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Abstract 1 

Escherichia coli is primarily known as a commensal colonising the 2 

gastrointestinal tract of infants very early in life but some strains being responsible for 3 

diarrhoea, which can be especially severe in young children. Intestinal pathogenic 4 

E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely the (i) 5 

enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) 6 

enterohemorragic E. coli, (v) enteroinvasive E. coli, and (vi) diffusely-adherent E. coli. 7 

Prior to human infection, DEC can be found in natural environments, animal reservoirs, 8 

food processing environments and contaminated food matrices. From an 9 

ecophysiological point of view, DEC thus deal with very different biotopes and 10 

biocoenoses all along the food chain. In this context, this review focuses on the wide 11 

range of surface molecular determinants acting as surface colonisation factors (SCFs) 12 

in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular 13 

polysaccharides, (ii) extracellular DNA, and (iii) surface proteins. Surface proteins 14 

constitute the most diverse group of SCFs broadly discriminated into (i) monomeric 15 

SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins 16 

or some moonlighting proteins, (ii) oligomeric SCFs, namely the trimeric ATs, and (iii) 17 

supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 18 

pili, curli chaperone-usher pili or conjugative pili. This review also details the gene 19 

regulatory network of these numerous SCFs at the various stages as it occurs from pre-20 

transcriptional to post-translocational levels, which remains to be fully elucidated in 21 

many cases. 22 
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One-sentence summary 23 

Diarrhoeagenic Escherichia coli (DEC) express numerous surface colonisation 24 

factors contributing to their contamination of the food chain, from natural 25 

environments, animal reservoirs, food processing environments to food matrices, and 26 

ultimately, human infection.  27 
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Introduction 88 

Most recent phylogenetic analyses have revealed that the Escherichia genus is 89 

subdivided into eight groups containing three species, namely Escherichia coli, 90 

E. fergusonii, and E. albertii, as well as five clades numbered from I to V (Lawrence & 91 

Hartl, 1991, Walk et al., 2009). E. coli is undoubtedly the most investigated bacterial 92 

species and is used as a model organism in microbiology. This lipopolysaccharidic 93 

(LPS) diderm bacterium (archetypical Gram-negative bacterium) is primarily known as 94 

a harmless commensal of the gastrointestinal tract (GIT) (Mason & Richardson, 1981, 95 

Chagnot et al., 2013). While E. coli is prevalently an inhabitant of the gut of warm-96 

blooded animals, especially mammals but also birds, it is worth mentioning this 97 

bacterial species can also be isolated from fish, frogs or reptiles, such as crocodiles, 98 

turtles or snakes, but also insects, such as flies (Janisiewicz et al., 1999, Souza et al., 99 

1999, Gordon & Cowling, 2003, Escobar-Paramo et al., 2006, Blazar et al., 2011); 100 

E. coli generally appears more prevalent in herbivores and omnivores than carnivores. 101 

In humans, E. coli colonises the GIT of young children early in life and usually 102 

represents less than 1 % of the human intestinal microbiota in adults (Eckburg et al., 103 

2005). 104 

Nevertheless, some E. coli species possess some virulence factors that enable 105 

them to cause a broad range of human extraintestinal and intestinal infections. On one 106 

side extraintestinal pathogenic E. coli (ExPEC) mainly comprises the uropathogenic 107 

E. coli (UPEC), neonatal meningitis E. coli (NMEC), necrotoxic E. coli (NTEC) and 108 

sepsis-associated E. coli (SEPEC). On the other side, and in addition to the adherent 109 

invasive E. coli (AIEC) associated with Crohn's disease (Mann & Saeed, 2012), the 110 

intestinal pathogenic E. coli (InPEC) essentially encompasses six pathotypes of 111 

diarrhoeagenic E. coli (DEC), namely the (i) enterotoxigenic E. coli (ETEC), (ii) 112 
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enteroaggregative E. coli (EAEC), (iii) enteropathogenic E. coli (EPEC), (iv) 113 

enterohemorragic E. coli (EHEC), (v) enteroinvasive E. coli (EIEC), and (vi) diffusely-114 

adherent E. coli (DAEC) (Kaper et al., 2004, Croxen & Finlay, 2010); of note, EHEC 115 

belong to the larger group of shigatoxin-encoding E. coli (STEC), or shigatoxin-116 

producing E. coli, which are not all considered as pathogenic as they can exhibit very 117 

various virulence levels ranging from avirulence to hyper-virulence (Karmali et al., 118 

2003, Laing et al., 2009, Monteiro et al., 2016). The pathogenicity of DEC strains is 119 

well documented and their main virulence factors are also well defined (Croxen & 120 

Finlay, 2010). Some of these pathotypes are not restricted to human infections, but can 121 

be responsible for diarrhoea in animals, for instance (i) ETEC in porcines (piglets), 122 

bovines (calves) or ovines (lambs), (ii) EPEC in rabbits, dogs, cats, pigs, calves, lambs 123 

and goats, and (iii) STEC in calves and piglets (Beutin, 1999, DebRoy & Maddox, 124 

2001); to date, EAEC, EIEC and DAEC have not been reported as etiological agents of 125 

diarrhoea in animals. Despite the high genome plasticity demonstrating intensive gene 126 

flow, the population structure of E. coli remains mostly clonal (Touchon et al., 2009), 127 

with a clear delineation into seven principal phylogenetic groups (A, B1, B2, C, D, E 128 

and F) (Jaureguy et al., 2008, Walk et al., 2009, Tenaillon et al., 2010, Clermont et al., 129 

2013, Beghain et al., 2018). Commensal E. coli strains generally belong to phylogroup 130 

A, whereas DEC usually belong to phylogroups A, B1, C, D and E (Jaureguy et al., 131 

2008, Okeke et al., 2010, Croxen et al., 2013, Hazen et al., 2016, Rossi et al., 2018): 132 

(i) ETEC can be found in phylogroups A and B1 and to lesser extent in D, (ii) EAEC 133 

are found within phylogroup A but also B1, D and to a smaller extend in B2, (iii) EPEC 134 

can belong to phylogroups E and B2, (iv) EHEC strains are mostly found in 135 

phylogroups B1 and D but also in E (with the with serotype O157:H7 or O104:H4), (v) 136 

EIEC are mainly present in phylogroups A, B1 and E, together with Shigella, which are 137 
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essentially E. coli species from phylogenetic and taxonomic perspectives (Brenner et 138 

al., 1972, Lan & Reeves, 2002, Chaudhuri & Henderson, 2012, Pettengill et al., 2015), 139 

and (vi) DAEC which mostly belong to phylogroups B2 and D (Servin, 2014, Mosquito 140 

et al., 2015, Walczuk et al., 2019). This distinct grouping suggests a parallel evolution 141 

of the different pathotypes on multiple occasions, possibly with the intervention of 142 

mobile elements enabling the acquisition of specific combinations of virulence factors 143 

(Chaudhuri & Henderson, 2012, Croxen et al., 2013). 144 

DEC can be found all along the food chain (Giaouris et al., 2014, Kim et al., 145 

2017). They can have various environmental reservoirs, such as ruminants for EHEC, 146 

and are mainly transmitted to humans by the faecal-oral route through the consumption 147 

of contaminated food, including water, or contact with contaminated surfaces (Croxen 148 

et al., 2013). Besides anthropozoonosis, transmission can also occur from host to host 149 

between humans. In any case, the colonisation of the food chain by DEC is a major 150 

issue for the agri-food and public health sectors alike. The surface colonisation process 151 

can occur via bacterial adhesion and/or biofilm formation to various biotic or abiotic 152 

surfaces. When the reversible adhesion to the surface by low energy linkages (e.g. 153 

electrostatics, Van der Waals interactions) is overcome, some bacteria can grow at the 154 

surface. As such, biofilm formation can be broadly defined as the sessile development 155 

of microorganisms at a surface or interface (Azeredo et al., 2017). Biofilm can be 156 

monospecies but are more generally multispecies in the natural environment, forming 157 

a complex multicellular community, which is often embedded in an exopolymeric 158 

matrix (EPM) (Costerton, 1995, Costerton et al., 1999). It confers to bacterial cells an 159 

increased resistance against environmental stress, antibiotics and/or immunological 160 

defences of the host. Once the reversible adhesion is overcome, the bacterial biofilm 161 

formation is per se divided in several steps: (i) initial and irreversible adhesion of 162 
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bacterial cells to the surface, (ii) bacterial division at the site of adhesion resulting in 163 

the formation of microcolonies, (iii) maturation of the biofilm architecture into a three-164 

dimensional structure, and (iv) bacterial dispersion enabling the colonisation of other 165 

sites (O'Toole et al., 2000, Hall-Stoodley & Stoodley, 2002). Biofilm formation can 166 

thus plays a key role in DEC ecophysiology by enabling colonisation of various 167 

environmental niches (soil, water, vegetables, agri-food surfaces, etc…), the 168 

asymptomatic and direct colonisation of some hosts, as well as contributing to 169 

transmission through the food chain and ultimately human infection (Ahmed et al., 170 

2013). 171 

Most information about the colonisation process in E. coli is focused on the 172 

domesticated laboratory strain K12, commonly considered as representative of the 173 

E. coli species (Beloin et al., 2008). However, this notion is biased due to the numerous 174 

and very significant genotypic and/or phenotypic differences with commensal and 175 

pathogenic E. coli isolates (Hobman et al., 2007). Indeed, E. coli K12 has one of the 176 

smallest genomes compared to other genome-sequenced strains of E. coli due to the 177 

loss of a large variety of genes during its domestication (Lenski, 2017). With regards 178 

to the selective pressures that shapes the genome evolution, E. coli K12 have been 179 

replicated and studied for a long time under laboratory conditions, far from those 180 

encountered in natural environments (Hobman et al., 2007); some molecular 181 

determinants, including some surface colonisation factors (SCFs), could thus be lacking 182 

or misregulated in domesticated laboratory strains of E. coli compared to commensal 183 

and pathogenic E. coli isolates. As the interface between the bacterial cell and its 184 

surroundings, the molecular surface determinants are key players in the initial adhesion 185 

and sessile development processes and this review aims at summarising exhaustively 186 

the SCFs present in DEC. The complexity of the regulation network occurring at 187 
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various stages, from pre-transcriptional to post-translocational levels, is also 188 

highlighted. A greater understanding of the parameters that influence adhesion and 189 

biofilm formation may inform the development of interventions to minimise DEC 190 

dissemination in the food chain, from the environment, animal, food, to human. 191 

1. Molecular determinants involved in surface colonisation by 192 

DEC 193 

The colonisation processes along the food chain, from natural environments, 194 

such as soil, plants and animals, to food environments, including the industrial 195 

processing food chain and food matrices, and ultimately infection or asymptomatic 196 

carriage in human, are very complex and involves many molecular determinants. 197 

Sessile development at a surface or interface is generally accompanied by the formation 198 

of an EPM embedding the bacterial cells in biofilms (Figure 1). These exopolymers can 199 

act as glue for adherence of the bacterial cell to the support and shape the architecture 200 

of the biofilm (Hobley et al., 2015). Furthermore, the EPM provides protection by 201 

shielding the bacteria from desiccation and antimicrobial compounds but also 202 

participates in the channelling of nutrients and signalling molecules (Sutherland, 2001, 203 

