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Abstract. Dynamic vegetation models (DVMs) are important tools to understand and pre-
dict the functioning and dynamics of terrestrial ecosystems under changing environmental con-
ditions. In these models, uncertainty in the description of demographic processes, in particular
tree mortality, is a persistent problem. Current mortality formulations lack realism and are
insufficiently constrained by empirical evidence. It has been suggested that empirically esti-
mated mortality submodels would enhance DVM performance, but due to the many processes
and interactions within a DVM, the claim has rarely been tested. Here, we compare the perfor-
mance of three alternative growth-dependent tree mortality submodels in the DVM ForClim:
(1) a mortality function with theoretical foundation (ForClim v3.3); (2) a mortality function
with parameters directly estimated based on forest inventory data; and (3) the same function,
but with parameters estimated using an inverse approach through Bayesian calibration (BC).
Time series of inventory data from 30 ecologically distinct Swiss natural forest reserves col-
lected over 35+ yr, including the main tree species of Central Europe, were used for the calibra-
tion and subsequent validation of the mortality functions and the DVM. The recalibration
resulted in mortality parameters that differed from the direct empirical estimates, particularly
for the relationship between tree size and mortality. The calibrated parameters outperformed
the direct estimates, and to a lesser extent the original mortality function, for predicting deca-
dal-scale forest dynamics at both calibration and validation sites. The same pattern was
observed regarding the plausibility of their long-term projections under contrasting environ-
mental conditions. Our results demonstrate that inverse calibration may be useful even when
direct empirical estimates of DVM parameters are available, as structural model deficiencies or
data problems can result in discrepancies between direct and inverse estimates. Thus, we inter-
pret the good performance of the inversely calibrated model for long-term projections (which
were not a calibration target) as evidence that the calibration did not compensate for model
errors. Rather, we surmise that the discrepancy was mainly caused by a lack of representative-
ness of the mortality data. Our results underline the potential for learning more about elusive
processes, such as tree mortality or recruitment, through data integration in DVMs.

Key words: Bayesian calibration; data integration; dynamic vegetation model; forest inventory; growth;
stand dynamics; tree mortality.

INTRODUCTION

Understanding and predicting how terrestrial ecosys-
tems respond to environmental change are key issues
in ecology, with wide-ranging consequences for

stakeholders such as forest managers and policy makers.
To achieve these goals, many scientific studies rely on
process-based dynamic vegetation models (DVMs),
which simulate demographic processes within plant com-
munities over time, based on abiotic conditions and bio-
tic interactions (e.g., Bonan et al. 2003, Sitch et al. 2008,
Hartig et al. 2012). A challenge in using these models is
that there is considerable uncertainty in parameters, dri-
vers and processes (Beven 2016), and as a result in the
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DVM projections of ecosystem properties in response to
an altered climate (Moorcroft 2006, Friend et al. 2014).
To improve the robustness of model projections, many
authors have suggested reconsidering the design of
DVMs, with a specific focus on adding more details to
key demographic processes (e.g., Fisher et al. 2018). This
applies particularly to tree mortality, which so far has
been treated in a rather simplistic manner in most
DVMs (e.g., Keane et al. 2001, McDowell et al. 2013),
despite its strong impact on model behavior (Friend
et al. 2014, Bugmann et al. 2019).
Improving process formulations in DVMs can be

achieved by a better integration of known physiological
or ecological mechanisms, and by a stronger link with
empirical data. To achieve the latter, model parameters
were traditionally determined by field or experimental
observations, independently of the model. The outcome
of this direct parameterization in terms of model behav-
ior was then tested against reference data (benchmark-
ing; cf. Pacala et al. 1996). However, such a direct
estimate of all parameters in a DVM requires a large set
of specialized observations (e.g., Le Roux et al. 2001)
that are typically hard to achieve or not available at all
(Hartig et al. 2012). Mortality parameters are a prime
example of this. Tree death occurs rarely in forest ecosys-
tems and is highly stochastic; thus, it is not yet well cap-
tured by forest surveys and long-term monitoring
programs (Hartmann et al. 2018, McMahon et al.
2019). This is especially true for large trees, as the inven-
tory data are usually dominated by small stems (Need-
ham et al. 2018). Consequently, many mortality
parameters in current DVMs are weakly constrained or
originate from ecological assumptions about the
underlying mechanisms (typically called theoretical
approaches; see Bugmann et al. 2019) that are not
empirically verified (M€akel€a et al. 2000, Manusch et al.
2012). For instance, some physiological-based DVMs
predict mortality of a given tree to occur when its level
of non-structural carbohydrates (NSC) falls below a
given limit, while there is no experimental- nor field-
based evidence of such a simplistic NSC threshold
(Adams et al. 2017; McDowell et al. 2013).
A solution to better link models with empirical data

that has become increasingly popular in recent years is
to estimate the parameters inversely. By calibrating
parameter values based on the match between empirical
data and model outputs, inverse modeling approaches,
such as Bayesian methods (Van Oijen et al. 2005) allow
for harnessing complex data sources that would not be
suited for direct parameter estimation (e.g., species dis-
tribution data, which depends on multiple and interact-
ing processes, and therefore on many parameters at the
same time), and therefore open up novel opportunities
to constrain parameter-rich DVMs (Hartig et al. 2012).
This approach can be based on multiple data types for
calibration, which often improves final model perfor-
mance and generality (cf. Grimm and Railsback 2012).
Moreover, in the framework of Bayesian statistics, it is

possible to combine direct parameter estimates from var-
ious sources (via the “prior distribution,” e.g., Wang
et al. 2013) and estimates that are generated inversely
(via the “likelihood”). The result of a Bayesian calibra-
tion (BC) is a probability distribution (the “posterior”)
that represents the combination of both direct and
inverse information for the respective parameter. The
posterior can then be used for ecological interpretation
and prediction while considering the uncertainty in
parameter estimates (Wang et al. 2013, Reyer et al.
2016, Augustynczik et al. 2017).
Current applications of BC for statistical and process-

