree diameter, height, BA, wood volume, etc., using allome-
tric relationships. Different management strategies are specified 
using the residual stocking (trees/ha) after thinning at a nominal age. 
Thinning from below or above is achieved by specifying the frac-
tion of the foliage, root, and SB of an average tree that was thinned 
(Landsberg, Mäkelä, Sievänen, & Kukkola, 2005). All submodels were 
evaluated by comparing predictions of the given process against  
empirical data of that process for many different forest types 
(Gupta & Sharma, 2019; Landsberg & Sands, 2011), including central 
European forests (Forrester, Ammer, et al., 2017; Nolè et al., 2009).

For our simulations, we used a re-implementation of the 3-PG 
model programmed in Fortran 90 (Minunno, Hartig, & Trotsiuk, 
2019). It was driven with time series monthly mean of daily minimum 
and maximum temperatures (Tmin, Tmax, °C), rainfall (Prcp, mm/month), 
monthly mean of daily solar radiation (Srad, MJ m−2 day−1), and the 
number of frost days (Fdays, days/month with Tmin < 0°C). We used 
spatially interpolated monthly meteorological data as input for 3-PG 
(Figure S2). The interpolation (100 m spatial resolution) of the mete-
orological data was done by the Landscape Dynamics group (WSL, 
Switzerland) using data from MeteoSwiss stations (Swiss Federal 
Office of Meteorology and Climatology) by employing the DAYMET 
method (Thornton, Running, & White, 1997). Site-specific informa-
tion on soil type and plant available soil water was retrieved from 
a digitized soil suitability map of Switzerland (scale 1:200,000; Frei 
et al., 1980; Swiss Federal Statistical Office, 2000).

2.6 | Parameter estimation

We used Bayesian inference to derive the parameter estimates and 
uncertainties of the 3-PG model. The approach accounts for obser-
vational uncertainties and to make use of multiple types of data at 
different temporal scales. We assumed uniform (i.e., non-informative) 
prior distributions for each of the 54 model parameters. The ranges 
of the priors (Tables S3 and S4) were set to the minimum (maximum) 
value found in the literature minus (or plus) half of the range for this 
parameter (following Augustynczik et al., 2017). The likelihood func-
tion was constructed to be robust against outliers by modeling the 
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residual error as a Student's t distribution with sampled degrees of 
freedom (see Code S1; Lange, Little, & Taylor, 1989). We used the 
Differential Evolution Markov Chain Monte-Carlo algorithm (DEzs 
MCMC, ter Braak & Vrugt, 2008), implemented in the BayesianTools 
R package (Hartig, Minunno, & Paul, 2019) to estimate the joint pos-
terior distribution for the model parameters. For each species, we 
ran three independent DEzs MCMC runs, each with three internal 
chains, and tested convergence by visual inspection of the trace 
plots and additionally using the Gelman–Rubin diagnostic (Gelman 
& Rubin, 1992), with convergence being accepted when the multi-
variate potential scale reduction factor was ≤1.1. Three independent 
DEzs MCMC chains with 2.4 × 107 (P. abies) and 1.7 × 107 (F. sylvatica) 
iterations were required to achieve convergence. All analyses and 
calculations were performed in the R language for statistical comput-
ing (R Core Team, 2018).

2.7 | Model evaluation and validation

To evaluate the skill of the model and generate model projections, 
we calculated posterior predictive distributions by running the 
model with 1,000 random samples from the parameters' posterior 
distribution. Model performance was evaluated using the percent-
age bias (pBias), root mean squared error (RMSE), and normalized 
root mean squared error (NRMSE). We first calculated statistics on 
the plot level, and then averaged over plots for each of the 1,000 
samples. For the validation, we only used the most recent set of 
observations at all permanent monitoring plots to maximize the 
time between initialization and validation, which ranged from 4 to 
35 years. To perform cross-validation, we randomly split the full set 
of monitoring data into two equally sized groups, resulting in a cali-
bration and a validation set.

