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Abstract 

Background: Microalgae have been proposed as potential platform to produce lipid‑derived products, such as biofuels. 
Knowledge on the intracellular carbon flow distribution may identify key metabolic processes during lipid synthesis thus 
refining culture/genetic strategies to maximize cell lipid productivity. A kinetic metabolic model simulating cell meta‑
bolic behavior and lipid production was first applied in the microalgae platform Chlorella protothecoides under hetero‑
trophic condition. It combines both physiology and flux information in a kinetic approach. Cell nutrition, growth, lipid 
production and almost 30 metabolic intermediates covering central carbon metabolism were included and simulated.

Results: Model simulations were shown to adequately agree with experimental data, which is suggesting that the 
proposed model copes with Chlorella protothecoides cells’ biology. The dynamic metabolic flux analysis using the 
model showed a reversible starch flux from accumulation to decomposing when glucose reached depletion, while 
net lipid flux shows a quasi‑constant rate. The sensitive flux parameters on starch and lipid metabolism suggested 
that starch synthesis is the major competing pathway that affects lipid accumulation in C. protothecoides. Flux analysis 
also demonstrated that high lipid yield under heterotrophic condition is accompanied with high lipid flux and low 
TCA activity. Meanwhile, the dynamic flux distribution also suggests a relatively constant ratio of glucose distributed 
to biomass, lipid, starch, nucleotides as well as pentose phosphate pathway.

Conclusion: The model described not only experimental data, but also unraveled intracellular carbon flow distribu‑
tion and identify key metabolic processes during lipid synthesis. Most of the metabolic kinetics also showed statistical 
significance for metabolic mechanism. Therefore, this study unravels the mechanisms of the glucose impact on the 
dynamic carbon flux distribution, thus improving our understanding of the links between carbon fluxes and lipid 
metabolism in C. protothecoides.

Keywords: Metabolic modelling, Kinetic model, Central carbon metabolism, Microalgae, Chlorella protothecoides, 
Dynamic flux analysis
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Background
Microalgae have been proposed as potential platform to 
produce lipid-derived products, such as biofuels. Previ-
ous studies have shown that most of microalgae cells 
accumulate lipids when the cell division is blocked or 
inhibited while carbon can still continue to be fixed (such 

as nitrogen shortage stress conditions), which results in 
reduced biomass growth and in tum constraints the total 
lipid yield [1–4]. Thus, there is a contradiction between 
lipid content and algae growth, which limits high lipid 
yield. Knowledge on the intracellular carbon flow dis-
tribution may identify key metabolic processes during 
lipid synthesis thus refining culture/genetic strategies 
to maximize cell lipid productivity [5–7]. The flux bal-
ance analysis (FBA) approach, which is based on pseudo 
steady-state approximation, has been applied to uncover 
the black-box of intracellular metabolism under steady 
state [8, 9]. It has been used in microalgae biosystems 
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such as Arghrospia platensis, Synechocystis sp. PCC 6803 
[10], Chlamydomonas reinhardtii [11, 12], Chlorella 
protothecoides [13] and Chlorella sp. [14]. For instance, 
in Chlorella sp., a shift in intracellular flux distribution 
was predicted during transition from nutrient suffi-
cient phase to nutrient starvation phase of growth [14]. 
Another appealing modeling approach, which allows 
simulating a culture’s dynamics, is based on a kinetic 
transient-type approach [15, 16]. Such kinetic meta-
bolic models describe cell dynamic behavior by inducing 
enzyme kinetics. An underestimated potential output of 
these kinetic metabolic models relies in their capacity to 
perform dynamic metabolic flux analysis from which key 
metabolic processes can be examined while assessing in 
silico hypothesis of genetic engineering and/or culture 
conditions management strategies [17]. However, to the 
best of our knowledge, kinetic metabolic model applica-
tion in microalgae is relatively new. There are very few 
studies reporting dynamic metabolomics data of micro-
algae and even less on the development of mathematical 
models to describe cell metabolic dynamics [18].

In the present work, a kinetic metabolic model describ-
ing Chlorella protothecoides cellular metabolism was 
developed to describe heterotrophic culture mode. 
Unlike most dynamic models coping with algae physi-
ology or steady-state metabolic level models (FBA), the 
current model combines both physiology and flux infor-
mation in a kinetic approach. Cell growth, lipid produc-
tion and almost 30 metabolic intermediates covering 
glycolysis, pentose phosphate pathway and TCA cycle 
and energetic metabolism were included and simulated. 
Multiple Michaelis–Menten equations are used to intro-
duce metabolic kinetics of reaction rates and the Monod 
equation is used to describe the cell specific growth state, 
mass balances for each intermediate were considered in 
a dynamic profile. It can thus be used as an in silico plat-
form for characterizing the cell lines as well as to search 
for ‘‘optimal’’ culture strategy through identify key meta-
bolic processes during lipid synthesis.