based forest models have mainly been used to calibrate
processes for which ecological knowledge was scarce and
parameter uncertainty was large (e.g., O’Hara et al.
2002, Van Oijen et al. 2005, Larssen et al. 2006, Reinds
et al. 2008, Hartig et al. 2014, Minunno et al. 2016), for
estimating and propagating parametric model uncer-
tainty (e.g., Augustynczik et al. 2017, Van Oijen 2017),
or for model intercomparison exercises (e.g., Van Oijen
et al. 2011, 2013). However, as pointed out by Hartig
et al. (2012) and Van Oijen (2017), an interesting addi-
tional possibility of the approach is to compare direct
(prior) and inverse (posterior) parameter estimates. A
mismatch between direct and inverse parameter esti-
mates may point at either (1) a structural problem in the
model, (2) a systematic bias in the data, or (3) a discrep-
ancy between the nature of the parameter in the model
and the parameter that is measured in the field. Because
a model is a simplification of reality, every parameter
plays a different role in the model than its namesake in a
true forest, and its “true” value cannot be measured
exactly (Van Oijen 2017). For instance, species shade
tolerance cannot be derived based on a single measure-
ment or observation, but rather depends on different
suites of functional traits (e.g., leaf and crown traits;
Valladares and Niinemets 2008). Hence, calibration with
direct and inverse information can lead to an improved
understanding of ecological process interactions and
their representation in a model.
An example of a DVM for which direct and inverse

calibration data are available is ForClim, a forest gap
model that predicts the dynamics of temperate forests
(Bugmann 1996) by simulating establishment, growth
and mortality of individual trees based on site- and spe-
cies-specific environmental constraints and biotic inter-
actions. Three recent studies have examined whether
more empirically derived submodels of tree mortality
reduce biases and uncertainties in ForClim predictions
(Bircher et al. 2015, H€ulsmann et al. 2018, Vanoni et al.
2019), which had been suggested by various authors (cf.
Keane et al. 2001, Adams et al. 2013, Friend et al.
2014). The results of these studies highlighted that simu-
lation results at multidecadal time scales were very sensi-
tive to the choice of the mortality function; but,
contrary to general expectations, the use of direct
parameter estimates did not substantially improve model
reliability. A better understanding of the mortality
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function and its interactions with other ecological pro-
cesses in the model (particularly tree growth) is therefore
a key priority.
In this study, we evaluate whether the issues uncovered

in these recent studies can be solved by inversely recali-
brating the parameters of a growth-based mortality
function incorporated in the DVM ForClim. We use
inventory data from 9 and 21 unmanaged Swiss forest
reserves for calibration and validation, respectively,
which cover a wide variety of forest types and include all
major tree species of central Europe. Our goal was to (1)
determine if inversely calibrated mortality parameters
match with empirical direct estimates; (2) identify the
causes of potential mismatches; and (3) assess if the
inverse calibration leads to improved model perfor-
mance regarding historical short-term change in key for-
est characteristics as well as plausible simulations of
Potential Natural Vegetation (PNV) along an extended
environmental gradient in Switzerland (Bugmann and
Solomon 2000, Rasche et al. 2012).

MATERIALS AND METHODS

The ForClim model

ForClim is an individual-based forest gap model
developed for simulating the dynamics of managed and
unmanaged temperate forests. It has been applied over
Europe (Bugmann 1996, Mina et al. 2017, Huber et al.
2018) and on other continents (e.g., Bugmann and Solo-
mon 2000, Guti�errez et al. 2016). Tree growth, establish-
ment, and mortality are simulated on independent
patches (�800 m2) in annual time steps, using parsimo-
nious ecological assumptions regarding the influence of
climate and ecological processes on tree demography.
Averaging the results across all simulated patches allows
for obtaining mean successional dynamics at the stand
scale (Bugmann 2001). Annual growth is calculated
using the carbon budget model by Moore (1989), in
which a species-specific maximum growth potential is
reduced if light availability, degree-day sum, soil mois-
ture during the growing season, nutrient availability, and
crown length are below an optimum (Bugmann 1996,
Didion et al. 2009, Rasche et al. 2012). Tree recruit-
ment, modeled as the species-specific rate of establish-
ment of saplings with a diameter at breast height (DBH)
of 1.27 cm, is also reduced when environmental condi-
tions are unfavorable.
In ForClim v3.3 (Mina et al. 2017), tree mortality is

modeled as a combination of (1) a constant “back-
ground” mortality, which mimics tree mortality induced
by random local disturbances and assumes that 1% of a
tree population will survive to the species-specific maxi-
mum age, and (2) a stress-induced mortality that is acti-
vated if the annual diameter increment of a tree falls
below an absolute or relative threshold (0.3 mm and
10% of species-specific maximum growth, respectively)
for more than two consecutive years (Solomon 1986). In

contrast to establishment and growth, which are operat-
ing on the level of tree cohorts (i.e., individuals of the
same age and size), mortality is applied to each tree of a
cohort individually using a stochastic approach, which
assumes that a tree dies if a uniform random number
[0. . .1] is below the prescribed cohort-specific mortality
probability. A more detailed description of the mortality
function is provided in Appendix S1, and in Bircher
et al. (2015).

Data for calibration and validation

The inventory data used to calibrate and validate the
growth-dependent mortality functions, and to validate
ForClim’s predictions, were recorded in multiple Swiss
forest reserves (Brang et al. 2011, H€ulsmann et al. 2018,
Appendix S2) where management had been excluded at
least since their foundation (cf. inventory period in
Table 1). All reserves contain one or more permanent
plots, where each tree with a DBH ≥ 4 cm is individu-
ally tagged and repeatedly measured in intervals of
approximately 10 yr.
A subset of the permanent plots was selected for

model calibration (both for the direct estimation of the
mortality function and the inverse calibration of the
same mortality parameters in ForClim) according to the
following criteria: (1) plots were excluded that showed
evidence of recent natural disturbances (e.g., wind
storms), as such disturbances are not considered in the
model; (2) plots had to have a minimum size of 0.2 ha to
guarantee that forest structure and composition are rep-
resentative for the site; (3) plots had to have a minimum
record period of 35 yr to allow for an adequate consider-
ation of forest dynamics; (4) only one plot was chosen
per forest reserve to avoid pseudoreplication within the
calibration data; (5) an adequate representation of all
main tree species of central Europe and a variety of for-
est types was sought in the calibration data set. Accord-
ing to these criteria, nine permanent plots were selected
(Table 1). This number was a compromise between the
wish to have many plots for improving the robustness of
the mortality function, and the constraints imposed by
computational costs. The plot with the largest number of
species was selected first (Girstel_04; Table 1). In a next
step, we included those plots with the highest proportion
of one main tree species in Switzerland such as
European beech Fagus sylvatica (Adenberg_03), silver
fir Abies alba (Leihubelwald_02), Norway spruce Picea
abies (Nationalpark_07), Norway maple Acer pseudopla-
tanus (St. Jean_01), Scots pine Pinus sylvestris
(VormStein_02), Swiss stone pine Pinus cembra (Nation-
alpark_07), European larch Larix decidua (National-
park_07), and oak species Quercus robur/petraea (Bois
de Chênes_02). This set of calibration plots was comple-
mented by two permanent plots with comparatively fast
stand dynamics, i.e., with a high interdecadal rate of
change in stem numbers: F€urstenhalde_01 and Tariche
Haute Côte_04.
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hê
ne
s_
01

46
.4
,6

.2
0.
49

55
0

9.
6

1,
07

5
1,

F.
sy
lv
at
ic
a

90
.2

0.
00

4
0

19
70
–2
00

7
(4
)

B
oi
s
de

C
hê
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From the remaining permanent plots, 21 were selected
for validating ForClim. They encompass at least two
inventories, a minimum record period of 35 yr, and no
apparent effects of recent disturbances. The minimum
area required was reduced to 0.1 ha to allow for sites
with “extreme” climatic conditions (e.g., warm-dry in
Pfynwald; Table 1).