Starkey et al., 2004, Beloin et al., 2008). As such, the EPM contribute to the survival 204 

strategy and persistence of bacteria in various environmental conditions (Branda et al., 205 

2005). Molecular determinants participating in the surface colonisation by DEC can 206 

either be closely associated with the bacterial cell surface and form the cell-associated 207 

EPM (caEPM) or present in the extracellular milieu, namely the interstitial EPM 208 

(iEPM) (Figure 1) (van Houdt & Michiels, 2005). 209 
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At a biochemical level, EPM components can be broadly discriminated between 210 

(i) extracellular polysaccharides (EPS), (ii) extracellular DNA (eDNA), and (iii) surface 211 

proteins. Depending on the different DEC pathotypes, these various determinants can 212 

be either present or absent (Table 1). Outer membrane vesicles (OMVs) have been 213 

reported to be components of the EPM in E. coli K12 (Schooling & Beveridge, 2006) 214 

and their presence in biofilm from DEC is likely, although it remains to be 215 

demonstrated. To date, there is no report of their contribution to biofilm formation in 216 

DEC, as observed in Pseudomonas aeruginosa or Helicobacter pylori (Yonezawa et 217 

al., 2009, Wang et al., 2015), but it is an aspect that would deserve further investigation 218 

in DEC. Of note, poly-g-glutamate (PGA) can be found as a component of the EPM of 219 

numerous bacteria, especially parietal monoderm bacteria (archetypical Gram-positive 220 

bacteria) and only a few LPS-diderm bacteria, where it can either be released or cell-221 

surface attached to form a capsule (Candela & Fouet, 2006, Ogunleye et al., 2015, 222 

Radchenkova et al., 2018) but, to date, this has never been reported in any E. coli strain. 223 

1.1. Exopolysaccharides (EPS) 224 

EPS are one of the main components of the EPM in E. coli biofilms (Beloin et 225 

al., 2008). DEC can biosynthesise a variety of EPS, namely (i) lipopolysaccharide 226 

(LPS), (ii) poly-b-1,6-N-acetyl-D-glucosamine (PNAG), (iii) colanic acid, and (iv) 227 

cellulose. Because of their intimate association with the bacterial cell surface, several 228 

of these EPS can contribute to the caEPM and the formation of a so-called capsule. 229 

Actually, E. coli harbours some serotype-specific polysaccharides, namely 230 

lipopolysaccharides (LPS) (O antigen) and capsular polysaccharides (K antigen). 231 

E. coli capsules are composed of high-molecular weight polysaccharides embedding 232 

the bacterial cells and linked to the cell-surface via covalent attachments (Whitfield, 233 
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2006). More than 80 capsular antigens have been reported in E. coli, which are divided 234 

into four groups, from G1 to G4 (Whitfield, 2006, Yaron & Romling, 2014). DEC 235 

(including EPEC, ETEC and EHEC) produce G1 and G4 capsules that share a common 236 

assembly system and can be associated with the lipid A of LPS (KLPS) or be structurally 237 

similar to the O-polysaccharides of the LPS (O-antigen capsules). During an infection, 238 

these capsules allow bacteria to be protected from opsonophagocytosis and 239 

complement-mediated killing (Whitfield, 2006). In EHEC O104:H4, the capsule has 240 

been shown to play a role in bacterial survival in the environment and in direct bacterial 241 

interaction with plants (Jang & Matthews, 2018). 242 

1.1.1. Lipopolysaccharide (LPS) 243 

LPS is located at the outer leaflet of the outer membrane (OM) and part of the 244 

caEPM (Raetz & Whitfield, 2002). This glycolipidic polymer is formed around a toxic 245 

component, lipid A, and for this reason is also considered an endotoxin; the LPS is 246 

further composed of the core region linked to the lipid A (divided into an inner and 247 

outer part) and the O-antigen that is linked to the outer part of the core region (Raetz & 248 

Whitfield, 2002). Biosynthesis and assembly pathways of LPS have been fully 249 

described and involve more than 50 genes encoded in operons or monocistrons 250 

scattered on the bacterial chromosome (Sandkvist, 2001, Szalo et al., 2006). The 251 

structures of lipid A and its core region are highly conserved in E. coli but the core 252 

region has five basic structures, called R1, R2, R3, R4 and K12. Among these, R1 is 253 

the most prevalent in non-STEC clinical isolates of E. coli and R3 is more associated 254 

with STEC strains (Gibb et al., 1992, Appelmelk et al., 1994, Currie & Poxton, 1999, 255 

Amor et al., 2000). In E. coli clinical isolates, R1 is most prevalent, whilst the K12 core 256 

is not detected (Gibb et al., 1992, Appelmelk et al., 1994). More than 170 O-antigens 257 
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have been identified and consist of 10–25 repeating units containing one to eight sugar 258 

residues (Stenutz et al., 2006). The O-antigen can be present (smooth LPS, also called 259 

S-LPS or LPS I, resulting in colonies with a smooth phenotype) or absent (rough LPS, 260 

also called R-LPS or LPS II, resulting in colonies with a rough phenotype) depending 261 

on the E. coli strain; if the core region is also absent, it is called deep-rough LPS 262 

(Hitchcock et al., 1986). Smooth strains are the most commonly found in nature, 263 

including in DEC, whereas the rough phenotype is more commonly found in laboratory 264 

strains (Whitfield & Keenleyside, 1995, Nataro & Kaper, 1998). For smooth strains, 265 

the LPS length is positively correlated with the force of adhesion (Strauss et al., 2009). 266 

The O-antigen assists adhesion through hydrogen binding (Tomme et al., 1996). For 267 

example, it has been demonstrated that the O-antigen enables EHEC O157:H7 strains 268 

to colonise animal hosts (Sheng et al., 2008). Mutations in LPS biosynthesis genes have 269 

been shown to affect the adhesion of E. coli to abiotic surfaces and its biofilm formation 270 

ability (Bilge et al., 1996, Genevaux et al., 1999, Landini & Zehnder, 2002, Beloin et 271 

al., 2006). Additionally, LPS can promote or inhibit biofilm formation by two distinct 272 

mechanisms, mainly by interacting with cell-surface-exposed adhesion factors. It has 273 

been shown that alteration of LPS synthesis can impair type 1 pili and colanic acid 274 

expression as well as bacterial motility, whereas the reduction in LPS expression may 275 

unmask E. coli adhesins and thus promote adhesion or biofilm formation as observed 276 

for EHEC O157:H7 strain (Bilge et al., 1996, Beloin et al., 2006, Beloin et al., 2008). 277 

1.1.2. Poly-N-acetyl glucosamine (PNAG) 278 

PNAG is an EPS attached to the bacterial surface and is involved in biofilm 279 

formation on abiotic surfaces (Wang et al., 2004). The biosynthetic pathway for PNAG 280 

is encoded by the pgaABCD locus (formerly ycdSRQP). Initiation of PNAG production 281 
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occurs with the PgaDC, a glycosyl transferase localised on the cytoplasmic side of the 282 

inner membrane that uses the UDP-N-acetyl-D-glucosamine as substrate (Wang et al., 283 

2004, Itoh et al., 2005, 2008). The PNAG polymer is exported and anchored to the 284 

bacterial surface through the β-barrel formed by two outer membrane proteins (OMPs), 285 

namely PgaB and PgaA. Although PNAG forms a surface capsule and is one of the 286 

main components of the caEPM in diverse bacterial biofilm, the pga locus is not present 287 

in all E. coli strains (Cerca et al., 2007, Cimdins et al., 2017). In DEC, PNAG plays a 288 

role in the stabilisation of biofilm architecture (Wang et al., 2004, Al Safadi et al., 289 

2012). It has been demonstrated to be important for biofilm formation of EHEC on 290 

sprouts and tomato roots (Matthysse et al., 2008). In vivo expression of pgaA during 291 

infection by EHEC O104:H4 suggests that biofilm formation is a key step in 292 

pathogenesis (Al Safadi et al., 2012). PNAG is also expressed by some ETEC strains 293 

and often induced by conditions found in the environment (Gonzales-Siles & Sjoling, 294 

2016). 295 

1.1.3. Colanic acid 296 

Colanic acid is a negatively charged polymer of glucose, galactose, fucose, and 297 

glucuronic acid produced by most E. coli strains, including DEC (Obadia et al., 2007). 298 

The wca operon (or cps) encodes 19 proteins including polymerases involved in colanic 299 

acid synthesis from sugar residues (Stevenson et al., 1996). Colanic acid actually forms 300 

the G1 capsule but a significant portion of the colanic acid produced can also be 301 

released into the extracellular milieu to contribute to the iEPM (Whitfield & Roberts, 302 

1999, Beloin et al., 2008, Beloin et al., 2008). The exact contribution of colanic acid to 303 

biofilm formation is still unclear (Matthysse et al., 2008, May & Okabe, 2008). 304 

Nonetheless, it forms a physical barrier that helps bacteria to survive outside the host 305 
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with the formation of a protective capsule around the bacterial cell. This capsule allows 306 

E. coli biofilms to resist osmotic and oxidative stresses as well as to temperature 307 

variations (Whitfield & Roberts, 1999, Chen et al., 2004). In EHEC O157:H7, it has 308 

been shown to play a role in the bacterial survival in simulated GIT fluids (Mao et al., 309 

2006). In EAEC, the presence of colanic acid has been linked with the formation of 310 

large biofilm structures on the surface of sprouts (Borgersen et al., 2018). In contrast, 311 

the production of colanic acid could also mask some cell-surface adhesins and 312 

consequently impair initial adhesion to some supports (Hanna et al., 2003, Schembri et 313 

al., 2004, Beloin et al., 2008). 314 

1.1.4. Cellulose 315 

Cellulose is a linear homopolysaccharide composed of D-glucopyranose units 316 

linked by β-1→4 glycosidic bonds. While this widespread biopolymer is generally 317 

related to plant biology, it is also present in the iEPM in some bacterial species where 318 

it plays a role in protection, maturation and structure of the biofilm (Solano et al., 2002, 319 

Ude et al., 2006). In E. coli, cellulose biosynthesis genes are located in two operons, 320 

namely bcsQABZC and bcsEFG (Zogaj et al., 2001, Solano et al., 2002, Le Quere & 321 

Ghigo, 2009). The cellulose synthase is formed by BcsAB, which catalyses cellulose 322 

biosynthesis from UDP-glucose subunits and forms a transmembrane pore across the 323 

inner membrane for cellulose export prior to secretion across the OM via a β-barrel 324 

pore formed by BcsC (Keiski et al., 2010, Omadjela et al., 2013). The role of the 325 

bcsEFG operon is still unclear but its presence is necessary for cellulose production 326 