Materials and methods
Algae stain and culture conditions
Details about algae species and culture conditions can be 
found in a previous work [19]. Briefly, Chlorella protothe-
coides (the Culture Collection of Alga at the University of 
Texas) culture in the dark was carried out in 2.8-L glass 
flasks with 10 g  L−1 glucose as the carbon source and the 
modified basal medium (MBM), thus imposing a strict 
heterotrophic metabolism. Glucose concentration in the 
medium was analyzed by a biochemistry analyzer (YSI Life 
Science, 2700 select, Ohio, USA). Intracellular metabolites 
extraction was performed as described in previous work 

[19] and their quantification was carried out by UPLC/
MS/MS system (1290 model, Agilent Technologies, Santa 
Clara, CA, USA), starch analysis was performed using 
a starch assay kit (Sigma-Aldrich, St. Louis, MO, USA). 
Total lipid quantification was done according to Drochi-
ou’s method and described in previous work [19].

Model development
Model structure
A kinetic metabolic model was developed to describe 
the central carbon metabolism of a microalgae platform, 
including glycolysis, TCA (tricarboxylic acid) cycle, pen-
tose phosphate pathway, total lipid synthesis, starch syn-
thesis, amino acids metabolism, energy metabolism and 
biomass synthesis. The metabolic network (Fig.  1) was 
first built according to databases such as KEGG, Meta-
Cyc, DiatomCyc, BioCyc as well as from literature [18, 
20, 21]. In this work, Chlorella protothecoides cells were 
considered as a unique compartment with no specific 
intracellular compartments such as mitochondria, chlo-
roplast, vacuoles, vesicles and nucleus. Energy metabo-
lism was considered as a global reaction where de novo 
synthesis and substrate level phosphorylation were com-
bined in a unique pathway. Reversible reactions involving 
storage carbon such as starch and lipid catabolism were 
described. The stoichiometry of the biochemical reac-
tions of the network is based on the flux balance analysis 
on Chlorella protothecoides [18]. A full list of the model 
reactions and reactions stoichiometry is listed in Table 1.

The Michaelis–Menten kinetic equation is used to 
describe each flux rate (Table  2). The cells specific 
growth rate (equation no. 30 in Table  2), accounting 
for biomass synthesis from precursors of the major 
cell constituents such as RX (R5P and X5P), G6P, PYR, 
AcCOA and total lipid. RX is normally used to synthe-
size nucleotides, DNA and RNA; G6P leads to organic 
phosphates providing energy for maintenance and 
metabolism; PYR is feeding amino acids metabolism 
which leads to protein formation; AcCOA is the pre-
cursor of fatty acids; while the lipid pool is the main 
contributor to cell mass accumulation in the algae 
platform.

For each metabolite in the model, a mass balance equa-
tion (Eq. 1) included the sum of all the input and output 
fluxes minus cell dilution effect from the cell division 
phenomenon. The specific consumption of precursors to 
cell mass synthesis was also considered in the precursors’ 
mass balances.

(1)

d[Mi]

dt
=

(

a
∑

m=1

Vinputi −

b
∑

n=1

Voutputj − [Mi]× Vgrowth − ci × Vgrowth

)
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where Mi is the concentration of each metabolite at 
time t, a is the input flux number, b is the output flux 
number, Vinput and Voutput are the flux rates at each 
metabolite node. ci is the stoichiometric coefficient for 
biomass precursors, Vgrowth is the specific growth rate. 
So [Mi]× Vgrowth is the cell dilution term and ci × Vgrowth 
is the growth contribution term for biomass precursors 
(G6P, RX, PYR, Lipid, AcCOA).

All the ordinary differential equations of metabo-
lites were provided as in Additional file  1: Table  S1. 
The ordinary equation for biomass was described by 
dX
dt

= Vgrowth ∗ X , listed in Additional file  1: Table  S1 
(Eq.  22). Where Vgrowth is the specific growth rate, X 
is the biomass concentration. The cell specific growth 
rate Vgrowth was described by Eq.  30 in Table  2. A pro-
gram generating automatically the Matlab code and 

Fig. 1 The model metabolic network for heterotrophic Chlorella protothecoides 
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differential equations for a specific metabolic network of 
reactions was developed and used (S. Peres and M. Joli-
coeur, unpublished). The ordinary differential equations 
system were performed using Matlab (the MathWorks 
Inc., Natick, MA, USA) with the “ode23” solver to get the 
model simulations result.