Direct parameter estimates

Individual tree mortality risk is influenced by both
individual tree characteristics, and species functional
traits and life-history strategies. Among others, tree size,
recent growth rates, shade tolerance, and maximum
longevity are assumed to be good predictors of tree mor-
tality probability (Bigler and Bugmann 2004, Wunder
et al. 2008, Cailleret et al. 2017, H€ulsmann et al. 2018)
and were therefore used as explanatory variables in a
new empirical mortality function. Stand- or tree-level
competition indices such as the basal area of larger trees
were not directly included as predictors as they can pro-
duce ecologically inconsistent results (Bugmann et al.
2019, Thrippleton et al. 2019). Direct parameter esti-
mates (DPE) for this model were derived using single-
tree inventory data from the calibration plots
(n = 4,663). The fitted logistic regression expresses the
probability of tree i to survive between two inventories
from t1 to t2 (P(Yi,t2 = 1); over 11 yr on average),
according to tree DBH (cm) and annual relative basal
area increment (relBAI; Eq. 1), which is then scaled to
an annual resolution using a negative exponential sur-
vivorship model. Implementing species-specific values
for these parameters would be interesting to account for
the full diversity of growth patterns prior to death, but
this would have drastically increased the number of
parameters for recalibration, and consequently simula-
tion time of the Bayesian approach. Thus, we included
the categorical variable functionalGroup, which
expresses changes in survival probability according to
species shade tolerance and longevity (divided into three
classes k) based on the size–growth–mortality relation-
ships by H€ulsmann et al. (2018), with the reference level
being the shade-intolerant group with a short life span
(see Appendix S3). Together with the intercept of the
model (a0), functionalGroup also expresses the “back-
ground” mortality, i.e., the mortality independent of tree
size and growth:

PðYi;t2 ¼ 1Þ�Binomialða0 þ b1 � logðDBHÞi;t2
þ b2 � DBH2

i;t2 þ b3 � relBAIi;t2

þ functionalgroupi;kÞ:
(1)

Both log-transformed and quadratic terms of tree
DBH were considered to allow for a flexible size–mortal-
ity relationship in both low and high DBH classes (Ruiz-
Benito et al. 2013, H€ulsmann et al. 2016, 2018). The
variable relBAIi,t2 was calculated based on stem radial

growth between two inventories and the length of the
respective growth period (Δt = t2 � t1; yr), assuming a
constant growth rate during this period (see Cao [2000]
for more sophisticated approaches)

relBAIi;t2 ¼ BAi;t2

BAi;t1

� � 1
Dt

�1: (2)

The ability of this mortality model to correctly
identify tree status was considered as acceptable (area
under the receiving operating characteristic curve,
AUC = 0.787; Hosmer et al. 2013). In the following, we
refer to the ForClim version containing these “direct
parameter estimates” obtained from logistic regression
as “ForClim-DPE.”

Bayesian calibration

The aim of Bayesian calibration (BC) was to recali-
brate the empirical mortality submodel of ForClim-DPE
by comparing ForClim outputs of forest structure and
composition to the same observations from inventory
data without incorporating directly fitted parameter esti-
mates. The BC included all parameters of the empirical
mortality function and, additionally, a multiplier of the
annual diameter increment of a cohort (kGRateD; %),
which is included in the growth submodel of ForClim.
The parameter kGRateD scales the simulated annual
growth of every cohort irrespective of its size and func-
tional group, this procedure being done before simulat-
ing individual tree mortality. The possibility to adjust
growth simultaneously with the mortality parameters
allows for considering that annual growth may not be
accurately simulated by ForClim, subsequently leading
to erroneous mortality predictions. Jointly recalibrating
several model parameters also provides more flexibility
to the calibration approach. For instance, when using
stand demographic processes as the unique calibration
criterion, trade-offs between growth and mortality are
likely to occur because a joint increase of both processes
may lead to similar stand productivity, but with a faster
turnover (cf. Hartig et al. 2014). It would therefore be
uncommonly rigid to only calibrate mortality parame-
ters when fitting a model to stand data. As for ForClim-
DPE, the multi-annual cohort-based survival probability
calculated by the mortality function is then adjusted to
the time step of ForClim to calculate annual survival
probability.
BC requires expressing prior knowledge about the

parameter values in the prior distribution P(h), where h
denotes the parameter vector of the model (Table 2).
Although the estimate and confidence interval of each
parameter of the mortality function were determined by
logistic regression (which could have been used as a
prior), we deliberately set uniform (i.e., non-informative)
prior distributions 6–15 times wider than the direct esti-
mates to obtain a picture of the parameters that would
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result from the inverse calibration alone for the initial
posterior estimation (see Table 2). For comparison, we
additionally calculated posteriors based on informative
priors (details see Appendix S4).
To increase model performance and generality, we

constructed a likelihood function consisting of two
components: the first part specifies the likelihood for
basal area increment (BAI) between two inventories
for each species at the plot level, defined by the proba-
bility PðDBAI _ hÞ of obtaining observed BAI given the
model with parameters h and a normally distributed
error model (cf. Van Oijen et al. 2005). The relative
standard deviation of this normal distribution was
included in the BC (parameter kSD in Table 2). The
second part specifies the likelihood for the species-spe-
cific stem number distribution, defined as the probabil-
ity PðDStem _ hÞ of obtaining the observed stem
numbers in 4 cm wide DBH classes for each inventory
year, given the model parameters and a Poisson error
model per DBH class. The lowest DBH class (i.e., (0,
4] cm) was not considered, as it was not available in
the observed data. The partial likelihood for stem
numbers is strongly influenced by the very abundant
trees in the low DBH classes, whereas medium- and
large-sized trees have a stronger influence on basal
area increment. Mixing both data types in one joint
likelihood function should therefore create a balanced
description of forest structure and dynamics in terms
of stand density, productivity, and species composi-
tion.
Likelihoods were expressed as logarithmic values (log-

likelihood), which means that the joint (total) likelihood
PðD _ hÞ can simply be written as their sum. In this sum,
we divided the partial likelihood for stem numbers per
DBH class by 20 (number of DBH classes in the distri-
bution), which has the result of giving the basal area
increment approximately the same weight as the sum of
the stem numbers over the DBH classes:

PðDjhÞ ¼ PBAIðDjhÞ þ PStemðDjhÞ
20

: (3)

Implicitly, this means that we treat the basal area
increment and the distribution of stem numbers per
DBH class as one data point each. We acknowledge that
this choice is somewhat ad hoc and does not fully
account for the correlation within measured stem DBH
distributions (see Finley et al. 2014). However, it avoids
an overrepresentation of stem numbers in the likelihood,
which is unproblematic in theory, but in practice often
leads to unbalanced calibrations that satisfy the more
data-rich calibration target, while disregarding the other.
Prior and likelihood are combined by Bayes’ theorem,

which states that the support given to a certain parame-
ter combination, i.e., the posterior probability Pðh _DÞ,
is proportional to the prior distribution PðhÞ and the
joint likelihood PðD _ hÞ. To estimate the posterior dis-
tribution and provide maximum a posteriori (BC-MAP)
estimates for the eight parameters, we used the differen-
tial evolution Markov chain Monte Carlo (MCMC)
algorithm (DEzs; terBraak and Vrugt 2008) from the
BayesianTools package (Hartig et al. 2017) of the open-
source statistical software R v3.4.3(R Core Team 2017).
The convergence of the MCMC was examined by visual
inspection of the trace plots and calculating the Gel-
man-Rubin potential scale-reduction factors (Gelman
and Rubin 1992). To speed up convergence of the algo-
rithm, we reinitialized the z matrix (i.e., the pool of past
parameter values that are used for creating proposals in
the DEzs algorithm) after ~300,000 iterations. We con-
sidered parameters with a potential scale-reduction fac-
tor smaller than 1.05 to be converged, which occurs after
an additional ~60,000 iterations. The entire BC proce-
dure took ~80 d on a single computer node of seven
cores (RAM: 64GB). Below, we refer to the ForClim ver-
sion containing the mortality function with “inverse
parameter estimates” as “ForClim-IPE.” For estimating

TABLE 2. Direct estimates (maximum likelihood estimates MLE and their standard error se), prior, and posterior distributions for
the eight recalibrated parameters.

Parameter vector
Θ [Θ(1). . .Θ(8)]

Unit

Direct parameter
estimates

Prior probability
distribution Posterior distribution

Name Θ(i) MLE SE Min Max 2.5% 97.5% MAP
Correlated

[Θ(i)]

kIntercept (a) 1 �3.016 0.258 �10 0.1 �2.1058 �2.1052 �2.1057 [�6]
klogDBH (b1) 2 cm 0.9708 0.095 0.5 1.5 1.0058 1.0071 1.0070 [�3]
kDBH2 (b2) 3 cm2 0.00009 0.00009 �0.001 0.001 �0.000291 �0.000289 �0.000291 [�2]
kRelBAI (b3) 4 % 57.29 4.06 0 150 50.969 51.022 50.989 [�7]
kFunctionalGroup2 5 0.6272 0.1501 �2 5 1.7716 1.7749 1.7739
kFunctionalGroup3 6 1.444 0.132 �2 5 1.6230 1.6240 1.6234 [�1]
kGRateD 7 % 1 200 56.78 56.86 56.82 [�4]
kSD 8 0 3 0.4506 0.4931 0.4646

Notes: The distributions of the priors between a minimum and maximum value were uniform. Posterior distributions are calcu-
lated based on 1000 samples after excluding the first 45,000 iterations, and are characterized by the maximum posterior estimates
(MAP) and the 2.5% and the 97.5% quantile, respectively (see details in Appendix S4: Fig. S1). For each parameter, the numbers of
correlated parameters are listed if the correlation is >0.3 or <�0.3, leading minus signs (�) indicating negative correlations.
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the posterior with informative priors, we did not rerun
the entire MCMC with the ForClim model, but instead
used MCMC sampling on a target distribution consist-
ing of the informative priors, multiplied with the previ-
ously calculated posterior (which, due to the flat priors,
is identical to the likelihood up to a constant). The pro-
cedure is mathematically identical to calculating the pos-
terior (apart from numerical errors), except that it is
much faster, because the model does not have to be run
for the likelihood evaluations (for details see
Appendix S4).

Simulation set-up

The initialization of the ForClim simulations follows
the procedure described in Bircher (2015) and H€ulsmann
et al. (2018). For each permanent plot, ForClim was ini-
tialized with single-tree data (species, DBH) from the
first inventory. Since there was no spatial information
about tree position on the plots, trees were allocated ran-
domly and evenly to an initial set of patches, each with a
size of 800 m2 (cf. Wehrli et al. 2005). Depending on the
ratio of the permanent plot area and patch size
(Table 1), this resulted in the direct initialization of 2–44
patches per plot. This initial set of patches was then
replicated to average out stochasticity across simulation
runs. The final patch number was set to 200 for the vali-
dation sites but was reduced to 100 for the calibration
sites to reduce simulation time. Some rare tree species
that are not parameterized in ForClim, but are present
in some forest reserves, albeit with very minor abun-
dance, were not considered in the simulations.

Evaluation of the mortality submodels in ForClim

We compared three model versions: ForClim with the
mortality function based on theoretical assumptions
(with both “background” and stress-induced compo-
nents; v3.3), and two modified ForClim versions where
this function was replaced by the new mortality sub-
model with direct and inverse parameter estimates (DPE
and IPE, respectively). After running the models at the
calibration and validation sites, we calculated the likeli-
hood values as described previously. Then, we calculated
the difference between measured and predicted basal
area and stem numbers at the end of the simulation (i.e.,
at the time of the last inventory) for all species and each
functional group. Finally, as model validation is con-
strained by the short length of the empirical data series
(average of ~40 yr), we also evaluated the models’ ability
to simulate potential natural vegetation (PNV), i.e., the
species composition expected in a pseudo-equilibrium
state in the absence of anthropogenic influences and
large-scale disturbances (Ellenberg and Leuschner
2010), along a well-studied environmental gradient in
Switzerland (cf. Bugmann and Solomon 2000). Starting
from bare ground, forest dynamics were simulated for
1,500 yr, and forest structure and composition at the

end of the simulation were examined semi-quantitatively
for their plausibility (Rasche et al. 2012).
The R scripts developed to calibrate ForClim with a

Bayesian approach, and the files required to run For-
Clim-IPE are available in Data S1.