(Solano et al., 2002). These genes are found in both commensal and pathogenic E. coli 327 

strains (Beloin et al., 2008). Although cellulose production is essential for biofilm 328 

maturation, over-production negatively impacts biofilm formation and bacterial 329 
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aggregation, possibly by coating and thus masking the adhesive properties of surface 330 

proteins such as curli (Gualdi et al., 2008). In EHEC O157:H7 and EPEC O127:H6 331 

cellulose production has been shown to contribute to biofilm formation, and 332 

consequently, host colonisation and survival in different environments (Saldana et al., 333 

2009). The involvement of cellulose in E. coli colonisation of plant materials has also 334 

been demonstrated but it depends on the vegetable, as its presence seems dispensable 335 

for biofilm formation by E. coli O157:H7 to spinach leaves, but it is required for 336 

bacterial adhesion to alfalfa sprouts (Matthysse et al., 2008, Macarisin et al., 2012). 337 

Expression of these genes in some ETEC strains is often induced at ambient 338 

temperatures, low ionic strength and nutrient limitation (Bokranz et al., 2005, Szabo et 339 

al., 2005). 340 

1.2. Extracellular DNA (eDNA) 341 

The importance of eDNA in biofilm maturation has been demonstrated in 342 

numerous bacterial species (Muto & Goto, 1986, Kadurugamuwa & Beveridge, 1995, 343 

Steinberger et al., 2002), including E. coli (Xi & Wu, 2010, Nakao et al., 2012). As a 344 

component of the iEPM, eDNA serves as structural component of the biofilm but can 345 

also contribute to a cation gradient, as a nutrient source, induce antibiotic resistance, 346 

and aid horizontal gene transfer (Bockelmann et al., 2006, Palchevskiy & Finkel, 2006, 347 

Sanchez-Torres et al., 2011). However, the role of eDNA in DEC strains remains to be 348 

elucidated. The molecular mechanism explaining the presence of eDNA has been a 349 

subject of investigation for some time but essentially results from the release of 350 

genomic DNA upon cell lysis, following the bacteriophage lytic cycle or bacterial cell 351 

apoptosis (Palmen & Hellingwerf, 1995, Steinmoen et al., 2002, Qin et al., 2007). 352 

Nonetheless, the lysis of outer membrane vesicles (OMVs) containing DNA 353 
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(Kadurugamuwa & Beveridge, 1996, Whitchurch et al., 2002), as well as DNA 354 

secretion through the conjugative Type IV, subtype b, secretion system (T4bSS) 355 

(Hamilton et al., 2005, Chagnot et al., 2013) could also contribute to the presence of 356 

eDNA. The extent and respective contribution of these different mechanisms to the 357 

presence of eDNA would undoubtedly require further investigations, especially in 358 

DEC, also considering the impact of the apparent presence of pancreatic nuclease in the 359 

intestine (Maturin & Curtiss, 1977). 360 

1.3. Cell-surface proteins 361 

The cell surface of LPS-diderm bacteria can display a number of proteins 362 

associated with the OM. Proteinaceous determinants found at the bacterial cell surface 363 

and acting as SCFs can be broadly discriminated into (i) monomeric proteins, (ii) 364 

multimeric proteins (Figure 2). 365 

In the scientific literature, E. coli adhesins have generally been discriminated 366 

between fimbrial and afimbrial (or non-fimbrial). However, and as with animal 367 

classification, a group is much better defined by features that are present rather than by 368 

the absence of some features. As such, the term afimbrial adhesins does not tell 369 

anything about the nature of these adhesins. In addition, some afimbrial adhesins later 370 

appeared to be atypical fimbriae secreted by the same family of protein secretion 371 

system, e.g. the CS31A (coli surface associated 31a antigen) pili (Adams et al., 1997). 372 

For these reasons, we here propose to regroup those cell-surface proteins under the term 373 

of monomeric proteinaceous adhesins, or monomeric proteinaceous colonisation 374 

factors. Besides, the term fimbriae is not very well defined across the Bacteria kingdom 375 

when considering different bacterial species. On the contrary, the term pili can be used 376 

as a generic term encompassing the various type of pili and fimbriae, including curli or 377 
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injectisome. In addition, some cell-surface appendages contributing to surface 378 

colonisation in bacteria cannot be categorised as fimbrial adhesins per se, e.g. the 379 

flagella and the trimeric autotransporters. To avoid any ambiguity, these different cell-380 

surface appendages are proposed to be regrouped under the term of multimeric 381 

proteinaceous colonisation factors. 382 

1.3.1. Monomeric proteinaceous surface colonisation factors 383 

In E. coli, monomeric protein acting as SCFs include some autotransporters 384 

(ATs), inverted autotransporters (IATs), and some OMPs, but also the surface-exposed 385 

lipoprotein SslE, Efa-1 (E. coli factor adherence 1), dispersin, as well as some 386 

moonlighting proteins. Of note, the ATs (also sometimes called classical ATs) only 387 

belong to the Type V, subtype a, secretion system (T5aSS) and correspond to 388 

monomeric polypeptides with modular organisation into at least three main regions, i.e. 389 

(i) a N-terminal signal peptide, (ii) a central passenger, and (iii) a translocator at the C-390 

terminus (Desvaux et al., 2003, Desvaux et al., 2004, Leo et al., 2012). ATs (T5aSS) 391 

should not be mistaken with the trimeric ATs, hybrid ATs and inverted ATs, which 392 

belong the T5sSS, T5dSS and T5eSS, respectively. 393 

1.3.1.1. Autotransporters (ATs) 394 

Classical ATs acting as SCFs comprise the autotransporter adhesins (ATAs), 395 

the self-associating autotransporters (SAATs), and some serine protease 396 

autotransporters from Enterobacteriaceae (SPATES) (Henderson & Desvaux, 2004, 397 

Henderson et al., 2004, Desvaux et al., 2006, Rojas-Lopez et al., 2017). 398 
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1.3.1.1.1. Autotransporter adhesins (ATAs) 399 

ATAs enable direct adhesion to abiotic supports, e.g. glass, stainless steel or 400 

plastic ware, and/or biotic surface, e.g. mammalian cells or extracellular matrix (ECM) 401 

components such as collagens (Vo et al., 2017). As such, they can also belong to 402 

MSCRAMM (microbial surface components recognizing adhesive matrix molecules) 403 

proteins (Chagnot et al., 2012). 404 

In EHEC, several enterohaemorrhagic E. coli autotransporters (Eha) have been 405 

identified (Wells et al., 2008). Among them, EhaB has been shown to promote bacterial 406 

cells binding to laminin and collagen I (Wells et al., 2008, Wells et al., 2009), whereas 407 

EhaJ causes strong adherence to fibronectin, fibrinogen, collagens II, III and V, and 408 

laminin (Easton et al., 2011). EhaB has also been identified in EPEC and ETEC (Zude 409 

et al., 2014). Immediately adjacent to the eha gene, egtA encodes a glycosyltransferase. 410 

EhaJ requires glycosylation to mediate strong biofilm formation but not for adhesion to 411 

ECM components (Easton et al., 2011). Following genomic analysis, ehaJ appears to 412 

be also present in EAEC, EIEC and ETEC where its function is still unknown. In EPEC, 413 

its exact function in the colonisation process remains unclear, as it does not seem to be 414 

required for bacterial adhesion and biofilm formation (Easton et al., 2011). While EhaD 415 

has been shown to mediate biofilm formation, its role in bacterial adhesion has not been 416 

determined yet and its contribution to sessile development in DEC would require more 417 

in-depth investigation (Wells et al., 2008). In the laboratory strain E. coli K12, the 418 

EhaD homologue YpjA has been shown to promote adhesion to glass and polyvinyl 419 

chloride (PVC), as well as biofilm formation together with the EhaC homologue YfaL 420 

and YcgV (Roux et al., 2005). In EHEC, however, EhaC was not shown to promote 421 

biofilm formation (Wells et al., 2008). A homologue of ycgV has been genetically 422 

identified in several DEC, namely EPEC, ETEC, EAEC and EIEC (Wells et al., 2010, 423 
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Zude et al., 2014). Altogether, this information emphasises the need for further 424 

experimental characterisation of the adhesive functions of Eha, particularly considering 425 

the diversity of DEC. 426 

Some ATs originally identified in UPEC and acting as adhesins have been 427 

identified in DEC, namely UpaB (uropathogenic E. coli autotransporter B) and UpaI 428 

(Zude et al., 2014). From UPEC investigations, these proteins appeared to promote 429 

adhesion to a wide range of ECM components (Allsopp et al., 2012, Zude et al., 2014), 430 

whilst UpaI was further demonstrated to mediate biofilm formation (Zude et al., 2014). 431 

Although the genes are found in EPEC and STEC, none of them have been functionally 432 

characterised in any DEC to date (Zude et al., 2014). 433 

Following genomic analysis, AatA (avian pathogenic E. coli autotransporter A) 434 

appears to be also present in some DEC strains (Zude et al., 2014). In APEC (avian 435 

pathogenic E. coli), AatA is important for pathogenesis as it enhanced adhesion to 436 

chicken fibroblast cells (Dai et al., 2010, Li et al., 2010, Wang et al., 2011). However, 437 

its role and contribution in DEC is still unknown. 438 

1.3.1.1.2. Self-associating autotransporters (SAATs) 439 

SAATs are primarily enable to associate to one another resulting in bacterial 440 

cell autoaggregation (Klemm, 2006). In E. coli, the SAATs regroup ATs from the Ag43 441 

(antigen 43), AIDA-I (adhesin involved in diffuse adherence phenotype) and TibA 442 

(toxigenic invasion locus b) families (Trunk et al., 2018). Of note, SAATs differentiate 443 

from ATAs as they do not necessarily play a role in direct adhesion to biotic or abiotic 444 

surfaces but can nonetheless contribute directly or indirectly to surface colonisation. 445 

Ag43 is probably the SAAT which has triggered the most research to date, with 446 

most of the information resulting from investigations in the E. coli K12 laboratory 447 
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strain (van der Woude & Henderson, 2008). Besides autoaggregation, Ag43 has been 448 

demonstrated to increase biofilm formation on abiotic surfaces (Kjaergaard et al., 2000) 449 

and adhesion to epithelial cells (Sherlock et al., 2006, de Luna et al., 2008) but to 450 

decrease bacterial motility (Ulett et al., 2007). The gene encoding Ag43 has been shown 451 

to be highly expressed during the early stage of biofilm formation (Schembri et al., 452 

2003) but not in mature biofilms (Beloin et al., 2004). While biofilm formation is 453 

favoured by the autoaggregation phenomenon (van der Woude & Henderson, 2008), 454 

Ag43 is not involved in gut colonisation (de Luna et al., 2008). It is also known that 455 

the expression of pili would shield the interaction between Ag43 and thus prevent the 456 

autoaggregation (Korea et al., 2010). Phylogenetic analysis revealed the agn43 gene is 457 

distributed into two subfamilies, namely subfamily I (SF-I) and SF-II, and is only found 458 

among, but not all, E. coli (including some Shigella spp.) (van der Woude & 459 

Henderson, 2008). It has been suggested that agn43 is more prevalent in pathogenic 460 

