M. Ikeuchi, Y. Ogawa, A. Iwase, and K. Sugimoto, Plant regeneration: cellular origins and molecular mechanisms, Development, vol.143, pp.1442-1451, 2016.

L. Xu, De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition, Curr. Opin. Plant Biol, vol.41, pp.39-45, 2018.

K. D. Birnbaum and A. S. Alvarado, Slicing across kingdoms: regeneration in Plants and Animals, Cell, vol.132, pp.697-710, 2008.

M. Ikeuchi, K. Sugimoto, and A. Iwase, Plant callus: mechanisms of induction and repression, Plant Cell, vol.25, pp.3159-3173, 2013.

D. Radhakrishnan, Shoot regeneration: a journey from acquisition of competence to completion, Curr. Opin. Plant Biol, vol.41, pp.23-31, 2018.

M. Ikeuchi, Wounding triggers callus formation via dynamic hormonal and transcriptional changes, Plant Physiol, vol.175, pp.1158-1174, 2017.

J. Heyman, B. Canher, A. Bisht, F. Christiaens, and L. De-veylder, Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair, J. Cell Sci, vol.131, p.208215, 2018.

P. Che, S. Lall, D. Nettleton, and S. H. Howell, Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture, Plant Physiol, vol.141, pp.620-637, 2006.

A. Iwase, WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis, Plant Cell, vol.29, pp.54-69, 2017.

A. Kareem, PLETHORA genes control regeneration by a two-step mechanism, Curr. Biol, vol.25, pp.1017-1030, 2015.

J. Xu, A molecular framework for plant regeneration, Science, vol.311, pp.385-388, 2006.

J. Liu, The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture, Plant Cell Physiol, vol.59, pp.739-748, 2018.

A. Iwase, The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis, Curr. Biol, vol.21, pp.508-514, 2011.

R. Tsuwamoto, S. Yokoi, and Y. Takahata, Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase, Plant Mol. Biol, vol.73, pp.481-492, 2010.

M. Aida, The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche, Cell, vol.119, pp.119-120, 2004.

J. Heyman, The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence, Nat. Plants, vol.2, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602450

Y. Okushima, H. Fukaki, M. Onoda, A. Theologis, and M. Tasaka, ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis, Plant Cell, vol.19, pp.118-130, 2007.

H. W. Lee, N. Y. Kim, D. J. Lee, and J. Kim, LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis, Plant Physiol, vol.151, pp.1377-1389, 2009.

M. Ikeuchi, A. Iwase, and K. Sugimoto, Control of plant cell differentiation by histone modification and DNA methylation, Curr. Opin. Plant Biol, vol.28, pp.60-67, 2015.

K. D. Birnbaum and F. Roudier, Epigenetic memory and cell fate reprogramming in plants, Regeneration, vol.4, pp.15-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607385

A. Ahmad, Y. Zhang, and X. F. Cao, Decoding the epigenetic language of plant development, Mol. Plant, vol.3, pp.719-728, 2010.

D. J. Patel and Z. Wang, Readout of epigenetic modifications, Annu. Rev. Biochem, vol.82, pp.81-118, 2013.

P. Sijacic, M. Bajic, E. C. Mckinney, R. B. Meagher, and R. B. Deal, Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks, Plant J, vol.94, pp.215-231, 2018.

R. Margueron and D. Reinberg, The Polycomb complex PRC2 and its mark in life, Nature, vol.469, pp.343-349, 2011.

B. Schuettengruber, H. M. Bourbon, L. Di-croce, and G. Cavalli, Genome regulation by polycomb and trithorax: 70 years and counting, Cell, vol.171, pp.34-57, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596016

T. Kinoshita, J. Harada, R. Goldberg, and R. Fischer, Polycomb repression of flowering during early plant development, Proc. Natl Acad. Sci. USA, vol.98, pp.14156-14161, 2001.

S. Holec and F. Berger, Polycomb group complexes mediate developmental transitions in plants, Plant Physiol, vol.158, pp.35-43, 2012.

D. Bouyer, Polycomb repressive complex 2 controls the embryo-toseedling phase transition, PLoS Genet, vol.7, p.1002014, 2011.

M. Ikeuchi, PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis, Nat. plants, vol.1, p.15089, 2015.

I. Mozgová, R. Muñoz-viana, and L. Hennig, PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana, PLoS Genet, vol.13, pp.1-27, 2017.

P. Crevillen, Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state, Nature, vol.515, pp.587-590, 2014.

F. Lu, X. Cui, S. Zhang, T. Jenuwein, and X. Cao, Arabidopsis REF6 is a histone H3 lysine 27 demethylase, Nat. Genet, vol.43, pp.715-719, 2011.

T. Q. Zhang, A two-stepmodel for de novo activation of wuschel during plant shoot regeneration, Plant Cell, vol.29, pp.1073-1087, 2017.

B. Sun, Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells, Science, vol.343, p.1248559, 2014.

C. He, X. Chen, H. Huang, and L. Xu, Reprogramming of H3K27me3 Is critical for acquisition of pluripotency from cultured Arabidopsis tissues, PLoS Genet, vol.8, pp.1-13, 2012.

E. Gan, Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis, Nat. Commun, vol.5, p.5098, 2014.

Y. Li, The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants, Genome Biol, vol.16, p.79, 2015.

F. Roudier, Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, EMBO J, vol.30, pp.1928-1938, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00999846

J. Xiao, U. S. Lee, and D. Wagner, Tug of war: adding and removing histone lysine methylation in Arabidopsis, Curr. Opin. Plant Biol, vol.34, pp.41-53, 2016.