Model parameters estimation
The model has 77 parameters, which include 34 maxi-
mum flux rates, 38 enzyme half-saturated constants, and 
5 growth coefficients for the 5 growth precursors con-
tributing to biomass synthesis. Initial metabolite concen-
trations (i.e. at t = 0) were taken from experimental data, 

which include 24 intracellular metabolites distributed in 
8 pathways covering 30 metabolic reactions [19] or from 
literature (Table 3).

Initial kinetic parameter values (Vmax, Km) for each 
flux and enzymes in the model were taken within ranges 
found in the enzyme database BRENDA (http://www.
brend a-enzym es.org), and the respective units (mmol/L) 
were converted to comply with the model (mmol/gDW) 
by dividing 10 gDW/L biomass obtained in our cul-
ture. First estimates of maximal flux rates (Vmax) have 
been calculated from experimental data [19], or from 
BRENDA. Model parameter values were determined fol-
lowing the method proposed in Rizzi et al. [22]. Briefly, 
the time course of each metabolite with experimental 
concentration data were defined as fixed mathematical 
functions, enabling the procedure for parameter values 
optimization to focus first on non-measured metabo-
lites. In the present case of a high number of parameters, 
this approach allows accelerating parameter values iden-
tification. An objective function (Eq.  2), defined as the 
weighted sum of squared residues between experimental 
data and simulated values for each metabolites m at time 
k, where the weight is the experimental data for each 
state variable, was used to quantify simulation error.

Based on this objective function, a sensitivity analysis 
of model parameters was performed to identify the sensi-
tive ones in order to avoid over-parameterization, by then 
keeping constant non-sensitive parameters. Sensitivity 
analysis was performed by changing each parameter from 
− 70 to + 150% one at a time while holding others constant. 
From the Matlab optimization toolbox, the “linsqurfit” 
sub-routine was used to identify model parameter values. 
This process of parameter calibration was continued until 
minimizing the objective function, i.e. the simulated results 
closely following experimental data. Final parameter values 
of the model are shown in Table 4. Confidence intervals of 
estimated parameters were evaluated using the Matlab sub-
routine “nlparci.m” (Table 4). It is clear there is no unique 
solution for parameter values in such an underdetermined 
system.

Results and discussion
Model simulates algae cell behavior under heterotrophic 
condition
The final calibrated model adequately simulates the 
experimental data (Fig. 2). Cell growth, as well as extra-
cellular metabolites such as glucose and glycine are 
closely simulated. More importantly, total lipids and 
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Table 1 Reactions of a metabolic network