RESULTS

Comparison of parameter estimates from direct vs. inverse
calibration

The Bayesian calibration resulted in substantially dif-
ferent parameter estimates than the direct calibration
(Table 2). The inversely calibrated maximum a posteriori
estimates for the coefficients of all parameters were out-
side the range of the mean � SD of the direct estimates,
except for klogDBH. Estimates for kDBH2 moved from
a positive (9 9 10�5) to a negative value (�2.89 9 10�4).
In combination with the positive value of the klogDBH
term, this results in an increase in survival probability
with DBH until ~40 cm of DBH, after which the trend
is reversed (Fig. 1b). With the direct estimates, survival
probability gradually increased with DBH, such as
reported in the inventory data (Fig. 1a). Thus, survival
probabilities are lower for small trees (DBH < 50 cm),
but higher for large ones compared to the inverse esti-
mates (Fig. 1a). We also note that using log-transformed
DBH as mortality predictor tends to overestimate mor-
tality rates in low DBH classes whatever the parameter
estimates: the survival probability of trees with
DBH < 10 cm predicted by the mortality function with
direct or inverse parameter estimates (Fig. 1b,c, respec-
tively) was lower than the observed survival (Fig. 1a).
Survival probabilities for the shade-intolerant species
with a long life span and for the shade-tolerant species
(functional groups 2 and 3, respectively) increased rela-
tively to the shade-intolerant species with a short life
span (reference class; functional group 1; Table 2;
Fig. 1b; see also Appendix S3 for the species classifica-
tion). This was particularly true for the shade-intolerant
species with a long life span whose survival probability,
everything else being equal, becomes higher than the
shade-tolerant species (kFuntionalGroup2 from 0.63 to
1.77 and kFuntionalGroup3 from 1.44 to 1.62), which is
not the case with the direct estimates (Fig. 1b). The new
kGRateD estimate is quite low (0.57; Table 2), suggest-
ing that species-specific maximum growth should be
reduced by ~43% to fit the historical changes in stand
BA and stem numbers with the new mortality function
based on the inverse estimates. As indicated by the nega-
tive correlation (�0.77) between krelBAI and kGRateD,
this decrease in individual BAI was compensated by a
reduction in the effect of relBAI on survival probability
(kRelBAI from 57.29 to 50.99), and by an increase in
baseline survival probability (kIntercept from �3.02 to
�2.11; Table 2).
Posterior distributions calculated with informative pri-

ors, corresponding to a mix between directly and the

January 2020 CALIBRATION OFATREEMORTALITYMODEL Article e02021; page 7



inverse estimates, did not lead to noteworthy changes
compared to the uninformative inversion (Appendix S4).
The reason is that the data were highly informative and
the likelihood far narrower than the prior distributions
(Table 2). Because all results for the uninformative inver-
sion are therefore also representative for the informative
inversion, we do not show this option separately when
presenting the performance of different ForClim ver-
sions.

Performance of the model versions on the historical
inventory data

Likelihood values.—ForClim with the inverse parameter
estimates (ForClim-IPE) showed the best average
performance of all ForClim versions both at the calibra-
tion and independent validation sites (Table 3;
Appendix S5), with the highest average total likelihood
(�95.0 and �160.8 for the calibration and validation
sites, respectively), followed by ForClim v3.3 (�107.7
and �183.6) and ForClim-DPE (�111.1 and �234.1).
When looking at specific sites, ForClim-IPE showed the
best performance of all models at three out of the nine
calibration sites and 11 out of 21 validation sites. This
was mainly due to the predictions of stem numbers, for
which ForClim-IPE performed distinctly better (highest
performance at 19 of the 30 sites) than ForClim-DPE
(nine sites) and ForClim v3.3 (two sites). For BAI, all
model versions had comparable averaged performance.

ForClim-IPE had the highest individual likelihood at the
calibration and validation sites (�59.4 and �111.9,
respectively) followed by ForClim v3.3 (�63.8 and
�119.6) and ForClim-DPE (�69.7 and �182.9). Con-
trasting results were obtained when focusing on the
number of sites with highest performance (Table 3).

Simulated bias in basal area and stem numbers at the end
of the simulation.—At the end of the simulation period,
ForClim v3.3 and ForClim-DPE generally overestimated
total basal area at the validation sites (median in abso-
lute difference: 1.7 and 6.2 m2/ha, respectively), while
predictions by the ForClim-IPE version were very close
to the measurements (median: �0.6 m2/ha, cf. Fig. 2a).
These differences among models were mostly due to dif-
ferent predictions of the BA of shade-tolerant species
(functional group 3), which were the main contributors
to total stand BA (Fig. 3b). This was especially true for
Fagus sylvatica, which was strongly overestimated by
ForClim-DPE at most sites (Fig. 3a). For this group, all
model versions predicted a higher stem number than the
observations (+27.3, +32.2, and +71.4 stems/ha for For-
Clim v3.3, DPE, and IPE, respectively; Fig. 2c,d). This
was mainly visible in DBH classes below 50 cm (Fig. 4)
and was mainly caused by an underestimation of the
mortality rates of small trees, especially by the IPE ver-
sion (Appendix S6). A similar picture emerged for
shade-intolerant species with a short lifespan (group 1).
These are rare in the Swiss reserves compared to the
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FIG. 1. Observed and simulated tree DBH–survival relationships. (a) Change in the mean survival rate (proportion) reported
during an 11-yr period with tree DBH (in 5-cm bin) for each functional group (colored heavy lines) and considering all species
(black dots). The 95% confidence intervals of the means (from bootstrap with 500 resamplings) were represented with the shaded
areas. (b and c) Change in the 11-yr survival probability with tree DBH as predicted by the inventory-based mortality model with
empirical direct parameter estimates (solid lines) and with the inverse parameter estimates obtained by Bayesian calibration (dashed
lines) according to functional group (b; for annual relative basal area increment, relBAI = 0.02) and relBAI (c; for functional group
2). Measured DBH at the study sites range between 3.3 cm and 114.7 cm, while the minimum DBH simulated by ForClim is at
1.27 cm (DBH at which trees establish).
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other species (Figs. 2a,c, 3a), but their correct represen-
tation in the model is still important, because they tend
to dominate pioneer stages, e.g., after massive mortality
events. For this group, BA predictions of ForClim-IPE

were also better than those by the other two model ver-
sions (�40.4%, �46.8%, and +5.0% for ForClim v3.3,
DPE, and IPE, respectively; Fig. 2b), although stem
numbers were underestimated by all three versions

TABLE 3. Comparison of performance at calibration and validation sites for the three ForClim versions: the ForClim version 3.3,
the model version featuring the empirical mortality function with the direct parameter estimates (ForClim-DPE), and the inverse
parameter estimates obtained by Bayesian calibration (ForClim-IPE).