K. Lee, O. S. Park, and P. J. Seo, Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation, Sci. Signal, vol.10, pp.1-11, 2017.

S. Qian, Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL, Nat. Commun, vol.9, pp.1-11, 2018.

H. Yang, M. Howard, and C. Dean, Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC, Curr. Biol, vol.24, pp.1793-1797, 2014.

M. D. Shahbazian and M. Grunstein, Functions of site-specific histone acetylation and deacetylation, Annu. Rev. Biochem, vol.76, pp.75-100, 2007.

C. Weiste and W. Dröge-laser, The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery, Nat. Commun, vol.5, p.3883, 2014.

L. Pi, Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression, Dev. Cell, vol.33, pp.576-588, 2015.

J. M. Kim, Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana, Plant Cell Physiol, vol.49, pp.1580-1588, 2008.

J. M. Kim, Acetate-mediated novel survival strategy against drought in plants, Nat. Plants, vol.3, pp.4-10, 2017.

R. Pandey, Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes, Nucleic Acids Res, vol.30, pp.5036-5055, 2002.

K. Lee, O. S. Park, S. J. Jung, and P. J. Seo, Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis, J. Plant Physiol, vol.191, pp.95-100, 2016.

J. Kim, Epigenetic reprogramming by histone acetyltransferase HAG1/ AtGCN5 is required for pluripotency acquisition in Arabidopsis, EMBO J. e98726, 2018.

C. Chen, Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis, Nat. Plants, vol.3, pp.814-824, 2017.

Y. You, Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering, Nat. Commun, vol.8, p.15120, 2017.

D. Jiang and F. Berger, DNA replication-coupled histone modification maintains Polycomb gene silencing in plants, Science, vol.357, pp.1146-1149, 2017.

A. Nassrallah, DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis, vol.7, pp.1-29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912108

J. Moreno-romero, D. Toro-de-león, G. Yadav, V. K. Santos-gonzález, J. Köhler et al., Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm 06 Biological Sciences 0604 Genetics, Genome Biol, vol.20, pp.1-11, 2019.

J. Xiao, Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis, Nat. Genet, vol.49, pp.1546-1552, 2017.

K. See, Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains, p.174078, 2019.

Z. Yang, EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis, Nat. Genet, vol.50, pp.1247-1253, 2018.

C. Liu, Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution, Genome Res, vol.26, pp.1057-1068, 2016.

F. Aquea, T. Timmermann, and A. Herrera-vásquez, Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana, Biochem. Biophys. Res. Commun, vol.483, pp.664-668, 2017.

E. M. Bowers, Virtual ligand screening of the p300/CBP histone acetyltransferase: Identification of a selective small molecule inhibitor, Chem. Biol, vol.17, pp.471-482, 2010.

P. Mews, Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence, Mol. Cell. Biol, vol.34, pp.3968-3980, 2014.

M. A. Asensi-fabado, A. Amtmann, and G. Perrella, Plant responses to abiotic stress: The chromatin context of transcriptional regulation, Biochim. Biophys. Acta-Gene Regul. Mech, vol.1860, pp.106-122, 2017.

C. Yamamuro, J. K. Zhu, and Z. Yang, Epigenetic modifications and plant hormone action, Mol. Plant, vol.9, pp.57-70, 2016.

J. Park, Epigenetic switch from repressive to permissive chromatin in response to cold stress, Proc. Natl Acad. Sci. USA, vol.115, pp.5400-5409, 2018.

M. Zheng, Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes, Plant J, vol.97, pp.587-602, 2019.

S. Li, The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in populus trichocarpa, Plant Cell, vol.31, pp.663-686, 2019.

S. M. Görisch, M. Wachsmuth, K. F. Tóth, P. Lichter, and K. Rippe, Histone acetylation increases chromatin accessibility, J. Cell Sci, vol.118, pp.5825-5834, 2005.

T. J. Stasevich, Regulation of RNA polymerase II activation by histone acetylation in single living cells, Nature, vol.516, pp.272-275, 2014.

B. Desvoyes, J. Sequeira-mendes, Z. Vergara, S. Madeira, and C. Gutierrez, Plant Chromatin Dynamics: Methods and Protocols, pp.83-97, 2018.

D. M. Buzas, M. Robertson, E. J. Finnegan, and C. A. Helliwell, Transcriptiondependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC, Plant J, vol.65, pp.872-881, 2011.

R. B. Deal and S. Henikoff, A simple method for gene expression and chromatin profiling of individual cell types within a tissue, Dev. Cell, vol.18, pp.1030-1040, 2010.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

S. Inagaki, Gene-body chromatin modification dynamics mediate epigenome differentiation in Arabidopsis, EMBO J, vol.36, pp.970-980, 2017.

Y. Zhang, Model-based analysis of ChIP-Seq (MACS)

, Genome Biol, vol.9, p.137, 2008.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

Z. Shao, Y. Zhang, G. Yuan, S. H. Orkin, and D. J. Waxman, MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets, Genome Biol, vol.13, p.16, 2012.

F. Ramírez, deepTools2: a next generation web server for deepsequencing data analysis, Nucleic Acids Res, vol.44, pp.160-165, 2016.

D. Shechter, H. L. Dormann, C. D. Allis, and S. B. Hake, Extraction, purification and analysis of histones, Nat. Protoc, 2007.

S. Sikorskaite, M. L. Rajamäki, D. Baniulis, V. Stanys, and J. P. Valkonen, Protocol: Optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families, Plant Methods, 2013.

T. Tian, AgriGOv2.0: A GO analysis toolkit for the agricultural community, 2017 update, Nucleic Acids Res, vol.45, pp.122-129, 2017.