2.8 | Model simulations

We simulated forest productivity (i.e., NPP) for the species' poten-
tial distribution range in Switzerland (Wüest, Bergamini, Bollmann, & 
Baltensweiler, 2020) on a 1 × 1 km grid for a total of 10,100 grid points 

for P. abies and 7,030 grid points for F. sylvatica. For this purpose, we 
first simulated the growth of P. abies and F.  sylvatica monocultures 
with the average climate observed during the 1961–1990 period, 
until the age of 40 years (spin-up). The stands were simulated starting 
as 2-year-old plantations with an initial density of 10,000 trees/ha. 
Thinning was performed at age 20 and 35 to reach a final density of 
ca. 1,000 trees/ha at age 40. We then simulated 30 years forced by 
monthly resolved climatic data from either the 1961–1990 (reference, 
according to MeteoSwiss) or the 1991–2018 period. We neglected 
the first 40 years of simulations due to high variation in productiv-
ity caused by early stage stand development. To study the impact 
of climate extremes on NPP, we focused on the deviation in NPP 
(expressed in percentage difference from the reference period) dur-
ing the 30 year period (age 41–70). Furthermore, we compared our 
results to those derived from a remote sensing approach using the 
NPP product from MODIS (MOD17A3.055; Running, Mu, & Zhao, 
2011) for the 2000–2014 period. While we limited the MODIS grid to 
that of the species' potential distribution range in Switzerland (Wüest 
et al., 2020), we cannot ensure that only P. abies or F. sylvatica domi-
nated forest stands were included. Based on NFI, only 57% (P. abies) 
and 32% (F. sylvatica) of the selected MODIS grid cells have a domi-
nant species P. abies or F. sylvatica, respectively.

3  | RESULTS

3.1 | Parameter estimation

The width of the posterior (measured by the 95% quantile range) was 
on average 59% (P. abies) and 32% (F. sylvatica) smaller than the prior 
range across all parameters (Tables S3 and S4). The largest reduction 
in uncertainty for both species was for parameters associated with 
allometric relationships, biomass partitioning, and stem mortality. 
Monitoring data were least informative for the parameters associ-
ated with branch and bark fractions and soil fertility. The parameter 
u, controlling the number of degrees of freedom in the Student's t 
likelihood (code S1), was much smaller for the F. sylvatica compared 
to the P. abies monitoring plots, indicating heavier tails in the error 
for P. abies (Tables S3 and S4).

F I G U R E  2   Statistics on predictive 
error (percent bias [pBias], normalized 
root mean squared error [NRMSE], and 
root mean squared error [RMSE]) of the 
3-PG model. The posterior predictive 
uncertainty was calculated by drawing 
1,000 parameter combinations from the 
posterior distribution and calculating 
model predictions for these combinations. 
The dots represent the median value of 
the posterior predictive distribution, while 
the horizontal lines represent the 95% 
confidence interval. DBH, diameter at 
breast height
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Predictions based on the posterior distributions significantly im-
proved compared to predictions based on the prior distributions 
(Figure S3) for both P.  abies and F.  sylvatica (Figure 2). The NRMSE 

were below 8%, and the magnitude of the pBias was below 10% for 
all variables, while it reached up to 600% with the prior distributions  
(Figure S3). The correlations between observed and simulated values 
were high for all variables with r2 ≥  .90 for P. abies and r2 ≥  .87 for  
F.  sylvatica. The RMSE for the change in stem dry biomass (ΔWS) of 
P. abies and F. sylvatica was 15 and 18 Mg/ha, respectively, while pBias 
was −7% and −9%, respectively (Figure 2). The cross-validation based on 
50% of all plots confirmed the high accuracy of the model (Figure S4).

3.2 | Simulations of net primary productivity at the 
country scale

Annual mean net primary productivity (NPP) simulated on the 1 × 1 km 
grid for the described hypothetical stands at the age of 41–70 years 
within the species distribution range across Switzerland during the 
1991–2018 period was 5.4 ± 1.5 Mg C ha−1 year−1 (mean ± stand-
ard deviation of the mean) for P. abies and 5.3 ± 1.0 Mg C ha−1 year−1 
for F.  sylvatica (Figure 3). There was a strong negative correlation 
between annual NPP and elevation (p < .001), with an average de-
crease of 2.86 ± 0.006 Mg C ha−1 year−1 km−1 for P. abies and 0.93 
± 0.010 Mg C ha−1 year−1 km−1 for F. sylvatica. On average, P. abies 
showed higher NPP (5.9 ± 4.1%) during the recent warmer period 
(1991–2018) compared to the reference period (1961–1990), while 
for F.  sylvatica, the change was not significant. There was strong 
agreement in terms of the trend and the magnitude of NPP simu-
lated by the 3-PG model and NPP derived from MODIS (Figure S5) 
for P. abies, but less so for F. sylvatica.