‘ ⇒’, represents unidirectional reactions; =’, represents reversible reactions

No. Enzyme Description Reaction

1 HK Hexokinase EGLC ⇒ G6P

2 GPI Glucose 6 phosphate isomerase G6P  ⇒ F6P

3 PFK 6 phosphofructokinase F6P  ⇒ 2 GD

4 FBPase Fructose biphosphate aldolase 2 GD  ⇒ F6P

5 PGK Phosphoglycerate kinase GD  ⇒ PEP

6 PK Pyruvate kinase PEP  ⇒ PYR

7 PDH Pyruvate dehydrogenase PYR  ⇒ AcCOA + CO2

8 FASN Fatty acid synthase 12 AcCOA  ⇒ Lipid

9 Lipase Lipase Lipid  ⇒ 12 AcCOA

10 GPAT Glycerol‑3‑phosphate acyltrans‑
ferases

GlyP = Lipid

11 TPI Triosephosphate isomerase GD  ⇒ GlyP

12 G6PDH Glucose 6 phosphate 1 dehydro‑
genase

G6P  ⇒ RX + CO2

13 TK Transketolase 3 RX  ⇒ 2 F6P + GD

14 PPRiBP Phosphoribosyl‑diphosphate 
synthetase

RX = ADP

15 CK Creatine kinase ADP  ⇒ ATP

16 AK Adenylate kinase ATP  ⇒ ADP

17 PGM Phosphoglucomutase G6P = G1P

18 ADPG Adenosine diphosphate glucose‑
starch glucosyltransferase

25 G1P  ⇒ Starch

19 AP Amylase Starch  ⇒ 25 G1P

20 GHMT Glycine hydroxymethyltransferase GLY  ⇒ PYR

21 CS Citrate synthase AcCOA  ⇒ CIT

22 MLD Malate dehydrogenase MAL  ⇒ CIT

23 ISOD Isocitrate dehydrogenase CIT  ⇒ AKG + CO2

24 AKGDH Oxoglutarate dehydrogenase AKG  ⇒ SCOA + CO2

25 GLDH Glutamate dehydrogenase AKG = AA

26 SCOAS Succinyl CoA ligase SCOA  ⇒ SUCC 

27 SDH Succinate dehydrogenase SUCC  ⇒ FUM

28 FH Fumarate hydratase FUM  ⇒ MAL

29 ME Malic enzyme MAL  ⇒ PEP + CO2

30 Growth Biomass synthesis G6P + RX + PYR + Li
pid + AcCOA ⇒ X

http://www.brenda-enzymes.org
http://www.brenda-enzymes.org
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starch as the main products were also simulated ade-
quately. The model simulation also followed closely the 
dynamics of intracellular metabolites, which distributed 
in glycolysis, PPP pathway, TCA cycle as well as energy 
metabolism. These results thus confirm the model struc-
ture as well as its calibrated kinetic parameters to simu-
late algae cells metabolism and products accumulation 
dynamics. Indeed, in this work, both the experimental 
data and model simulations show glycolysis and PPP 
pathways being more affected by glucose supply while 
TCA metabolism, which is fed by both carbon and 
nitrogen metabolisms, seems more robust to perturba-
tions such as extracellular glucose depletion. The intra-
cellular nutrition storage pool in the form of TCA cycle 
metabolites seemed to maintain biomass in the later 
growth phase. From both simulation and experimental 
data, algae biomass still accumulates while glycine and 
other amino acids pool (AA) reached values under the 
detection limits. However, this phenomenon was only 
observed for nitrogen sources since cell biomass growth 
stopped simultaneously to glucose depletion. This intra-
cellular nutrients management phenomenon has also 
been modeled and proved in phytoplankton and plant 
cells [23]. Where the model premises were based on 
observations that cell growth continued after the exhaus-
tion of external nitrogen pool, being then supported by 
the consumption of intracellular nitrogen pools such as 
chlorophyll molecules.

Dynamic metabolic flux analysis reveals lipid and cellular 
metabolic behavior in Chlorella protothecoides
Considering all the above, it is thus clear that the model 
structure allows simulating heterotrophic Chlorella pro-
tothecoides cell behavior. The model was then taken as an 
in silico tool and perform a dynamic metabolic flux analy-
sis estimating flux distribution. A dynamic metabolic flux 
analysis was performed from model simulation (Fig.  3). 
Looking at glucose flux (VHK), glycine flux (VGHMT) as 
well as cell specific growth rate (Vgrowth) (Fig.  3a), it is 
clear that cell growth proceeds simultaneously to car-
bon source uptake, but not proportionally to nitrogenous 
source uptake. Interestingly and as previously discussed 
for glycine concentration, glycine flux (VGHMT) ceased 
more than 24 h prior to growth cessation. Fluxes of PPP 
pathway and starch synthesis (Fig. 3c, d) originate from 
G6P are partially affected in some extent by glucose 
flux (Fig.  3a). For instance, model simulation VPGM flux 
showed being reversible from accumulation to decom-
posing at around day 3, where glucose reached depletion. 
This suggests that starch, which is an intracellular carbon 
storage pool, rapidly responds to a low carbon source 
level threshold, contributing providing continuous 