E. coli strains than in commensal E. coli strains (van der Woude & Henderson, 2008). 461 

It can be detected as a single gene copy, like in E. coli K12, or in multiple alleles, like 462 

in EHEC O157:H7 EDL933 where two identical copies are found in two different 463 

pathogenicity islands, namely the O-island 43 (OI-43) and OI-48 (Torres et al., 2002). 464 

In UPEC CFT073, Ag43 is encoded by two different alleles, namely agn43a and 465 

agn43b (Ulett et al., 2007). Compared to the Ag43 encoded by the first allele, Ag43 466 

from allele b had a slower autoaggregation kinetics and lower propension for biofilm 467 

formation. 468 

Autoaggregation results from the L-shape structure of Ag43 passenger region, 469 

which drives molecular interaction via salt bridges and hydrogen bonds along the b-470 

helix structure in a molecular Velcro-like handshake mechanism (Heras et al., 2014). 471 

In E. coli O157:H7 EDL933, Ag43 was shown to promote autoaggregation, calcium 472 



 

 22 

binding and biofilm formation but was unable to mediate adhesion to epithelial cells 473 

(Torres et al., 2002). While present in other DEC, such as EPEC, ETEC and EAEC 474 

(Zude et al., 2014, Vo et al., 2017), functional characterisation of Ag43 in these 475 

different pathotypes has not be examined in details to date. Most recently, phylogenetic 476 

network analysis revealed the Ag43 passengers were distributed into four distinct 477 

classes, namely C1, C2, C3 and C4 (Ageorges et al., 2019). Structural alignment and 478 

modelling analyses indicated the N-terminal and C-terminal regions of the passengers 479 

belonged to two different subtypes which gave rise to these four distinct Ag43 classes 480 

upon domain shuffling. Functional analyses demonstrated that expression of Ag43 C3 481 

(which both agn43a and agn43b from UPEC CFT073 belong to) induced a slower 482 

sedimentation kinetics of bacterial cells and smaller aggregates compared to the three 483 

other Ag43 classes (Ageorges et al., 2019). Using prototypical Ag43 C1 from E. coli 484 

K12 MG1655, Ag43 C2 from EHEC EDL933, Ag43 C3 from UPEC CFT073 (allele 485 

agn43b) and Ag43 C4 from ETEC H10407, it appeared that heterotypic interactions 486 

occurred in a very limited number of cases compared to homotypic interactions. This 487 

ability of Ag43 variants to specifically identify genetic copies of themselves in other 488 

bacterial cells through Ag43-Ag43 interactions further suggests a greenbeard effect 489 

(Gardner & West, 2010, Wall, 2016), the ecophysiological relevance of which 490 

undoubtedly require further investigation (Ageorges et al., 2019). 491 

AIDA-I is involved in the diffuse adherence of DEC strains (Benz & Schmidt, 492 

1989, Benz & Schmidt, 1992) and also in bacterial autoaggregation, biofilm formation 493 

and adherence to a wide range of human and non-human cells (Benz & Schmidt, 1989, 494 

Sherlock et al., 2006). While the function of AIDA-I is quite similar to Ag43, they 495 

clearly belong to different protein families (Vo et al., 2017). The gene encoding AIDA-496 

I is especially prevalent in ETEC and STEC strains from porcine origin, which suggests 497 
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pork as a main animal reservoir for this gene (Niewerth et al., 2001, Ha et al., 2003). 498 

In EPEC, the AIDA-I gene (aidA) is associated with aah which encodes a 45-KDa 499 

heptosyltransferase (Benz & Schmidt, 2001). These genes are plasmid located and 500 

transcribed as bicistronic mRNA, but their expression seems to be restricted to a small 501 

number of DEC strains (Owen et al., 1996, Sherlock et al., 2004). Aah (adhesin 502 

associated heptosyltransferase) modifies the AIDA-I by addition of 19 heptose residues 503 

on average, which enables EPEC to adhere to human cells (Benz & Schmidt, 1992, 504 

Benz & Schmidt, 2001, Laarmann & Schmidt, 2003, Schembri et al., 2004). In EHEC 505 

O157:H7, though, AIDA-I does not play a role in adherence to cultured cells or to pig 506 

intestinal epithelial cells (Yin et al., 2009). This suggests different subfamilies or 507 

classes of AIDA-I could exist as observed for Ag43, which would require further in-508 

depth investigation. 509 

TibA has been found to self-aggregate, promote biofilm formation and facilitate 510 

colonisation of the intestinal epithelia (Sherlock et al., 2005, Cote & Mourez, 2011). In 511 

ETEC, TibA is encoded by the tib operon, which also encodes the glycosyltransferase 512 

TibC (Lindenthal & Elsinghorst, 1999). Glycosylation of TibA is important for its 513 

function since its unglycosylated form is less stable and cannot oligomerise properly 514 

and in turn cannot promote bacterial adhesion to epithelial cells (Cote et al., 2013); 515 

nonetheless, it can autoaggregate, promote biofilm formation and cell invasion. 516 

Interestingly, TibA, AIDA-I and Ag43 have been reported to interact with one another 517 

resulting in the formation of mixed bacterial aggregates (Klemm, 2006). These 518 

interesting findings deserve further in-depth characterisation, especially with regards to 519 

recent findings where the interactions between Ag43 variants appears quite specific 520 

(Ageorges et al., 2019). 521 
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In E. coli O157:H7, EhaA has been shown to mediate autoaggregation and 522 

adhesion to primary epithelial cells derived from the bovine terminal rectum, as well as 523 

biofilm formation (Wells et al., 2008). As such, EhaA can be considered as an 524 

additional member of SAAT also found in EAEC, EPEC and ETEC (Vo et al., 2017). 525 

Similarly, UpaC was reported to promote autoaggregation, as well as biofilm formation 526 

(Zude et al., 2014). UpaC is found in a wide range of InPEC (Zude et al., 2014). Of 527 

note, some ATAs such as UpaI can further promote autoaggregation to some extent 528 

(Zude et al., 2014). 529 

1.3.1.1.3. Serine protease autotransporters from enterobacteriaceae 530 

(SPATEs) 531 

SPATEs correspond to a subfamily of protease autotransporters that specifically 532 

exhibit a serine protease domain (IPR034061) in the passenger region (Rojas-Lopez et 533 

al., 2017). While their primary function is associated with the degradation of various 534 

proteins, such as mucin or haemoglobin, they can contribute to bacterial virulence via 535 

their cytotoxic effect, and some can even be involved in bacterial colonisation (Dautin, 536 

2010). 537 

In EHEC, EspP (extracellular serine protease plasmid-encoded), also known as 538 

PssA (protein secreted by Stx-producing E. coli), contributes to biofilm formation, 539 

bacterial adherence to intestinal epithelial cells, including bovine primary rectal cells, 540 

and colonisation of the bovine intestine (Dziva et al., 2007, Puttamreddy et al., 2010, 541 

Farfan & Torres, 2012). EspP is encoded on the pO157 plasmid and can be found in 542 

diverse STEC isolates (van Diemen et al., 2005, Dziva et al., 2007, Ruiz-Perez & 543 

Nataro, 2014). At the bacterial cell surface, EspP passenger domains self-assemble to 544 

form supramolecular structures, called ropes (Xicohtencatl-Cortes et al., 2010). Besides 545 

cytopathic activities, the EspP ropes have strong adhesive properties to host epithelial 546 
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cells and can further serve as a substratum for bacterial adherence and biofilm 547 

formation. Similar observations have also been made for EspC from EPEC 548 

(Xicohtencatl-Cortes et al., 2010). 549 

In EAEC, Pic (protein involved in colonisation) is involved in mucin 550 

degradation but also directly in mucin binding (Gutierrez-Jimenez et al., 2008, Andrade 551 

et al., 2017). It thus participates in intestinal colonisation and may also be involved in 552 

bacterium-mucus biofilm (Navarro-Garcia & Elias, 2011). Pic is also expressed by the 553 

hybrid EHEC/EAEC E. coli O104:H4 but its exact contribution to the colonisation 554 

process in this genetic background remains to be ascertained (Henderson et al., 1999, 555 

Harrington et al., 2009, Abreu et al., 2015, Abreu et al., 2016). Of note, Shmu is a 556 

mucinase identical to Pic found in Shigella (Rajakumar et al., 1997). 557 

1.3.1.2. Inverted autotransporters (IATs) 558 

In IATs, which correspond to the Type V, subtype e, secretion system (T5eSS), 559 

the translocator is located in the N-terminal region and the passenger at the C-terminal, 560 

which is the opposite of the modular organisation found in ATs (Tsai et al., 2010, 561 

Oberhettinger et al., 2012). In DEC, there are several IATs acting as SCFs, namely 562 

intimin, FdeC (Factor adherence of E. coli) and YeeJ. More recently, additional IATs 563 

have been identified in E. coli, where iatA appeared quite prevalent but the  functional 564 

characterisation of the gene product is still awaited (Goh et al., 2019). IatB, IatC and 565 

IatD from an environmental E. coli strain were further shown to be involved in strong 566 

biofilm formation when overexpressed in a recombinant E. coli K12 background, but 567 

not in autoaggregation nor adhesion to ECM proteins (Goh et al., 2019). While 568 

identified in several DEC, their role and contribution in their native genetic background 569 

is still unknown. 570 
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1.3.1.2.1. Intimin 571 

Intimin is the prototypical member of IATs (Leo et al., 2015). In EPEC and 572 

EHEC, the intimin is encoded by the eae (for E. coli attachment effacement) gene in 573 

the locus of enterocyte effacement (LEE) (Nataro & Kaper, 1998). This protein 574 

interacts specifically with its receptor Tir (translocated intimin receptor) allowing the 575 

establishment of the intimate attachment of the bacteria with the host cell, pedestal 576 

formation and attaching/effacing lesions (A/E) (Schmidt, 2010). In addition, intimin 577 

contributes to intestinal colonisation in a Tir-independent manner (Mallick et al., 2012). 578 

Intimin may also bind to alternative receptors such as β1 integrins or nucleolin but this 579 

remains to be clarified (Liu et al., 1999, Leo et al., 2015). 580 

1.3.1.2.2. Factor adherence of E. coli (FdeC) 581 

FdeC is a widespread IAT in E. coli and present in all DEC pathotypes (Nesta 582 

et al., 2012, Easton et al., 2014). In EHEC O26:H11, FdeC was shown to contribute to 583 

biofilm formation and potentially in colonisation of the terminal rectum of cattle 584 

(Easton et al., 2014). 585 

1.3.1.2.3. YeeJ 586 

More recently, the gene encoding YeeJ has been reported to be present in some 587 

DEC, namely EHEC, EPEC, ETEC and EIEC (Martinez-Gil et al., 2017). In E. coli 588 

K12, this IAT has been shown to participate in biofilm formation. While YeeJ exists 589 

into two distinct variants of different lengths, no functional difference could be detected 590 

between them. However, the contribution of YeeJ to biofilm formation in DEC remains 591 

to be established. 592 
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1.3.1.3. Other outer membrane proteins (OMPs) 593 

Besides ATs and IATs, several additional monomeric OMPs can act as SCFs in 594 

DEC, namely OmpA, Hra (Heat-resistant agglutinin), and Iha (Iron-regulated protein 595 