The calibrated 3-PG model indicates that annual NPP of P. abies 
and F.  sylvatica was considerably reduced during extreme years 
(Figure 4). During the warm–dry year of 2018 (Figure S1), NPP 
was strongly reduced (anomaly below −25%) for one-fifth of the 
potential habitat area in Switzerland (P.  abies: 21%; F.  sylvatica: 
15%; Figure 5). Interestingly, the predictions for P.  abies showed 

F I G U R E  3   Trajectory of net primary productivity (NPP) along 
the elevational gradient simulated by the 3-PG model for Picea 
abies (green) and Fagus sylvatica (orange) potential distribution 
ranges. The respective solid lines represent the average for the 
1991–2018 period, the dashed and dotted lines represent 50% and 
95% confidence interval, respectively. The shaded areas represent 
the density distribution of the potential species habitat along the 
elevational gradient

F I G U R E  4   Trajectory of simulated net primary productivity (NPP) anomalies (percentage deviation) in selected extreme years (Figure S1)  
relative to the 1961–1990 reference period for Picea abies (green) and Fagus sylvatica (orange). The respective solid lines represent the 
average for the 1991–2018 period, the dashed and dotted lines represent 50% and 95% confidence interval, respectively. NPP anomalies 
were calculated for each grid cell of the potential species distribution ranges
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F I G U R E  5   Spatial variation of simulated net primary productivity (NPP) anomalies (percent deviation) in selected extreme years relative 
to the 1961–1990 reference period for Picea abies (left) and Fagus sylvatica (right). Numbers indicate the percentage of grid cells across the 
potential species habitat that showed a strong negative response (> −25%)
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a different NPP anomaly in 2018 compared to the similarly warm–
dry year of 2003, with NPP increasing at higher elevations in 2003 
and NPP decreasing at lower elevations in both years. The reduc-
tion of NPP during the cold–dry extreme year of 1984 was com-
parable in extent and magnitude to the warm–dry year of 2018 
(Figures 4 and 5).

4  | DISCUSSION

Estimating the impact of climate extremes on forest ecosystem pro-
ductivity is essential for understanding their role for regulating the 
regional carbon cycle and its drivers. Many previous studies have ex-
amined the effect of climate extremes on forests focus on extremely 
warm–dry years. We stress here the importance to also account for 
cold extremes, even though these might become less likely under 
climate change. By assimilating observations from 271 permanent 
long-term forest monitoring plots with the 3-PG forest ecosystem 
model, we were able to quantify the spatiotemporal changes in for-
est ecosystem productivity in response to climate extremes at the 
country scale, highlighting that not only extremely warm and dry 
years, but also extremely cold and/or wet years significantly impact 
forest NPP. Our results further indicated a high altitudinal and spa-
tial variation in forest productivity response to climate extremes, 
which provides important information on forest vulnerability across 
the species' range.

4.1 | Parameter estimation

So far, only few studies have assimilated extensive forest monitoring 
datasets into a DVM through techniques of parameter estimation 
(but see Cailleret et al., 2019; Fer et al., 2018; Minunno, Peltoniemi, 
et al., 2019; Thomas et al., 2017), even though recommended by sev-
eral authors to improve large-scale model projections (Dietze et al., 
2014; Hartig et al., 2012). Our study demonstrates that it is possible 
to integrate monitoring data from multiple networks across a wide 
bioclimatic gradient into a process-based forest ecosystem model 
3-PG. The resulting uncertainty in the parameter estimates was rela-
tively low (Tables S3 and S4) and comparable to other studies that 
calibrated the 3-PG model (Augustynczik et al., 2017; Thomas et al., 
2017). Not surprisingly, the monitoring data were most informative 
for constraining parameters that are directly related to stand struc-
ture. However, the calibration also reduced parametric uncertainty 
in parameters not directly related to stand structure. For example, 
the maximum a posteriori estimates for the parameter LAIgcx (the 
LAI at which leaf area was not limiting transpiration) were reduced 
by 19% for P.  abies and 5% for F.  sylvatica, toward values consist-
ent with empirical observations (Schulze, Kelliher, Korner, Lloyd, & 
Leuning, 1994). We conjecture that the lower reduction of paramet-
ric uncertainty in this parameter is both due to its lower influence 
on stand structure (to which the model was calibrated), but possi-
bly also due to higher intraspecific variability, that is, the parameter 

values are not identical for all sites. To test this in future studies, spa-
tially variable parameterization could be considered (cf. Vanderwel, 
Rozendaal, & Evans, 2017).