Table 2 Kinetic equations of  the  metabolites fluxes 
in the model

No. Kinetic equations

1 VHK = Vmax_HK ∗ EGLC
Km_HK_EGLC+EGLC

2 VGPI = Vmax_GPI ∗
G6P

Km_GPI_G6P+G6P

3 VPFK = Vmax_PFK ∗ F6P
Km_PFK_F6P+F6P

4 VFBPase = Vmax_FBPase ∗
GD

Km_FBPase_GD+GD

5 VPGK = Vmax_PGK ∗ GD
Km_PGK_GD+GD

6 VPK = Vmax_PK ∗ PEP
Km_PK_PEP+PEP

7 VPDH = Vmax_PDH ∗ PYR
Km_PDH_PYR+PYR

8 VFASN = Vmax_FASN ∗ AcCOA
Km_FASN_AcCOA+AcCOA

9 VLipase = Vmax_Lipase ∗
Lipid

Km_Lipase_Lipid+Lipid

10 VGPAT = Vmax_GPAT ∗
GlyP

Km_GPAT_GlyP+GlyP
− Vmaxr_GPAT ∗

Lipid
Km_GPAT_Lipid+Lipid

11 VTPI = Vmax_TPI ∗
GD

Km_TPI_GD+GD

12 VG6PDH = Vmax_G6PDH ∗ G6P
Km_G6PDH_G6P+G6P

13 VTK = Vmax_TK ∗ RX
Km_TK_RX+RX

14 VPPRiBP = Vmax_PPRiBP ∗
RX

Km_PPRiBP_RX+RX

15 VCK = Vmax_CK ∗ ADP
Km_CK_ADP+ADP

16 VAK = Vmax_AK ∗ ATP
Km_AK_ATP+ATP

17 VPGM = Vmax_PGM ∗ G6P
Km_PGM_G6P+G6P

− Vmaxr_PGM ∗ G1P
Km_PGM_G1P+G1P

18 VADPG = Vmax_ADPG ∗ G1P
Km_ADPG_G1P+G1P

19 VAP = Vmax_AP ∗
Starch

Km_AP_Starch+Starch

20 VGHMT = Vmax_GHMT ∗
GLY

Km_GHMT_GLY+GLY

21 VCS = Vmax_CS ∗
AcCoA

Km_CS_AcCoA+AcCoA

22 VMLD = Vmax_MLD ∗ MAL
Km_MLD_MAL+MAL

23 VISOD = Vmax_ISOD ∗ CIT
Km_ISOD_CIT+CIT

24 VAKGDH = Vmax_AKGDH ∗ AKG
Km_AKGDH_AKG+AKG

25 VGLDH = Vmax_GLDH ∗ AKG
Km_GLDH_AKG+AKG

− Vmaxr_GLDH ∗ AA
Km_GLDH_AA+AA

26 VSCOAS = Vmax_SCOAS ∗
SCOA

Km_SCOAS_SCOA+SCOA

27 VSDH = Vmax_SDH ∗ SUCC
Km_SDH_SUCC+SUCC

28 VFH = Vmax_FH ∗ FUM
Km_FH_FUM+FUM

29 VME = Vmax_ME ∗
MAL

Km_ME_MAL+MAL

30 Vgrowth = Vmax_growth ∗
G6P

Km_growthG6P
+G6P

∗ RX
Km_growthRX

+RX

∗ PYR
Km_growthPYR

+PYR
∗ AcCOA

Km_growth_AcCOA+AcCOA
∗

Lipid
Km_growth_Lipid+Lipid
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carbon flow feeding cell metabolism and maintenance. 
However, as an alternative carbon storage pool, net lipid 
flux shows a quasi-constant rate, composed of a synthesis 
flux (VFASN) that was slightly affected at glucose depletion 
and two catabolic fluxes (VLipase and VGPAT) which stayed 
quite constant (11.87–12.04  mmol  gDW−1  day−1 and 
0.05 mmol gDW−1  day−1 respectively) (Fig. 3e). Interest-
ingly, TCA cycle fluxes (VISOD, VSDH) (Fig. 3f ) exhibited a 
minimum value at glucose depletion, for increasing there-
after. As previously mentioned, the TCA cycle is closely 
related to carbon and nitrogen metabolism, it seems 
after carbon source depletion, some carbon and nitrogen 
dependent compounds (such as pigment) stopped syn-
thesis, which squeezed the intracellular nitrogen source 
flux goes to TCA cycle. As in heterotrophic culture, C. 
protothecoides represents yellowish because of carotene 
content is higher than chlorophyll [24]. However, after 
glucose depletion, we found the color of culture turns 
from yellow to green, and the carotene gets to degrade. 
Moreover, CS flux dynamics closely follows the lipid syn-
thesis flux although it’s quite low compared with lipid 
synthesis. As CS is competing the same substrate from 
FASN, the flux of these two enzymes are quite dependent 

on the concentration of AcCOA, which is in agreement 
from model prediction.

A closer view of flux rates were estimated at 48 h before 
glucose depletion in the exponential growth phase. For 
comparison purposes, all the flux values were normal-
ized to an uptake flux of 100 mmol g−1DW  h−1 glucose 
(Fig. 4). Flux results agree with that reported in the previ-
ous reports [13, 18]. For example, in [18], who performed 
a flux balance analysis at steady state for Chlorella 
sp. under heterotrophic condition, with a GPI flux of 
66.28 mmol g−1 DW  h−1 (leading to glycolysis), G6PDH 
of 12.15 (leading to PPP pathway) and PGM of 13.83 
(leading to starch), compared to 49.8 mmol g−1 DW  h−1, 
32.04 and 17.3 respectively in our work. The total flux 
to G6P obtained from our model is of 92.26  mmol  g−1 
DW  h−1 compared that of 99.22 in literature. The net 
flow From F6P to GD (PFK minus FBPase) was of 
73.47  mmol  g−1DW  h−1 compared to 70.35  mmol  g−1 
DW h −1 (from F6P to GAP), and the flux from GD to 
PEP was of 150.51 mmol g−1 DW  h−1 in our model ver-
sus 148.25 (from GAP to PEP) in literature. The fluxes 
of nucleotides synthesis (from RX to ADP) was of 
1.36 mmol g−1DW  h−1 compared to 0.67 mmol g−1DW 