Parameter

Stem numbers Basal area increment Total likelihood

v3.3 DPE IPE v3.3 DPE IPE v3.3 DPE IPE

Average LL
Calibration �43.9 �41.4 �35.6 �63.8 �69.7 �59.4 �107.7 �111.1 �95.0
Validation �63.9 �51.2 �48.9 �119.6 �182.9 �111.9 �183.6 �234.1 �160.8

Average rank
Calibration 2.8 2.0 1.2 2.1 1.9 2.0 2.0 2.0 2.0
Validation 2.5 1.7 1.8 1.8 2.5 1.7 2.0 2.5 1.5

Number of sites with best performance
Calibration 0 1 8 2 4 3 3 3 3
Validation 2 8 11 9 4 8 6 4 11

Notes: The table shows the average values for the individual log-likelihood (LL) components (species stem numbers [divided by
20] and basal area increment) and the total log likelihood, the average rank of the model for each likelihood component, and the
number of sites where a model version performed best. Detailed values for each site and standard errors of the average likelihoods
are available in Appendix S5.
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(�70.6%, �80.2%, and �13.1%; Fig. 2d). This was espe-
cially true for trees with a DBH below 24 cm (Fig. 4),
caused by a slight overestimation of mortality rates
(Appendix S6). For the shade-intolerant species with a
long life span (group 2), ForClim-DPE tends to be more
accurate than ForClim v3.3 and ForClim-IPE regarding
stem numbers (+13.1% vs. +62.5% and +74.9%; Fig. 2d),
as it underestimates mortality rates to a lesser extent
(Appendix S6). For simulating BA of the functional
group 2, ForClim-IPE was as accurate as ForClim-DPE,
with relative biases of +3.8% and �5.1%, respectively,
while ForClim v3.3 overestimated BA by +23.3%
(Fig. 2b).

Plausibility of long-term projections

Species composition and BA predicted after 1,500 yr in
the center of the Swiss environmental gradient differed

considerably between ForClim v3.3, ForClim-DPE, and
ForClim-IPE (i.e., at Adelboden, Huttwil, Bern, Schaff-
hausen, and Basel; Fig. 5; details in Appendix S7). Under
these temperate conditions, vegetation is expected to be
dominated by Fagus sylvatica in mixture with other hard-
wood species (e.g., Acer spp.) and some Picea abies and
Abies alba (Bugmann and Solomon 2000, Rasche et al.
2012). ForClim v3.3 and ForClim-IPE accurately predict
such mixed forests; however, they both tend to predict a
surprisingly strong presence of either Castanea sativa
(v3.3 in Schaffhausen and Basel) or Populus spp. and
Carpinusbetulus (ForClim-IPE); mainly to the detriment
of Picea abies. In contrast, PNV simulated by ForClim-
DPE was overly dominated by Fagus sylvatica with unre-
alistic BA values above 100 m2/ha due to the presence of
excessively large trees (e.g., DBH > 290 cm in Bern). The
high BA of Populus spp. in the PNV predicted by For-
Clim-DPE and -IPE was also related to the occurrence of
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few large trees with DBH > 100 cm, which contributed
strongly to species BA.
At both ends of the gradient, simulation results are

more similar among the three model versions and close
to expectations. Simulated PNV at the cold high-eleva-
tion sites was dominated by Pinus cembra (Bever) or
Picea abies (Grande Dixence and Davos). At the latter
site, the presence of Populus spp. predicted by ForClim-
IPE was unexpected and had similar causes as men-
tioned above. Under a dry and warm bioclimate (Sion),
all models simulate a forest dominated by Pinus sylves-
tris alone (ForClim v3.3) or mixed with Quercus spp.
and Castanea sativa; both combinations being typical of
the study area, and thus realistic (Rigling et al. 2013).

DISCUSSION

Comparison of direct and inverse mortality parameter
estimates

The parameter estimates of the growth-dependent
mortality model obtained directly based on inventory
data did not consistently match the ones estimated

inversely with the target of reproducing observed forest
structural dynamics by the DVM ForClim. Combining
both estimates into a single posterior (direct estimates as
informative prior) did not qualitatively change the
results compared to the uninformative inversion, as the
inverse signal (likelihood) was substantially stronger
than the prior (i.e., the posterior parameter estimates
were strongly informed by the data). Direct and inverse
parameter estimates generally show good agreement for
the intercept, logDBH, and relBAI; the latter two having
a positive impact on tree survival. However, the BC
strongly modified the parameter estimates for DBH2,
GRateD, and FunctionalGroups. The fact that the
inverse estimates differ quite strongly from the direct
estimates either suggests discrepancies between the data
used for direct and inverse estimates (e.g., measurement
error, non-representativeness of the mortality informa-
tion used for calibration), or structural problems in the
empirical-based mortality function itself or in ForClim
(cf. Hartig et al. 2012), as discussed further below.
The BC estimated the effect of DBH2 on tree survival

to be negative, which is in line with reports of increased
mortality rates of large trees when analyzed in
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combination with the positive linear effect of DBH (e.g.,
Lorimer and Frelich 1984, Monserud and Sterba 1999,
Holzwarth et al. 2013). In contrast, the growth and mor-
tality information from the inventory data at the forest
reserves (direct parameter estimates) revealed a weak
positive effect of DBH2 on survival, and consequently a
typical J-shaped mortality curve with decreasing mortal-
ity probability along tree size (see also H€ulsmann et al.
2018). The reason for this divergence may be that the
forest reserves in Switzerland are still in younger devel-
opment stages (except Scatl�e; Brang et al. 2011), and
large trees that would show the right tail of the U-shape
curve are largely lacking in the calibration data set (see
Appendix S8). Thus, an increased mortality risk due to
higher sensitivity to drought-induced xylem embolism,
mechanical instability, or insect attacks (Franklin et al.
1987, Bennett et al. 2015, Das et al. 2016) cannot be
captured, in contrast to data from true old-growth
stands (e.g., U-shaped curves were obtained in a “prime-
val forest” in Ukraine; H€ulsmann et al. 2016). In low
DBH classes, the empirical-based mortality function
tends to underestimate survival rates, mainly due to the
log-transformation of the DBH effect, which seems too
strong (Fig. 1). This weakness is less pronounced after
the BC thanks to the increase in the model intercept.
The positive effect of the relative basal area increment