A homologue adhesin). OMPs are integrated to the OM via the b-barrel assembly 596 

machinery (Bam) complex (Leyton et al., 2015, Botos et al., 2017, Schiffrin et al., 597 

2017). 598 

1.3.1.3.1. Outer membrane protein A (OmpA) 599 

While originally considered as a pore forming protein (Sugawara & Nikaido, 600 

1992), whether the OmpA β-barrel offers a channel for the continuous passage of water 601 

or solutes remains controversial (Smith et al., 2007). Nowadays, OmpA is rather 602 

viewed as a multifaceted protein with functions of an adhesin as well as an invasin. In 603 

EHEC O157:H7, OmpA is involved in adhesion to intestinal epithelial cells (Torres & 604 

Kaper, 2003, Kudva et al., 2015). OmpA further appears to be the key molecular 605 

determinant for bacterial adhesion to plant surfaces, such as alfalfa sprouts (Torres et 606 

al., 2005). The role of OmpA as an invasin was demonstrated in NMEC (Prasadarao et 607 

al., 1996) but remains to be established in DEC. Interestingly, OmpA can be encoded 608 

by at least two different alleles, namely ompA1 and ompA2 (Power et al., 2006). Many 609 

of the interaction properties of OmpA emanate from protein loops external to the OM, 610 

which are displayed on the bacterial cell surface (Smith et al., 2007); in the two alleles, 611 

differences in these regions could influence the adhesin and/or invasin properties of the 612 

protein. Of note, OmpA further serves as a receptor for bacteriophages and bacteriocins 613 

(Smajs et al., 1997, Power et al., 2006). Regarding biofilm formation, the direct 614 

contribution of OmpA remains controversial; while OmpA from E. coli K12 has been 615 

shown to bind to abiotic surfaces and to significantly influence biofilm formation 616 

(Lower et al., 2005, Barrios et al., 2006), the role of OmpA in EHEC O157:H7 biofilm 617 
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formation appears to be minor and it acts rather as a modulator than a contributor to 618 

sessile development (Torres et al., 2005, Kudva et al., 2015). Keeping in mind that 619 

OmpA is an important contributor to the structural integrity of the bacterial cell 620 

envelope by bridging the OM and cell wall, along with lipoproteins (Wang, 2002), the 621 

interpretations of phenotypes from OmpA mutants must be considered with caution due 622 

to possible pleiotropic effects that can be confounding. Further investigations on these 623 

various aspects are clearly needed, and in particular the allelic variation of OmpA 624 

should also be more carefully considered to decipher their exact role. 625 

1.3.1.3.2. Heat-resistant agglutinin (Hra) 626 

The Hra family of OMPs were first described with Hek (haemagglutinin from 627 

E. coli K1) in NMEC, where it was reported to promote autoaggregation, interactions 628 

with human erythrocytes and epithelial cells, as well as adhesion to, and invasion of 629 

epithelial cells (Fagan & Smith, 2007). Hek was originally identified because of its 630 

homology with Tia (toxigenic invasion protein A) (Bhargava et al., 2009). In ETEC, 631 

Tia mediates attachment to intestinal epithelial cells as well as their invasion 632 

(Fleckenstein et al., 1996, Sjoling et al., 2015). It also appears to bind several 633 

mammalian heparan sulphate binding proteins suggesting, that ETEC use these 634 

ubiquitous cell surface heparan sulphate proteoglycans as receptors to adhere and 635 

invade host epithelial cells (Fleckenstein et al., 2002). 636 

In EAEC O42, Hra1 (heat-resistant agglutinin 1) was demonstrated to be 637 

responsible for autoaggregation and aggregative adherence, as well as biofilm 638 

formation (Bhargava et al., 2009). While these observations were made upon protein 639 

expression in nonadherent and nonpathogenic laboratory E. coli strains, an EAEC 042 640 

hra1 deletion mutant was not deficient in these phenotypes, indicating that Hra1 is an 641 

accessory colonisation factor in this genetic background. While hra1/hek was originally 642 
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considered absent from DEC but restricted to UPEC, NMEC and sepsis E. coli 643 

(Dobrindt et al., 2002, Cooke et al., 2010), it later became clear that hra1 and tia are 644 

common among DEC, especially EAEC but also EPEC (Fleckenstein et al., 1996, 645 

Mancini et al., 2011). In the EAEC strain 60A, Hra2 it is not involved in 646 

autoaggregation or invasion, but only in adherence to epithelial cells (Mancini et al., 647 

2011); its involvement in bacterial adhesion to abiotic supports and biofilm formation 648 

remains to be elucidated. The prevalence of hra2, however, seems to be very low 649 

among DEC. 650 

More recently, a novel member of the Hra family has been identified in STEC, 651 

namely Hes (Hemagglutinin from shigatoxin-encoding E. coli) (Montero et al., 2017). 652 

Hes was shown to promote autoaggregation and biofilm formation as well as 653 

erythrocyte agglutination and adherence to epithelial cells, but not invasion. The gene 654 

was observed to be present in LEE-negative STEC but not LEE-positive STEC 655 

(Montero et al., 2017). 656 

1.3.1.3.3. Iron-regulated protein A homologue adhesin (Iha) 657 

Iha is an adherent-conferring protein homologous to IrgA (iron-regulated 658 

protein A) found in Vibrio cholerae (Tarr et al., 2000). As well as a b-barrel structure 659 

enabling membrane anchoring as in any OMP, Iha has externally exposed domains. 660 

Rather than localised adherence, Iha confers a diffuse adherence pattern in E. coli 661 

O157:H7. Besides STEC, iha has been identified in EPEC and UPEC (Szalo et al., 662 

2002, Kanamaru et al., 2003, Gomes et al., 2011). In UPEC, Iha was shown to further 663 

act as a catecholate siderophore receptor (Herold et al., 2009) and a virulence factor 664 

(Johnson et al., 2005) but these roles in DEC remain to be established. In EHEC, Iha 665 

has been clearly demonstrated to be involved in intestinal colonisation and contribute 666 

to pathogenesis by promoting adherence to the intestinal epithelium (Yin et al., 2009). 667 
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1.3.1.4. Secreted and surface-associated lipoprotein of E. coli 668 

(SslE) 669 

SslE, formerly known as YghJ (Yang et al., 2007, Iguchi et al., 2009), was 670 

recently described as a novel E. coli mucinase thanks to its zinc metallopeptidase motif 671 

(Luo et al., 2014, Nesta et al., 2014). This protein is secreted by a Type II, subtype a, 672 

secretion system (T2aSS) but the molecular mechanisms of its maturation as a surface 673 

lipoprotein remains unclear. The gene encoding SslE is present in different DEC 674 

pathotypes such as EPEC, ETEC and EHEC (Decanio et al., 2013). In EPEC, SslE was 675 

shown to mediate biofilm formation and intestinal colonisation (Baldi et al., 2012, 676 

Vermassen et al., 2019). This protein can be divided into two main variants and 677 

antibodies raised against variant I (from ExPEC strain IHE3034) are able to inhibit 678 

translocation of E. coli strains through a mucin-based matrix. In addition, immunisation 679 

of animals with SslE I significantly reduces gut colonisation by strains of different 680 

pathotypes expressing SslE II (Nesta et al., 2014). These observations make SslE a key 681 

factor in E. coli colonisation of the mucosal surface in humans and could serve as a 682 

component for a protective vaccine against DEC (Naili et al., 2016, Naili et al., 2017, 683 

Rojas-Lopez et al., 2018, Rojas-Lopez et al., 2019). 684 

1.3.1.5. E. coli factor adherence 1 (Efa-1) 685 

Efa-1, also known as LifA (lymphostatin A), present in EPEC and some non-686 

O157 EHEC strains, is known to inhibit the proliferation of mitogen-activated 687 

lymphocytes and the synthesis of proinflammatory cytokines, and gamma interferon 688 

(Klapproth et al., 2000, Abu-Median et al., 2006). Efa-1 has been shown to mediate 689 

colonisation of the calf intestine independently of glycotransferase and cysteine 690 

protease motifs (Deacon et al., 2010). In EHEC O157 strains, ToxB is homologous to 691 
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Efa-1 and appears to contribute to adherence to cultured epithelial intestinal cells 692 

(Tatsuno et al., 2001). However, no lymphostatin-like activity has been associated with 693 

this protein and it is not involved in intestinal colonisation in animal models (Stevens 694 

et al., 2004, Abu-Median et al., 2006). While Efa-1 has an extracytoplasmic domain 695 

and is presumably cell-surface exposed (Nicholls et al., 2002), the molecular 696 

mechanisms at play for its secretion and cell-surface display remain unknown. 697 

1.3.1.6. Dispersin 698 

Dispersin is an anti-aggregation protein (Aap) involved in the spreading of 699 

bacterial cells along the host intestinal mucosa (Sheikh et al., 2002). This protein 700 

contributes to adherence and colonisation of EAEC by preventing hyper-aggregation 701 

and collapse of AAF (aggregative adherence fimbriae). Dispersin is present at the 702 

bacterial cell-surface via binding to LPS in a non-covalent manner after secretion 703 

through a Type I secretion system (T1SS) (Velarde et al., 2007). This secretion system 704 

and cognate secreted protein are encoded in the aat (aggregative ABC transporter) locus 705 

located in the pAA plasmid of some EAEC (Nishi et al., 2003). Dispersin is also present 706 

in some STEC strains (Monteiro et al., 2009, Muniesa et al., 2012). 707 

1.3.1.7. Moonlighting proteins 708 

At the bacterial cell surface of E. coli, some unexpected proteins primarily 709 

known to be localised in the cytoplasm have been reported. Among these unexpected 710 

cell surface proteins, glycolytic enzymes are frequently uncovered (Henderson & 711 

Martin, 2011). These so-called moonlighting proteins have been demonstrated to 712 

exhibit a secondary function at the bacterial cell-surface, completely unrelated to their 713 

primary function in the cytoplasm (Khan et al., 2014). As a common glycolytic enzyme 714 

frequently found at the bacterial cell surface, GAPDH (glyceraldehyde 3-phosphate 715 
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dehydrogenase) has been demonstrated to bind plasminogen and fibrinogen in EHEC 716 

and EPEC (Egea et al., 2007); although there is no evidence of GAPDH acting directly 717 

as a plasminogen activator (Coleman & Benach, 1999, Seidler, 2013). In addition, 718 

GAPDH is clearly involved in adhesion to intestinal epithelial cells upon infection. A 719 

common theme for moonlighting proteins present at the bacterial cell surface is that 720 

these proteins lack a N-terminal signal peptide for translocation across the CM and the 721 

protein secretion systems enabling their translocation across the OM are often 722 

unknown, which is covered by the generic term of non-classical protein secretion 723 

(Bendtsen & Wooldridge, 2009, Desvaux et al., 2009). For GAPDH, though, it has been 724 

strongly suggested to occur via piggybacking through the Type III, subtype a, secretion 725 

system (T3aSS) (Aguilera et al., 2012). While it is also known that enolase can also be 726 

extracellularly located in E. coli (Boel et al., 2004), its contribution to bacterial 727 

adhesion remains to be determined. The elongation factor Tu (EF-Tu) is also found at 728 

the bacterial cell surface and has been reported to be involved in bacterial aggregation 729 