Table 3 State variables description and initial conditions

No. Metabolites Description Values Units

1 ADP Adenosine diphosphate 2.22E−03 mmol/gDW

2 AKG a‑Ketoglutarate 5.88E−05 mmol/gDW

3 ATP Adenosine triphosphate 1.43E−02 mmol/gDW

4 AcCOA Acetyl–coenzyme A 2.56E−04 mmol/gDW

5 CIT Citrate 2.00E−04 mmol/gDW

6 F6P Fructose 6‑phosphate 4.72E−05 mmol/gDW

7 FUM Fumarate 2.42E−05 mmol/gDW

8 G1P Glucose 1‑phosphate 1.05E−05 mmol/gDW

9 G6P Glucose 6‑phosphate 2.36E−04 mmol/gDW

10 GD Glyceraldehyde 3‑phosphate and dihydroxyacetone 
phosphate

1.94E−04 mmol/gDW

11 AA Amino acids 3.80E+01 mmol/gDW

12 GlyP Glycerone‑phosphate 2.00E−04 mmol/gDW

13 Lipid Lipid 4.76E−01 mmol/gDW

14 MAL Malate 1.39E−04 mmol/gDW

15 PEP Phosphoenolpyruvate 2.37E−05 mmol/gDW

16 PYR Pyruvate 1.10E−04 mmol/gDW

17 RX Ribose 5‑phosphate and xylose‑5‑phosphate 2.26E−05 mmol/gDW

18 SCOA Succinyl–coA 2.00E−05 mmol/gDW

19 SUCC Succinate 2.00E−05 mmol/gDW

20 Starch Starch 4.45E−03 mmol/gDW

21 EGLC Extracellular glucose 5.53E+01 mmol/L

22 X Biomass 4.21E−02 gDW/L

23 GLY Glycine 1.32E+00 mmol/L

24 CO2 Carbon dioxide 1.20E−04 mmol/L
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 h−1 (from PRPP to DNA and RNA). Biomass synthesis 
rate was of 9.19 compared to 7.36 in [18].

Furthermore, downstream fluxes to AcCOA, the sum 
of the downstream lipid and TCA cycle flux was of 
74.01 mmol g−1DW  h−1 compared to 86.14 g−1DW  h−1 
in literature. Although a similar total flux around the 
TCA cycle was obtained, with 73.93  mmol  g−1DW  h−1 

at lipid branch and 0.08 at TCA branch, different results 
were reported in [18] with 81.21  mmol  g−1DW  h−1 at 
TCA cycle and 4.82  mmol  g−1DW  h−1 at lipid branch. 
This discrepancy may rely on a high lipid level (13.13% 
DW) in our cell culture compared to that in [18] (1% 
DW). Differences in culture conditions may be involved 
as well. Meanwhile, this difference of high lipid synthesis 

Table 4 Parameter values and 95% confidence intervals of the highly sensitive parameters

The flux-rates’ units are in mmol  gDW−1  day−1, except for the maximum specific growth rate (Vmax, growth) which is in  day−1. Enzymes affinity constants’ units are in 
mmol  gDW−1, except for HK and GHMT, which are in mmol  L−1

Parameters Values Confidence interval Parameters Values Confidence interval

Vmax_HK 20 (19.989, 20.011) km_HK_EGLC 0.8

Vmax_GPI 17 (16.998, 17.002) km_GPI_G6P 0.0001 (8.37E−5, 1.16E−4)

Vmax_PFK 23 (22.998, 23.002) km_PFK_F6P 0.00003

Vmax_FBPase 1 (0.008, 1.003) km_PGK_GD 0.000004 (3.12E−6, 4.88E−6)

Vmax_PK 37 (36.991, 37.009) km_PK_PEP 0.000007

Vmax_PDH 40 (39.997, 40.003) km_PDH_PYR 0.00001

Vmax_G6PDH 9 km_G6PDH_G6P 0.0009

Vmax_PGK 30 (29.997, 30.003) km_TK_RX 0.0001

Vmax_TK 13 (12.080, 13.041) km_ADPG_G1P 0.00005

Vmax_ADPG 10 (9.987, 10.008) km_AP_Starch 0.008

Vmax_AP 2 (1.080, 2.023) km_PGM_G6P 0.00004

Vmax_PGM 16 (15.992, 16.008) km_PGM_G1P 0.000005

Vmaxr_PGM 14 (13.995, 14.005) km_GHMT_GLY 0.1

Vmax_GHMT 6 (5.032, 6.103) km_growth_G6P 0.0000001 (3.20‑E−6, 3.40E−6)

Vmax_growth 2 (1.076, 2.045) km_growth_PYR 0.0000001 (2.47E−7, 4.47E−7)

Vmax_PPRiBP 15 km_growth_RX 0.0000006 (4.46E−7, 7.54E−7)