(relBAI) on survival obtained by both estimation meth-
ods reflects that trees with low productivity are usually
more prone to die than those that are highly productive
(Monserud 1976, Wyckoff and Clark 2002, Cailleret

et al. 2017). Inverse estimates of kRelBAI are lower than
direct estimates, mainly due to the strong negative corre-
lation with kGrateD. BC attempts to find an adequate
balance between growth and mortality in ForClim to
match the calibration data in terms of basal area incre-
ment and stem numbers. That is, a decrease in the
growth parameter was compensated by an increase in
the survival probability at low growth rates.
In the direct empirical parameterization, shade-toler-

ant species (group 3) had a higher survival probability
than shade-intolerant species (groups 1 and 2), in accor-
dance with the theory on life-history strategies of pio-
neer vs. late-successional species (Grime 1977). The
inverse estimates suggest that this difference is not
straightforward but further depend on species’ maxi-
mum longevity, as shade-intolerant species with a long
life span (group 2) showed comparable survival proba-
bility as shade-tolerant species, all other variables being
equal (Fig. 1). Although senescence effects on physio-
logical mechanisms are limited in trees (Mencuccini and
Munn�e-Bosch 2017) due to the low number of somatic
mutations (Schmid-Siegert et al. 2017), there is clear evi-
dence that some species live longer than others (Di
Filippo et al. 2015). This pattern can be explained by
differences in hydraulics and mechanic constraints, and
in investment to defenses against pathogens; they are
most likely more related to size rather than to age effects
(see above; Mencuccini and Munn�e-Bosch 2017).
The uncertainty in the parameter estimates resulting

from the BC, and thus in the predictions of ForClim-
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IPE, was relatively low, as reflected by their narrow pos-
terior distributions (Table 2; Appendix S9) compared to
other DVM calibrations (e.g., Lagarrigues et al. 2015,
Reyer et al. 2016, Augustynczik et al. 2017). We suggest
that the main reasons for these low uncertainties are (1)
that few parameters were calibrated, (2) the relatively
large calibration data set, and (3) the low mortality and
regeneration rates of these “young” forest reserves (see
above), which was not fully compensated by the selec-
tion of highly “dynamic” sites for the calibration, i.e.,
sites with the with high inter-annual change in stem
numbers. Hence, we see no particularly noteworthy pat-
tern in this result as such. However, the uncertainty esti-
mates would have been wider and probably more
realistic if we had (1) calibrated all model parameters;
(2) considered more complex functional relationships for
the mortality; or (3) considered in particular spatial or
hierarchical variation in the model parameters or the
data through spatial or random effects. For example,
there is good evidence for variation in growth–mortality
relationships between individuals, sites, and species (e.g.,
Kane and Kolb 2014, Cailleret et al. 2016), and it would
have been possible to include such structures in the like-
lihood. Yet, those parameters would also have to be esti-
mated, which would considerably increase computation
time and is currently not feasible for the ForClim model.
In summary, the true predictive uncertainties are likely
wider than those we reported here, due to the issues
discussed, but we do not see this as a limitation for the
conclusions drawn in this study, as these are mainly
affected by mean parameter estimates, and not their
uncertainty.

Prediction of short- and long-term forest dynamics

The ForClim-IPE version showed the highest likeli-
hood values at the calibration and validation sites in
terms of species-specific BAI and especially stem size
distributions. The fact that the BC procedure succeeded
in improving the fit also for the independent validation
data shows that it did not simply “tune” the parameters
to better fit the calibration data (over-fitting), but rather
found generally acceptable parameter values for predict-
ing forest dynamics at the decadal time scale.
While good performance of model outputs that were

used for calibration is a basic requirement for a good cal-
ibration method, a more demanding test is if the calibra-
tion also improves the performance of alternative model
outputs that were not calibrated (extrapolation). One
would expect particularly poor performance if the model
has structural problems or biases, which would allow for
tuning one model output without improving others. In
our case, we did not find any signals of such structural
problems. The better performance of ForClim-IPE over
ForClim-DPE regarding decadal forest dynamics trans-
lated directly into a better performance for centennial-
scale forest dynamics (PNV). We see these results as
encouraging evidence that, given adequate model

structures, short-term data can improve long-term pre-
dictions of DVMs.
When looking at the details of the performance differ-

ences, we can make further interesting observations.
Focusing on stand BA at the end of the short-term simula-
tions, ForClim-IPE performed best, while ForClim v3.3
was the version with the lowest overestimation of stem
numbers (Fig. 2). The overestimation of the BA of shade-
tolerant species (functional group 3, especially Fagus syl-
vatica) that was observed for ForClim-DPE was most
likely due to the J-shaped mortality curve that is typical of
the Swiss reserve data set (H€ulsmann et al. 2018). Such an
overestimation was not observed any more after BC, due
to the strong reduction in the growth rate parameter
GRateD and the fact that kDBH2 became negative. Using
a U-shaped instead of a J-shaped mortality curve led to
an increase in mortality rates of large trees, which con-
tribute the most to stand BA, without strongly decreasing
stem numbers, which mainly depend on the small size
classes. This modification also improved long-term PNV
simulations. The strong prevalence of Fagus sylvatica sim-
ulated by ForClim-DPE in the center of the Swiss environ-
mental gradient due to the presence of few very big trees
with very low mortality probability (see also H€ulsmann
et al. 2018) was eliminated by the BC, thus leading to
more realistic PNV predictions. Fagus sylvatica did not
outcompete the other species, allowing for the establish-
ment of mixed stands. Yet, some problems remained such
as the probable overestimation of Populus spp. and Carpi-
nus betulus, but these were most likely due to an inappro-
priate parameterization of shade tolerance in ForClim
v3.3 (e.g., according to Landolt et al. 2010, Populus nigra
should be less shade tolerant than Picea abies while their
tolerance is identical in ForClim v3.3; see Appendix S3).
All model versions underestimated the stem numbers

of shade-intolerant species with a short life span (group
1), especially for trees with a DBH < 24 cm. This can be
explained by the overestimation of mortality rates by
ForClim v3.3 and ForClim-DPE (Appendix S6), com-
bined with an underestimation of regeneration rates.
This bias did not substantially affect the short- and
long-term predictions of stand BA and species composi-
tion, as we focused on demographic processes that occur
during forest succession without external large-scale dis-
turbances such as wind-throws or bark-beetle outbreaks.
After massive disturbance-induced mortality events, for-
est characteristics depend much more on pioneer species
(Connell and Slatyer 1977), especially on their regenera-
tion, growth, and mortality rates during the juvenile
stages, and would thus be most likely inadequately simu-
lated by all three model versions.