(Amimanan et al., 2017). In DEC, the contribution of putative moonlighting glycolytic 730 

enzymes and other moonlighting proteins to the colonisation process deserves more 731 

thorough investigation. 732 

1.3.2. Multimeric proteinaceous surface colonisation factors 733 

Multimeric protein complexes acting as SCFs can be classified as (i) 734 

homooligomeric proteins, namely the trimeric autotransporter adhesins (TAAs), and 735 

(ii) cell-surface supramolecular structures, including flagella, and numerous pili. 736 

1.3.2.1. Trimeric autotransporter adhesins (TAAs) 737 

TAAs are characterised by the presence of a short translocator domain, which 738 

is functional upon homotrimeric assembly and corresponds to the Type V, subtype c, 739 
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secretion system (T5cSS) (Cotter et al., 2005, Leo et al., 2012). In DEC, TAAs include 740 

UpaG (UPEC autotransporter G), Eib (E. coli immunoglobulin-binding protein), Sab 741 

(STEC-autotransporter mediating biofilm formation) and Saa (STEC autoagglutinating 742 

adhesin). 743 

1.3.2.1.1. UPEC autotransporter G (UpaG) 744 

While UpaG was originally identified in UPEC, it was also found in the EAEC 745 

042 strain (Zude et al., 2014). UpaG is involved in autoaggregation, biofilm formation, 746 

adhesion to fibronectin, and laminin, as well as human epithelial cells (Valle et al., 747 

2008). In EHEC, EhaG (EHEC autotransporter G) is a positional orthologue of UpaG, 748 

which is also involved in autoaggregation, biofilm formation, adhesion to laminin, 749 

fibronectin and collagens I, II, II and IV as well as some epithelial cells (Valle et al., 750 

2008, Totsika et al., 2012, Zude et al., 2014). The gene encoding EhaG has been also 751 

identified in a wide range of DEC including EPEC, EIEC, ETEC and EAEC (Zude et 752 

al., 2014). 753 

1.3.2.1.2. E. coli immunoglobulin-binding protein (Eib) 754 

Eibs were originally characterised for their ability to bind immunoglobulin 755 

fractions, especially to the Fc (fragment crystallisable) region of IgA and IgG (Sandt & 756 

Hill, 2000, Sandt & Hill, 2001, Leo & Goldman, 2009); up to 7 different Eibs have 757 

been identified to date, namely EibA, B, C, D, E, F and G. In LEE-negative STEC O91, 758 

it further appeared that EibG is involved in adherence to epithelial cells in a chain-like 759 

adhesion (CLA) pattern (Lu et al., 2006). CLA corresponds to the formation of a long 760 

chain cell aggregate, which EibG induces on both human and bovine intestinal 761 

epithelial cells. The gene encoding EibG is distributed into 21 different alleles clustered 762 

into three eibG subtypes, namely eibG-α, -β, and -γ (Merkel et al., 2010). While EibG-763 

α and EibG-β are responsible for the typical CLA phenotype, EibG-γ induces adherence 764 
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in much shorter cell chains and smaller cell aggregates, corresponding to an atypical 765 

CLA. EibD has been further shown to promote autoaggregation and biofilm formation 766 

(Leo et al., 2011). Considering their structural similarity, other Eibs have been 767 

suggested to have similar biological functions but experimental confirmation is still 768 

required to ascertain this. Eib genes are found in some STEC strains, as well as some 769 

E. coli commensal strains (Lu et al., 2006). 770 

1.3.2.1.3. STEC-autotransporter mediating biofilm formation (Sab) 771 

Sab contributes to the diffusive adherence of STEC to human epithelial cells 772 

and biofilm formation to abiotic surfaces (Herold et al., 2009, Farfan & Torres, 2012). 773 

Genes encoding Sab are especially present in LEE-negative STEC.  774 

1.3.2.1.4. STEC autoagglutining adhesin (Saa) 775 

Saa promotes adhesion to HEp-2 cells in a semilocalised adherence pattern 776 

(Paton et al., 2001). So far, the saa gene has only been reported in some STEC, 777 

including some LEE-negative EHEC strains (Paton & Paton, 2002, Jenkins et al., 2003, 778 

Monaghan et al., 2011). 779 

1.3.2.2. Cell-surface supramolecular structures 780 

Flagella and pili are organelles resulting from the supramolecular assembly of 781 

different protein subunits to form heteromultimeric protein complexes on the bacterial 782 

cell-surface. 783 

1.3.2.2.1. Flagella 784 

Flagellar components are secreted and assembled via the Type III, subtype b, 785 

secretion system (T3bSS) and more than fifty genes divided in three hierarchical classes 786 

are involved in the flagellar apparatus formation (Young et al., 1999, Chilcott & 787 

Hughes, 2000). The main component of the flagellum filament is the flagellin, which 788 
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has considerable diversity in ultrastructure and is responsible for the H-antigen 789 

variability (H1 to H56) (Zhou et al., 2015). In E. coli, the flagellation is peritrichous 790 

but the sites of cell surface localisation and the number of flagella (typically around 6-791 

10) are considered random (Macnab, 1987a, 1987b). Nonetheless, it must be stressed 792 

that when swimming, the flagella in motion coalesce into an undulating bundle, forming 793 

one rigid helical ponytail about 14 nm in diameter and 10 μm long that appears as 794 

polarly localised in E. coli (Bray, 2001). A swimming bacterial cell has a run-and-795 

tumble behaviour, where it progresses linearly (run) and then changing abruptly in 796 

direction (tumble), but also slow-random-walk behaviour, where it moves at a relatively 797 

low speed (Qu et al., 2018). Upon chemotaxis, the rotational direction of the flagella 798 

motor can be switched to control motility, a factor that might help approaching the 799 

intestinal mucosa in a more coordinated movement (Kitao & Hata, 2018, Rossi et al., 800 

2018). The approach to the surface is an important step towards initial bacterial 801 

adhesion and subsequent sessile development. Active motility involving the flagella 802 

allows the bacterial cells to overcome repulsive electrostatic and hydrodynamic forces 803 

at the adhesion site (Donlan, 2002). 804 

Besides swimming, flagella can participate in an alternative type of motility 805 

called swarming where bacterial cells move and spread on a surface (Kaiser, 2007). 806 

Swarming directly contributes to the surface colonisation process and is associated with 807 

the expression of an alternative system, the lateral flagella (Merino et al., 2006). In 808 

EAEC O42, the Flag-2 locus encodes such a system (Ren et al., 2005), although, a 809 

mutation frameshift has likely inactivated this system in this strain. Nonetheless, the 810 

Flag-2 cluster appeared to be present in about 20 % of E. coli strains from the ECOR 811 

collection. In the environmental strain E. coli SMS-3-5, although the Flag-2 gene 812 

cluster is complete and intact, swarming motility could not be observed (Fricke et al., 813 
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2008); to date, the functionality of this system in E. coli remains to be elucidated. In 814 

the absence of polar flagella, E. coli is not as efficient at surface colonisation but is still 815 

considered a temperate swarmer, enabling it to swarm over surfaces with rheology 816 

corresponding to 0.5 %-0.8 % agar (in comparison to ³1.5 % agar for robust swarmers) 817 

(Partridge & Harshey, 2013). 818 

Besides motility, flagella can directly act as adhesins, as shown in EPEC, where 819 

they are involved in adhesion to epithelial cells (Giron et al., 2002, Cleary et al., 2004). 820 

In EAEC, flagella contribute to adhesion to plant leaves (Berger et al., 2009). In EHEC, 821 

the flagellin FliC favours initial attachment, adhesion to epithelial cells and biofilm 822 

formation on abiotic surfaces as well as spinach leaves (McNeilly et al., 2008, Mahajan 823 

et al., 2009, Xicohtencatl-Cortes et al., 2009, Vikram et al., 2013, Nagy et al., 2015). 824 

In ETEC, flagella contribute to bacterial adhesion to salad leaves and intestinal 825 

epithelial cells, as well as biofilm formation (Shaw et al., 2011, Duan et al., 2012, Zhou 826 

et al., 2013, Zhou et al., 2014). Interestingly, in this pathotype, flagella can also mediate 827 

indirect adhesion through EtpA (ETEC two-partner secretion protein A), a protein 828 

secreted by a T5bSS (two-partner secretion system), which bridges the flagella with 829 

host cell receptors, thus allowing bacterial cell attachment to some epithelial cells and 830 

mucin-expressing regions in mouse small intestinne (Fleckenstein et al., 2006, Roy et 831 

al., 2009). In EHEC and EPEC, the adhesion of H6 and H7 flagella to the intestinal 832 

epithelium and epithelial cells has been suggested to occur though mucins (Giron et al., 833 

2002, Mahajan et al., 2009) as reported for H1 flagella from the probiotic E. coli Nissle 834 

1917 (Troge et al., 2012). In some EHEC/STEC strains, namely LEE-negative EHEC 835 

O113:H21 and STEC O139:H1:F18ab strains, flagella can also contribute to bacterial 836 

invasion of intestinal epithelial cells but the molecular mechanisms at work remains to 837 
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be clarified (Luck et al., 2006, Rogers et al., 2012, Duan et al., 2013). These latter 838 

aspects would undoubtedly deserve further in-depth investigation. 839 

While different flagellin variants have been shown to be involved in direct 840 

binding to host cells, such as H1 and H19 flagella in ETEC (Duan et al., 2012, Duan et 841 

al., 2013), systematic analysis of the colonisation properties of all of the different H-842 

antigens in E. coli has not been investigated as yet. Except for EIEC which are generally 843 

considered as nonmotile (Nataro & Kaper, 1998), the contribution of flagella as a 844 

motility factor over an adhesion factor in the colonisation processes has not been clearly 845 

resolved as of yet in DEC, particularly regarding bacterial adhesion and biofilm 846 

formation to biotic and abiotic surfaces (Wood et al., 2006, Servin, 2014). 847 

1.3.2.2.2. Pili 848 

Pili, also referred to in E. coli literature as fimbriae, are key actors during the 849 

initial attachment of bacteria to surfaces, which is characterised by a stronger and longer 850 

interaction coupled with a decrease of bacterial motility (Pruss et al., 2006). While 851 

binding can be considered reversible as evidenced for the chaperon-usher fimbriae to 852 

lectin (Hultgren et al., 1989, Lin et al., 2002), bacterial binding can also be very strong 853 

due to the numerous pili expressed simultaneously by a single cell creating an avidity 854 

effect, as well as the flexibility of the stalk itself (Andersson et al., 2006). These pili 855 

can be secreted and assembled by different protein secretion systems, namely the Type 856 

II, subtype c (T2cSS), Type III, subtype a (T3aSS), Type IV, subtype b (T4bSS), Type 857 