Vmaxr_PPRiBP 7 km_growth_Lipid 0.001 (8.16E−4, 1.18E−3)

Vmax_CK 5 km_growth_AcCOA 0.000001

Vmax_AK 4.5 km_FBPase_GD 0.0003 (0.0002, 0.0004)

Vmax_TPI 0.01 km_PPRiBP_RX 0.00001

Vmax_GPAT 0.01 km_PPRiBP_ADP 0.005

Vmaxr_GPAT 0.06 km_CK_ADP 0.001

Vmax_FASN 31.3 km_AK_ATP 0.002

Vmax_Lipase 12.12 km_GPAT_GlyP 0.0001

Vmax_CS 2 km_GPAT_Lipid 0.01 (0.0098, 0.0102)

Vmax_ISOD 0.3 km_FASN_AcCOA 0.002

Vmax_AKGDH 0.3 km_Lipase_Lipid 0.01 (0.0099, 0.0101)

Vmax_SCOAS 1 km_TPI_GD 0.002

Vmax_SDH 13 km_CS_AcCOA 0.2

Vmax_FH 3 km_GLDH_AA 3

Vmax_MLD 0.1 km_GLDH_AKG 3

Vmax_ME 0.1 km_ISOD_CIT 0.7

Vmax_GLDH 0.01 km_AKGDH_AKG 0.007

Vmaxr_GLDH 0.02 km_SCOAS_SCOA 0.001

V_growth_RX 0.001 km_SDH_SUCC 0.00002

V_growth_PYR 0.002 km_FH_FUM 0.008

V_growth_G6P 0.001 km_MLD_MAL 0.003

V_growth_Lipid 0.001 (0.0008, 0.001) km_ME_MAL 0.001

V_growth_AcCOA 0.008
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flux and low TCA cycle fluxes were also found in Wu’s 
work, where a 13C metabolic flux analysis was accom-
panied with flux balance analysis in Chlorella protothe-
coides [13]. Thus, from both the dynamic and steady state 
flux analysis, high lipid content in Chlorella is mainly 
due to low TCA split-flow. In our result, lipid was fully 
accumulated at 72  h, so the metabolic fluxes at 72  h 
was also extracted from the dynamic flux profile. Along 
with the glucose deleption, most of the metabolic fluxes 
decreased in different extent, some even decreased up to 
78.87% (EMP pathway fluxes). However, the re-arrange-
ment of flux distribution from starch and energy catabo-
lism to lipid synthesis was obvious. At 48  h, starch and 
ATP were accumulating (VPGM is 13.83  mmol  g−1DW 
 h−1) along with glucose assimilation. However, after glu-
cose deleption at 72  h, starch was catablising (VPGM is 
− 23.25  mmol  g−1DW  h−1) as a storage pool and ATP 
was also consuming (V PPRiBP is − 0.01  mmol  g−1DW 
 h−1) to maintain other metabolism. Lipid synthesis flux 
(VFASN), decreased a little bit from 73.93 to 63.89 mmol 
 g−1DW  h−1 (decreased 13.51%), which was less impacted 

by glucose deleption compared with other fluxes on EMP 
pathway. This may due to a constant feeding flux con-
verting from starch and ATP catabolism. Therefore, the 
energy stored in starch and ATP seams to be converted to 
a more stable storage pool as lipid after glucose deleption.

We also looked at the major carbon distribution 
before glucose depletion. Model simulations show that 
the glucose uptake rate (VHK) and the glycolytic fluxes 
went down to a very low level after day 2.6, we have 
thus analyzed their related flux ratios only before glu-
cose depletion (< 2.6 days). First, we evaluated that 6% 
of the glucose flux contributes to biomass synthesis and 
growth (Vgrowth-to-VPK ratio) (Fig.  5a), a value compa-
rable to the literature with 3.9% [25]. Within the same 
range, 8% (8.323–8.325%) of the glucose flux feed lipid 
synthesis (VFASN–VLipase to VPDH ratio) (Fig.  5b). How-
ever, as a main product contributing to biomass, the 
lipid catabolism-to-biomass synthesis and growth ratio 
(VFASN –VLipase –VGPAT to Vgrowth) shows two succes-
sive constant values at around 60% increasing at 80% at 
mid-exponential growth phase (1.5 d) (Fig. 5e). Model 
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simulations also suggest that around 1% of the glucose 
flux goes to starch synthesis (VPGM to VHK) (Fig.  5c), 
and that 15% to 7% of the glucose flux feed nucleotides 
synthesis (VPPRiBP to VG6PDH) (Fig. 5d). Concerning the 
PPP pathway activity, around 12% of the glucose uptake 
flux flow into the pentose phosphate pathway (VG6PDH 
to VHK) (Fig. 5f ). Therefore, the dynamic metabolic flux 
analysis give our lights of the carbon distribution in 
Chlorella protothecoides.