The relatively low predictive error of the calibrated model (e.g., 
pBias  ≤  9%) supports the use of Bayesian inference to estimate 
model parameters and their uncertainty. The observed reduction of 
the predictive error is comparable to that achieved in other studies 
in European forest landscapes (Minunno, Peltoniemi, et al., 2019; 
Van Oijen et al., 2013). The lower predictive error for P. abies com-
pared to F. sylvatica (Figure 2) is likely due to the larger number of 
P. abies (N = 237) monitoring plots compared to F. sylvatica (N = 34) 
plots, especially due to the higher number of EFM plots (P. abies: 89; 
F. sylvatica: 5). In previous studies, data from permanent monitoring 
plots (like EFM) were shown to be more useful for model calibration 
than data from forest inventories (Minunno, Peltoniemi, et al., 2019; 
Van Oijen et al., 2013). Minunno, Peltoniemi, et al. (2019) argued that 
a main problem of the NFI data in their study was its shorter time 
span compared to their EFM data. The NFI and EFM data used by us 
have comparable time span, and might equally contribute to model 
calibration.

Even though our approach strongly improved model perfor-
mance, we recognize and acknowledge some limitations. The re-
liability of initial conditions, climatic forcing data, and monitoring 
data are important for an ecologically meaningful data assimilation 
process (Van Oijen et al., 2013). Site nutrient status and available 
soil water are key variables in the 3-PG model, but accurate in situ 
measurements are rare for a large number of plots. The soil suitabil-
ity map that we used is rather generic and actual values for specific 
monitoring plots may differ substantially from the mapped data.

Moreover, as for the vast majority of other DGVMs, we as-
sumed that species-specific parameters are identical across their 
range, despite ample evidence for intraspecific variability of func-
tional traits within species (Moran, Hartig, & Bell, 2016). Such a 
strong assumption simplifies the calibration process, but may also 
lead to inaccurate predictions about climate responses and forest 
resilience (see also Berzaghi et al., 2019). Thus, it will be beneficial 
to apply spatially variable parameterizations, despite the substan-
tial computational cost. Thomas et al. (2017) successfully applied 
such an approach (Vanderwel et al., 2017) to constrain soil nutri-
ent status in the 3-PG model based on site index and mean annual 
temperature.

Finally, the question of model data assimilation is closely con-
nected to structural model error. For example, in 3-PG, the ratio 
between NPP and GPP is a constant, irrespective of environmental 
conditions (Amthor, 2000; DeLucia, Drake, Thomas, & Gonzalez-
Meler, 2007). Empirical studies, however, show that the GPP/NPP 
ratio can vary considerably (Collalti & Prentice, 2019; Zhang, Xu, 
Chen, & Adams, 2009). Another example is that inter-annual variabil-
ity in reproduction, not considered in 3-PG, can substantially impact 
carbon use and forest growth, especially for masting species such 
as F. sylvatica (Hacket-Pain et al., 2018). These and other limitations 
and uncertainties leave room for further improvement of 3-PG and 
DVMs in general.
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4.2 | Simulations of NPP at the country scale

Simulated productivity for both species continuously decreased 
along the elevational gradient. This is consistent with results from 
other empirical studies in which forest productivity positively re-
sponds to temperature (Babst et al., 2013; Luyssaert et al., 2007). 
We also found strong agreement in the NPP–elevation relationship 
between 3-PG and MODIS derived data for P.  abies, but not for  
F. sylvatica (Figure S5). We think the latter is most likely due to the 
fact that the presence of F. sylvatica is firstly less accurately mapped 
than for P. abies, and secondly, that F. sylvatica often occurs in mix-
tures, making comparisons to MODIS data less reliable.

Simulated NPP across species distribution ranges was primar-
ily controlled by temperature, soil water, and VPD (Figure S6). 
Environmental constraints due to low temperatures increased non-
linearly with increasing elevation, reflecting the temperature con-
trol of photosynthesis. Environmental constraints due to reduced 
soil water availability and increased VPD decreased with increasing 
elevation, but at a lower magnitude. Accordingly, optimal conditions 
for both P. abies and F. sylvatica were found at the lowest elevations. 
Surprisingly, the decrease in NPP along the elevational gradient for 
F. sylvatica is rather small compared to other studies (e.g., Zianis & 
Mencuccini, 2005). We hypothesize that this could be due to an in-
complete coverage of the upper edge of the F. sylvatica distribution.

Our model simulated extreme years to cause substantial de-
creases in forest NPP along the Swiss elevational and bioclimatic 
gradient, which is in line with previous studies that assessed the 
impact of climate extremes on forest productivity during extremely 
warm–dry years (Kannenberg et al., 2019; Vitali, Büntgen, & Bauhus, 
2017; Vitasse et al., 2019). Additionally, our study highlights the im-
portance of accounting for both extreme cold and/or wet years. For 
both species, an extremely cold growing season can have a strong 
negative impact on NPP that is similar in magnitude to that from 
extreme warm–dry years (Figure 5). Similarly, Vitasse et al. (2019) 
found that late frosts can impact F.  sylvatica growth in a magni-
tude comparable to extreme drought. However, it is also important 
to mention that 3-PG and DGVMs in general have often overesti-
mated the sensitivity of forest to drought, compared to observations 
(Klesse et al., 2018; Thomas et al., 2017).