VII (T7SS) or Type VIII (T8SS) secretion systems (Figure 2). It should be stressed that 858 

this numerical protein secretion nomenclature was intended and restricted to the LPS-859 

diderm bacteria in the first place (Desvaux et al., 2009). In mycolate diderm bacteria 860 

(archetypical acid-fast bacteria, namely mycobacteria) and some parietal monoderm 861 

bacteria, the ESX (ESAT-6) system involved in protein export across the IM (or 862 
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cytoplasmic membrane) was also termed T7SS, which is (i) misleading when 863 

considering that no ESX component enabling protein translocation across the mycolic 864 

outer membrane has yet been identified (Converse & Cox, 2005, Bitter et al., 2009, 865 

Groschel et al., 2016, Bosserman & Champion, 2017, Unnikrishnan et al., 2017, Vaziri 866 

& Brosch, 2019), and (ii) a misnomer with respect to both the bacterial export systems 867 

(and especially parietal monoderm bacteria), which do not follow the numerical 868 

nomenclature (e.g. Sec or Tat), and the numerical nomenclature for protein secretion 869 

systems in LPS-diderm, which is primarily based on the presence of a translocon at the 870 

OM (Desvaux et al., 2004, Desvaux et al., 2009, Desvaux et al., 2009, Sutcliffe, 2011). 871 

In diderm bacteria, the ESX is truly an export system in the same line than the Sec or 872 

Tat systems (van der Woude et al., 2013) but not a secretion system per se. In the 873 

present review, the T7SS refers exclusively to the chaperone-usher pathway in LPS-874 

diderm bacteria (Desvaux et al., 2009, Desvaux et al., 2009, Chagnot et al., 2013, Abby 875 

et al., 2016, Gagic et al., 2016, Monteiro et al., 2016), which is the main pathway 876 

responsible for the secretion of a wealth of pili in E. coli (Wurpel et al., 2013). Of note, 877 

P pili have been well investigated in UPEC infection (Kuehn et al., 1992, Lillington et 878 

al., 2014, Behzadi, 2020) but their prevalence in DEC and potential contribution (or 879 

not) in diarrhoeic infection is much less documented although they contribute to 880 

intestinal colonisation of commensal E. coli (Nowrouzian et al., 2001) and have been 881 

detected in some strains causing bovine diarrhoea (Dozois et al., 1997). 882 

1.3.2.2.2.1. The injectisome 883 

The injectisome is a bacterial molecular syringe assembled and secreted by the 884 

T3aSS (Desvaux et al., 2006, Galan & Waksman, 2018). The injectisome forms a 885 

needle which is functionally closer to the Hrp (hypersensitive response and 886 

pathogenicity) pilus in Pseudomonas syringae than to a flagellum (He & Jin, 2003, 887 
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Tampakaki et al., 2004, Cornelis, 2006). This cell-surface appendage can vary in size 888 

depending on the bacterial species and even bacterial strains (Cornelis, 2006); in a 889 

controlled process, the pilus length can further adapt for cell surface contact. In DEC, 890 

this peculiar pilus is encoded by genes located in the LEE pathogenicity island 891 

(McDaniel TK, 1995), a landmark for all EPEC but is also present in some EHEC 892 

strains (namely the LEE-positive strains), such as E. coli O157:H7, and EIEC 893 

(including Shigella spp.) (Hueck, 1998, Galan & Wolf-Watz, 2006, Coburn et al., 894 

2007). Tir (translocated intimin receptor) is encoded by the tir gene located in the LEE 895 

and is injected in the host cell by the injectisome (Hueck, 1998). This protein is then 896 

exposed at the host cell surface and serves as the receptor for the intimin, enabling 897 

intimate bacterial interaction with the intestinal epithelia (Donnenberg et al., 1993, Liu 898 

et al., 1999). In EPEC, the injectisome is involved in cell adhesion and pedestal 899 

formation that occurs during the formation of attaching and effacing lesions upon actin 900 

rearrangement in the infected eukaryotic cell (A/E) (Wong et al., 2011). Of note, while 901 

A/E lesions are observed in vitro from infected epithelial cell cultures or colonic 902 

epithelium with LEE-positive EHEC (Lewis et al., 2015), these kinds of lesions are 903 

never observed from clinical samples of EHEC infections (Nataro & Kaper, 1998); a 904 

clear explanation of why this is the case is unclear but would undoubtedly deserve 905 

further investigation to match up lab experiments with clinical observations (Lewis et 906 

al., 2015). In addition to the infection of mammalian cells, the injectisome is involved 907 

in adhesion to plants with a marked tropism for the stomata (Schroeder & Hilbi, 2008, 908 

Shaw et al., 2008, Berger CN, 2010, Croxen et al., 2013). EspA, the main component 909 

of the filament in the injectisome is directly involved in adhesion, as well as in biofilm 910 

formation, in EPEC (Knutton et al., 1998, Moreira et al., 2006). In EIEC, the 911 

injectisome contributes to the invasion capabilities (Hueck, 1998). 912 
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1.3.2.2.2.2. Type 4 pili (T4P) 913 

T4P are assembled and secreted by the T2cSS (Ramer et al., 2002, Chagnot et 914 

al., 2013). T4P have been demonstrated to play a role in several E. coli pathotypes, 915 

including host cell adherence and bacterial aggregation (Craig et al., 2004). Some of 916 

these pili can exhibit a unique feature in their ability to extend and retract, which results 917 

in twitching motility further contributing to biofilm formation (Mattick, 2002, Craig et 918 

al., 2019). In EPEC, T4P are also known as BFP (bundle-forming pili) and their 919 

subunits assemble in a helical manner to form polymeric fibres and can further interact 920 

to create higher-order bundles or tangled aggregates (Giltner et al., 2012, Melville & 921 

Craig, 2013). These T4P are involved in the colonisation of the GIT and contribute to 922 

bacterial virulence (Bieber et al., 1998, Tacket et al., 1998). BFP are encoded by the 923 

bfp operon comprising of 14 genes, including bfpA, which encodes the major repeating 924 

subunit of the pilus fibre (Ramer et al., 1996, Sohel et al., 1996). In EHEC strains, the 925 

T4P are called HCP (haemorrhagic E. coli pili) (Xicohtencatl-Cortes et al., 2009). 926 

Inactivation of the hcpA gene in EHEC O157:H7 reduces adherence to human and 927 

bovine epithelial cells. HCP is also able to bind to fibronectin and laminin, to 928 

agglutinate rabbit red blood cells, to mediate biofilm formation and to promote 929 

twitching motility (Xicohtencatl-Cortes et al., 2009). HCP are also encoded in some 930 

STEC strains (Farfan & Torres, 2012). Because of their size, peculiar T4P called longus 931 

pili have been reported in ETEC (Giron et al., 1994). The N-terminal part of the major 932 

subunit LngA is homologous with Bfp of EPEC, CofA subunit of CFA/III (colonisation 933 

factor antigen) of ETEC and TCP (the toxin-coregulated pilin) of V. cholerae (Giron et 934 

al., 1995, Gomez-Duarte & Kaper, 1995). Longus pili are involved in colonisation of 935 

the human gut (Clavijo et al., 2010, Mazariego-Espinosa et al., 2010), in bacterium-936 
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bacterium interaction and resistance to antimicrobial agents as a result of biofilm 937 

formation (Clavijo et al., 2010). 938 

1.3.2.2.2.3. Conjugative pili (CP) 939 

CP are assembled and secreted through T4bSS (Lawley et al., 2003). 940 

Classically, the genes encoding for F-plasmid transfer are encoded on the tra operon 941 

located in the conjugative F plasmid (Manwaring et al., 1999). CP are responsible for 942 

nucleoprotein transfer between a donor bacterial cell (harbouring the F plasmid) and a 943 

recipient bacterial cell via the T4bSS (Lawley et al., 2003). Bacterial conjugation is a 944 

well-known process enabling horizontal transfer of genes including virulence or 945 

colonisation factors (Manwaring et al., 1999, Mazel & Davies, 1999, Llosa et al., 2002, 946 

Sorensen & Mortensen, 2005). Gene transfer is especially promoted in biofilm where 947 

physical contact between sessile donor and recipient cells is favoured (Lebaron et al., 948 

1997, Hausner & Wuertz, 1999, Dionisio et al., 2002, Molin & Tolker-Nielsen, 2003, 949 

Maeda et al., 2006). Besides the transfer of genetic material, CP can be directly 950 

involved in bacterial adhesion (Beloin et al., 2008, May & Okabe, 2008, May et al., 951 

2011). In biofilm, this can be further amplified as cells carrying a conjugative F plasmid 952 

promote the establishment of F pili mating pairs and consequently induce adhesion and 953 

biofilm formation between abiotic surfaces and poor biofilm former cells. EAEC strains 954 

expressing F pili have been demonstrated to improve mixed biofilm formation (Pereira 955 

et al., 2010). In EAEC C1096, pili encoded on the conjugative plasmid Incl1 further 956 

contributed to adherence to abiotic surfaces and epithelial cells (Dudley et al., 2006). 957 

In EHEC O157:H7 Xuzhou, a novel conjugative plasmid called pO157-Sal encoding a 958 

complete set of genes for the T4bSS was identified, but its involvement in the 959 

colonisation process has not been investigated as yet (Wang et al., 2011, Zhao et al., 960 

2013). 961 
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1.3.2.2.2.4. Type 1 pili (T1P) 962 

T1P (also called Type 1 fimbriae) are the most investigated pili secreted and 963 

assembled via a T7SS (Capitani et al., 2006). The expression of T1P is induced during 964 

the initial bacterial adhesion step (Harris et al., 1990, Pratt & Kolter, 1998, Cookson et 965 

al., 2002, Orndorff et al., 2004, Reisner et al., 2014) and they are involved in the early 966 

and late stages of biofilm formation (Schembri et al., 2003, Beloin et al., 2004, Reisner 967 

et al., 2014). T1P also have a role in the formation of SIgA (secretory IgA) mediated 968 

biofilm of the normal flora within the gut (Bollinger et al., 2003, Orndorff et al., 2004, 969 

Bollinger et al., 2006). T1P are composed of FimA (fimbrillin A), which constitutes 970 

the pilus rod, and FimH at the apex of the pilus tip. FimH is the key adhesin component 971 

in T1P as it can link to mannose residues of some receptors on eukaryotic cells (Kaper 972 

et al., 2004, Duncan et al., 2005) but also has nonspecific binding activity to abiotic 973 

surfaces (Pratt & Kolter, 1998, Beloin et al., 2008). The absence of the FimH adhesin 974 

has been shown to hinder biofilm formation by preventing cell-to-surface and cell-to-975 

cell contacts (Danese et al., 2000). In E. coli, different fimH alleles have been reported 976 

as conferring distinct colonisation abilities and thus playing different roles in biofilm 977 

formation (Martinez et al., 2000, Weissman et al., 2006). It was shown that contact 978 

between T1P and abiotic surfaces alters the composition of the OM and changes some 979 

physicochemical properties of the bacterial surface, which in turn influences adhesion 980 

(Otto et al., 2001, Orndorff et al., 2004). While the laboratory E. coli K12 strain and 981 