Parameter sensitivity showed biological significance 
on metabolic kinetics
A sensitivity analysis on model parameters showed flux 
maximum rate constants (Vmax,i) to be more sensitive 
than affinity constants (Km,i). For the final calibrated 
model 21 parameters, 15 maximum flux rates and 6 
enzyme affinity constant (Fig.  6), out of 77 revealed 
greater sensitivity, defined as affecting the objective 
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function of more than 10% when applying a − 70% to 
+ 150% parameter value change around its optimized 
value.

The most sensitive parameters are Vmax,HK and 
Vmax,GHMT, which are both at the entrance of the major 
carbon and nitrogen sources; Vmax,GPI, Vmax,PGM and 
Vmax,PDH, which refer to fluxes at the intersection of 
glycolysis, starch and lipid metabolisms are also highly 
sensitive, while PPP pathway (Vmax,TK) and TCA cycle 
parameters, showed a low sensitivity level. Since the 
major intersections from glycolysis including starch syn-
thesis, PPP pathway which finally leads to nucleic acids, 
and TCA cycle which is related to protein synthesis, and 
the fatty acids synthesis which leads to lipids. The sen-
sitive flux parameters on starch and lipid metabolism 
suggested that starch synthesis is the major compet-
ing pathway that affect lipid accumulation in C. proto-
thecoides. It has also been reported in Chlamydomonas 

reinhardtii, when starch biosynthesis is blocked (sta6 
mutant), the lipid content could be greatly boost, some 
can reach up to 30-fold [26]. Except for starch flux sen-
sitivity, Vmax,FASN, Vmax,Lipase and Vmax,GPAT are also sen-
sitive. As Vmax,FASN and Vmax,Lipase are related to lipid 
synthesis and degradation, they are responsible for the 
balance of cellular lipid pool. Meanwhile, Vmax,GPAT is 
in charge of providing glycerone-phosphate as the neu-
tral lipid skeleton. The sensitivity of these fluxes gave us 
light on the genetic strategy for lipid yield promotion. 
Interestingly, there are two highly sensitive affinity con-
stants (km,growth_lipid and km,Lipase_lipid), referring to the 
importance of lipid for cell biomass growth. Algae cell is 
a great platform accumulating lipids, some algae species 
could accumulate lipids up to 70% of their biomass. In C. 
protothecoides, the lipid content could reach 36% under 
heterotrophic condition, although in our work lipid con-
tent only reached 13% DCW, the sensitive of lipid affinity 
constant to growth suggest a huge potential to optimize 

Fig. 4 Flux distribution under heterotrophic cultivation at exponential phase (48 h) and lipid peak time point (72 h). All the flux values were 
normalized to an uptake flux of 100 mmol  g−1DW  h−1 glucose. Red arrows represents the flux direction for the four reversible reactions
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the enzyme activity. Some reactions or pathways (i.e. 
their kinetic parameters) such as the maximum specific 
growth rate, PPP pathway and TCA cycle, showed a low 
sensitivity level, which suggest these are robust pathways. 
Final parameter values and the 95% confidence intervals 
for the sensitive parameters are shown in Table 4. They 
are all within ranges found in the BRENDA databank.

Conclusion
A model simulating Chlorella protothecoides cell met-
abolic behavior under heterotrophic condition and 
describing metabolic network flux kinetics and energetic 
states has been developed and calibrated. Simulation 
results show adequate fit with experimental data. Flux 
analysis is also in high agreement with literature data. A 
sustained high lipid synthesis metabolic activity was fur-
ther confirmed from model simulations with higher lipid 
flux and lower TCA activity. The model was also used to 
analyze the dynamic distribution of the carbon source to 

the main carbon pathways, such as PPP pathway, starch 
synthesis, lipid synthesis and nucleotides synthesis. In 
addition, as the model included a high number of param-
eters, it described not only experimental data, but also 
most of the metabolic kinetics that showed statistical 
significance. It can thus be used as an in silico platform 
for characterizing the cell lines as well as to search for 
‘‘optimal’’ culture strategy either by management through 
rational adjustment of the main nutrient concentrations 
that affect glucose and/or glycine concentration with 
time or by genetic manipulation of certain predicted crit-
ical enzymes. However, much work remains to be done: 
it would be of interest to add more metabolic reactions 
from extracellular multiple nutrients, like ions; and sepa-
rating the lipids pools to more interest classes; get larger 
data sets including both extra- and intracellular experi-
mental data, to test and validate the platform as a predic-
tive tool.
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