Perspectives on the use of Bayesian procedures to improve
mortality models in DVMs

Science and management require DVMs that provide
reliable projections of forest dynamics (Dietze 2017). A
necessary condition for having confidence in such
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projections is that the models accurately predict past
vegetation dynamics, but also that ecological processes,
such as tree mortality, are simulated with a high level of
mechanistic realism and/or with functions based on
large and high-quality empirical data sets (e.g., Larocque
et al. 2011, Adams et al. 2013, McDowell et al. 2013).
When including empirically based submodels in DVMs,
one needs to carefully test the behavior and accuracy of
the overall model, especially when the parameters of the
submodels are derived independently of the DVM (H€uls-
mann et al. 2018). Discrepancies between direct and
inverse parameter estimates need to be examined and
resolved to detect potential structural problems in the
model or in the data (cf. Hartig et al. 2012).
Our study highlights that parameter estimates from

BC may differ considerably from those deriving from an
independent empirical fitting procedure. All model ver-
sions reasonably predict decadal-scale stand dynamics
on independent validation data sets (median in predic-
tive errors ≤6.2 m2/ha after ≥35 yr of simulation), but
the calibration outperformed direct estimates from
inventory data, especially for long-term projections.
The low performance of the model with independent

field-based parameters may sound counterintuitive, as
one would expect direct field estimates to always provide
better information about ecological processes, without
being subject to interactions of the, possibly flawed,
structure of the DVM. However, this pattern could be
expected for several reasons. First, in contrast to the IPE
estimates, the mortality submodels of ForClim v3.3 and
DPE were not calibrated to fit stand basal area and stem
numbers, but were based on theoretical assumptions and
qualitative knowledge, or calibrated on tree-level mortal-
ity rates, respectively. Secondly, ecological models are
necessarily abstractions of reality (Bugmann 2001), and
their formulations often average ecological variability
over nonlinear processes (e.g., intraspecific variability;
Chesson 1998), which gives rise to higher-level dynamics
and patterns (idea of emergence; e.g., Levin 1992). Even
for a structurally correct model, the “best” parameters
may not always be those derived directly from field data.
Thirdly, direct observations are not always as reliable as
one may think. Apart from the obvious possibility of
measurement error, field data may also lack representa-
tiveness, for example if they are not covering the full
range of forest functions and dynamics necessary for the
model (here, large tree data are strongly under-repre-
sented, leading to J-shaped mortality curves that are
inappropriate for long-term simulations). Monitoring
many individuals across large areas, with a focus on
large trees is highly needed to better capture the spa-
tiotemporal variability in mortality rates and in size-
mortality relationships (McMahon et al. 2019). Simi-
larly, the decadal-scale resolution of forest inventory
data may mask important ecological processes (e.g.,
abrupt diebacks induced by short series of drought
years). Improving the temporal resolution of the growth
and mortality observations may be a solution to this,

e.g., by combining tree-ring and inventory data. How-
ever, such sophisticated mortality submodels were found
to not necessarily perform better (cf. Vanoni et al. 2019).
Also, the inverse calibration procedure may lead to

more accurate higher-level dynamics in such a situation
without necessarily being based on an accurate model
structure or identifying the correct corresponding param-
eter values (see Van Oijen 2017). At least partly, the new
parameter values may compensate for suboptimal param-
eter choices elsewhere in the model (e.g., inaccurate shade
tolerance parameter for Populus nigra as mentioned in the
section Prediction of short- and long-term forest
dynamics), or for flaws in the model structure (Hartig
et al. 2012). For instance, the reduction of the species-spe-
cific maximum growth rate that is advocated by the BC
(�43.2%; details in Appendix S3) may be exaggerated as
ForClim-IPE tends to underestimate individual BAI of
large trees for most species (Appendix S10). This high-
lights the need to better understand the dependencies
between different processes (e.g., tree growth and mortal-
ity) through improved data acquisition procedures and
more realistic model assumptions.
From an ecological perspective, considering the scar-

city of information on the mortality process (Hartmann
et al. 2018), we believe that fitting models to forest struc-
ture can be an interesting route to improve our under-
standing of mortality patterns across time and space and
their underlying mechanisms. Inverse methods could be
used to detect and implement DVM-specific growth–
mortality relationships or physiological thresholds lead-
ing to tree death (Davi and Cailleret 2017), even without
dedicated physiological information on the dead trees.
Doing so, grouping species into PFTs reduces the num-
ber of parameters to be calibrated, but this requires that
appropriate functional traits are available that can be
linked to stress tolerance and life-history strategies. Ide-
ally, these traits should be close to the physiological
mechanisms, such as the species’ hydraulic safety mar-
gin, which reflects drought vulnerability (O’Brien et al.
2017). This would compensate for unbalanced species
coverage (e.g., with Fagus sylvatica in the present study),
and would allow for the simulation of species for which
we do not have mortality information.
Overall, to properly capture mortality responses, flexi-

ble mortality functions should be preferred and growth
and mortality modules should be re-calibrated simulta-
neously to allow for nonlinear relationships between
growth, size, and mortality. As an alternative to the
functions used here, which most likely overestimate mor-
tality rates in low DBH classes, fitting different equa-
tions to the low and high DBH classes (e.g., Needham
et al. 2018) would provide more flexibility in the size-
mortality relationship, but more parameters would have
to be estimated. Similarly, even though not considered in
the present paper, size or growth effects on mortality
rates should differ among the functional groups (see
H€ulsmann et al. 2018). If growth and mortality rates are
estimated, we recommend including variables with
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different scales and levels of integration in the combined
likelihood function, such as individual-level variables
(e.g., tree-level BAI) and stand-scale characteristics (e.g.,
total basal area).
Finally, using a large variety of sites for the calibration

and validation based on forest inventory data does not
necessarily support the model’s capability of providing
accurate predictions beyond this time horizon. Long-
term simulations under varying environmental condi-
tions (e.g., under different climate change scenarios;
Bircher et al. 2015, Bugmann et al. 2019) or along envi-
ronmental gradients (e.g., PNV simulations) are needed
and highly instructive. In addition, a specific focus on
sites with high stress-induced mortality rates (see Hart-
mann et al. 2018) is recommended to improve model fit
and the reliability of model projections.

CONCLUSION

We compared two alternative approaches to calibrate a
new mortality submodel in the ForClim DVM based on
forest inventory data. Our results show that the inverse
Bayesian calibration outperformed the calibration based
on directly estimated parameters as benchmarked against
independent short-term data as well as in long-term pro-
jections along an environmental gradient. Although it is
difficult to generalize from a single case to DVMs in gen-
eral, we interpret the higher performance of the mortality
function with inversely estimated parameters as evidence
for two important conclusions: first, tree mortality is a
highly sensitive process in dynamic vegetation models that
crucially determines predictions of forest development
(Bugmann et al. 2019); and secondly, direct measurements
are not always ideal to constrain parameters of complex
system models in a way that the models produce satisfac-
tory emergent patterns. Keeping in mind its high compu-
tational cost, our results show that Bayesian inference
may substantially improve ecological forecasts by merging
direct measurements with inverse constraints by compar-
ing emerging outputs to data (see also Dietze 2017, Van
Oijen 2017).
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