Consistent with empirical studies, our analysis suggests that 
extreme years caused divergent forest growth responses along the 
Swiss elevational and spatial gradients (Hartl-Meier, Dittmar, Zang, 
& Rothe, 2014; Jolly et al., 2005; Vitali et al., 2017). An increase 
in temperature can enhance growth at higher elevations but lead 
to drought-induced growth decline at lower elevations, particularly 
for trees growing under high levels of competition (Babst et al., 
2019; Jolly et al., 2005; Primicia et al., 2015; Schurman et al., 2019). 
As an example, the extremely warm–dry year of 2003 promoted 
better growing conditions at higher elevations for P. abies. At lower 
elevations, NPP decreased due to reduced soil water availability 
(caused by increasing evaporative demand) during the growing sea-
son (Figure S6). The year 2003 had a different pattern in precip-
itation than 2018, with smaller negative precipitation anomalies, 

especially at higher elevations (Figures S1 and S2). Thus, the abrupt 
decrease in NPP at lower elevations was compensated by an in-
crease in NPP at higher elevations, which was not the case in 2018. 
For F.  sylvatica, the substantial reduction in NPP during both ex-
tremely warm–dry years (2003 and 2018) was consistent with the 
patterns along the elevational and spatial gradients (Figures 4 and 
5). The difference in precipitation anomalies between 2003 and 
2018 occurred only above 1,200 m a.s.l., which is above the simu-
lated range of F. sylvatica.

Because of increasing frequency and intensity of warm–dry 
events due to climate change, our results suggest that P. abies and 
F. sylvatica will show a substantial reduction in NPP at the lower el-
evational band, up to 800 m a.s.l. This effect is exacerbated by the 
fact that the drought response along climatic gradients will likely 
be altered in a nonlinear way (Kannenberg et al., 2019). However, 
the impact of drought on tree performance and forest productivity 
strongly depends on its seasonal timing (Crimmins, Crimmins, Gerst, 
Rosemartin, & Weltzin, 2017; Vicente-Serrano et al., 2013), calling 
for more research on intra-annual tree growth and climate sensitiv-
ity. Still, significant reduction in NPP on a large area (up to 21% for 
P. abies and 15% for F. sylvatica) in drought years provides incentive 
to reconsider the current forest management strategies and favor 
more drought tolerant genotypes of present tree species (Fréjaville, 
Fady, Kremer, Ducousso, & Garzón, 2019), or alternative species at 
the lower elevations. Furthermore, reducing low-temperature con-
straints without necessarily reducing the probability of damaging 
late frosts (due to advanced phenology; Ma, Huang, Hänninen, & 
Berninger, 2019), our results suggest that F. sylvatica may experience 
a stronger reduction in NPP and potentially increased mortality in 
the future.

5  | CONCLUSIONS

We assimilated an extensive collection of data from 271 permanent 
monitoring sites into the 3-PG forest ecosystem model, and then 
simulated the climate sensitivity of two dominant European tree 
species across Switzerland. For the first time, it could be shown at 
a high spatial resolution that climate extremes impact forest pro-
ductivity in more complex ways than simply shifting the response 
upwards in elevation. Our model suggests on the one hand that, dur-
ing extremely warm–dry years, forests at lower elevations will suf-
fer from soil water deficit and increased evaporative water demand, 
whereas forests at higher elevations, where trees are growing still 
below their temperature optimum, will benefit from warmer con-
ditions. On the other hand, for trees growing on intermediate and 
less extreme sites, the model indicated highly differentiated year by 
year responses depending on the respective combination of weather 
forcing. The model–data fusion approach used in this study allowed 
us to model highly site-specific NPP from long-term monitoring data. 
Such robust estimates of NPP are key for increasing our understand-
ing of forests carbon dynamics under climate extremes. During the 
extremely cold and wet years, both species experienced strong 
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reductions in NPP, which are comparable in magnitude to extremely 
warm and dry years. Neither of these broad effects, however, are 
linear or homogenous in space. The nonlinear shifts in NPP during 
extreme years along the elevational gradients indicate the value and 
necessity of spatially resolved analyses of the impacts of climate ex-
tremes and changes.
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