UPEC NU14 strain are the focus of the majority of the investigations about T1P, their 982 

involvement in bacterial adhesion and/or biofilm formation has been further 983 

demonstrated in EPEC, EAEC, ETEC and STEC strains (Elliott & Kaper, 1997, 984 

Cookson et al., 2002, Moreira et al., 2003, Sheikh et al., 2017). T1P are encoded in the 985 

fimBEAICDGHF gene cluster, which is quite widespread in E. coli in both commensal 986 
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and pathogenic isolates (Sauer et al., 2000, Kaper et al., 2004, Wurpel et al., 2013). 987 

While present in EHEC O157:H7 (Abraham et al., 1988, Li et al., 1997, Roe et al., 988 

2001, McWilliams & Torres, 2014), their contribution to the colonisation process has 989 

yet to be demonstrated. 990 

Genes encoding the F1C pili are present in approximately 7 % of E. coli faecal 991 

isolates (Werneburg & Thanassi, 2018). F1C pili have been characterised in UPEC 992 

strains where they are encoded in the foc (fimbriae of serotype 1C) operon homologous 993 

to the fim locus (Klemm et al., 1994). In UPEC, F1C pili are involved in adherence to 994 

the bladder and kidney cells, as well as in biofilm formation (Werneburg & Thanassi, 995 

2018). Their prevalence and contribution to the colonisation process in DEC remains 996 

to be investigated. 997 

1.3.2.2.2.5. CS31A pili 998 

The CS31A (coli surface associated 31a antigen) plays a key role in the 999 

virulence of septicemic E. coli and ETEC, as well as some EPEC and DAEC (Girardeau 1000 

et al., 1988, Contrepois et al., 1989, Jallat et al., 1994, Adams et al., 1997). Because of 1001 

their thin structure, as well as their close and packed association to the bacterial cell 1002 

surface, CS31A was initially described as capsule-like or even nonfimbrial antigens 1003 

(Bertin et al., 1993, Mechin et al., 1996) before being clearly identified as thin capsular 1004 

pili secreted and assembled by a chaperone-usher pathway (T7SS) (Thanassi et al., 1005 

1998). These pili are synthesised from the clp operon located on a high-molecular-1006 

weight self-transmissible R plasmid, called p31A (Martin et al., 1991, Jallat et al., 1994, 1007 

Martin, 1996). CS31A are considered homologous to the K88/F4 (fae operon) and F41 1008 

pili but with some functional dissimilarities, such as that CS31A does not exhibit 1009 

haemagglutinin activity (Girardeau et al., 1991). In ETEC, F4 pili allow bacterial 1010 

adherence to F4-specific receptors present on the brush borders of villous enterocytes 1011 
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thus promoting the colonisation of the small intestine (Snoeck et al., 2008). The locus 1012 

for diffuse adherence (ldaCDEFGHI) (Scaletsky et al., 2005) from EPEC is 1013 

homologous to the K88 fae and ETEC CS31A clp operons. LdaH mediates diffuse 1014 

adherence to Hep-2 cells. The LdaH encoding gene has also been found in STEC strains 1015 

but no functional characterisation has been reported as yet (Scaletsky et al., 2005). 1016 

1.3.2.2.2.6. Aggregative adherence fimbriae (AAF) 1017 

AAF belongs to the Afa/Dr (afimbrial adhesin/decay-accelerating factor 1018 

receptor) haemagglutinin family together with F1845 pili (Nowicki et al., 1990, Le 1019 

Bouguenec & Servin, 2006). In DAEC and EIEC, Afa and Dr hemagglutinins recognise 1020 

the Dr blood group antigen (Nowicki et al., 1990). Among the five genes encoded in 1021 

the afa cluster, afaB, afaC and afaE are required for mannose-resistant 1022 

hemagglutination (MRHA) (Servin, 2005). The Dr hemagglutinin is encoded by the 1023 

draABCDE operon, where draA, draB, draC, and draD encode accessory proteins and 1024 

draE encodes the adhesin part (Nowicki et al., 1987, Servin, 2005). In addition, it 1025 

specifically binds collagen IV (Nowicki et al., 1988). Afa and Dr haemagglutinins can 1026 

link to decay-accelerating factor (DAF) and to carcinoembryonic antigen-related 1027 

cellular adhesion molecules (CEACAMs) (Nowicki et al., 1988, Westerlund et al., 1028 

1989, Berger et al., 2004). While some members of the Afa/Dr family were believed 1029 

not to form pili as they could not be observed by electron microscopy examination, it 1030 

is now clear they are secreted as AAF and F1845 by T7SS, to form pili of various 1031 

architecture depending on the pilin subunits (Anderson et al., 2004, Pettigrew et al., 1032 

2004). 1033 

In EAEC, the colonisation of the gut occurs through aggregative adherence 1034 

(AA) due to AAF, which binds to ECM proteins such as fibronectin, laminin and 1035 

collagen IV (Farfan et al., 2008, Berry et al., 2014) and then promotes biofilm 1036 
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formation (Hicks et al., 1996, Wakimoto et al., 2004). To date, five AAFs (AAF/I to 1037 

AAF/V) have been identified, all encoded by virulence plasmids of EAEC (pAA) and 1038 

the main subunits of which are AggA, AafA, Agg3A, Agg4a and Agg5a respectively 1039 

(Nataro et al., 1992, Czeczulin et al., 1997, Boisen et al., 2008, Jonsson et al., 2015). 1040 

Another hypothetical Dr-related pilin called HdaA (HUS-associated diffuse adherence) 1041 

also appears to confer the capacity to cause the AA phenotype in EAEC (Boisen et al., 1042 

2008). In DAEC and EIEC, F1845 pili are involved in gut colonisation (Servin, 2005). 1043 

F1845 pili are responsible for diffuse adherence to epithelial cells of the gut and are 1044 

encoded by the daaABCDE operon (Bilge et al., 1989, Bilge et al., 1993). 1045 

1.3.2.2.2.7. Colonisation factor antigens (CFA) 1046 

In ETEC, colonisation factor antigens (CFA), also called coli surface antigens 1047 

(CS), form pili that take part in adhesion to the small intestine and are critical for 1048 

virulence (Gaastra & Svennerholm, 1996). CFA/I, CFA/II (CS1, 2 and 3) and CFA/IV 1049 

(CS4, 5 and 6) are the most virulent (Sjoberg et al., 1988, Knutton et al., 1989, 1050 

Taniguchi et al., 1995, Gaastra & Svennerholm, 1996, Svennerholm & Lundgren, 1051 

2012) but CS12, 14, 17, 18, 19, 20 and 31 can also adhere to intestinal cells (Werneburg 1052 

& Thanassi, 2018). CFA/CS are encoded in operons; taking CFA/I as an example, it is 1053 

encoded by the cfaABCE operon, where cfaB encodes the main subunit, cfaE the distal 1054 

subunit, cfaA a chaperone and cfaC the usher involved in pilin transport across the OM 1055 

(Jordi et al., 1992). Cell adhesion is enabled by CfaB through its ability to bind 1056 

glycosphingolipid (Jansson et al., 2006). 1057 

1.3.2.2.2.8. F9 pili 1058 

In EHEC O157:H7, F9 pili are involved in the colonisation of epithelial bovine 1059 

cells, bovine gastrointestinal tissue explants and can also bind to fibronectin (Low et 1060 

al., 2006). Mutants of the main subunit of F9 pili are still able to colonise the terminal 1061 
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rectum, indicating that the adhesin is not solely responsible for the rectal tropism 1062 

observed but may contribute to colonisation at other sites, especially in young animals 1063 

(Low et al., 2006). These pili are short but are able to form longer bundles (Low et al., 1064 

2006). They are encoded in the F9 gene cluster, a six genes operon located on the 1065 

pathogenicity island O161 (Low et al., 2006, Wurpel et al., 2013). This operon has also 1066 

been identified in EPEC, as well as EAEC (Wurpel et al., 2013). F9 pili are secreted 1067 

and assembled by a T7SS (Wurpel et al., 2013). 1068 

1.3.2.2.2.9. E. coli YcbQ laminin-binding fimbriae (ELF) 1069 

In EHEC O157:H7, it has been shown that E. coli YcbQ laminin-binding 1070 

fimbriae (ELF) bind laminin and are involved in adherence to epithelial cells in humans, 1071 

cows and pigs (Samadder et al., 2009). ELF form peritrichous flexible fine fibres and 1072 

are encoded by the elfADCG operon, originally called the ycbQRST operon, which was 1073 

previously identified in UPEC and some commensal E. coli strains (Spurbeck et al., 1074 

2011). This operon is homologous to the F17 pili biogenesis genes found in ETEC, 1075 

which are assembled and secreted by a T7SS (Lintermans et al., 1988, Lintermans et 1076 

al., 1991, Bertin et al., 1996, Bertin et al., 2000). More generally, ELF are also 1077 

homologous to 20K, K99 and G pili found in various pathogenic E. coli (Guinee et al., 1078 

1976, Contrepois et al., 1983). These pili have been shown to mediate binding to 1079 

intestinal mucosal cells, especially to N-acetyl-D-glucosamine-containing receptors 1080 

(Bertin et al., 1996). The composition of the pili and the sequence of the tip-adhesin 1081 

differ between the strains and could explain the phenotypic divergence associated with 1082 

the expression of this family of pili in different E. coli strains (Korea et al., 2010). 1083 

1.3.2.2.2.10. Long polar fimbriae (LPF) 1084 

LPF are encoded by two operons lpf1 and lpf2 located on the pathogenicity 1085 

islands O141 and O154 in EHEC O157:H7, respectively (Perna et al., 2001). LPF are 1086 
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also present in other DEC, e.g. LEE-negative EHEC, EPEC, rabbit-specific EPEC, 1087 

EAEC and ETEC, as well as in several commensal strains (Doughty et al., 2002, 1088 

Wurpel et al., 2013). They share homology with the LPF of Salmonella enterica serovar 1089 

Typhimurium which are involved in adherence to Peyer’s patches and M cells in the 1090 

human gut (Baumler & Heffron, 1995, Baumler et al., 1996). The lpf1 operon is 1091 

composed of five genes, with lpfA encoding the main pilus subunit, lpfD and lpfE 1092 

encoding minor subunits, and lpfB and lpfC encoding the chaperone and usher 1093 

respectively (Doughty et al., 2002, Torres et al., 2004). The lpf2 operon also contains 1094 

five genes with a duplication of lpfD called lpfD’ but with no lpfE paralogue (Torres et 1095 

al., 2004). In E. coli O157:H7, it has been proposed that LPF2 is expressed in early 1096 

stages whereas LPF1 is expressed in late stages of growth (Torres et al., 2004). LPF 1097 

are secreted and assembled by a T7SS and can bind fibronectin, laminin and collagen 1098 

IV, as well as the follicule-associated epithelium (FAE) of Peyer’s patches in humans 1099 

(Fitzhenry et al., 2006, Farfan & Torres, 2012, McWilliams & Torres, 2014). 1100 

Expression of lpf2 is increased under conditions similar to those for biofilm formation 1101 

(Torres et al., 2007). Recently, it has been demonstrated that STEC isolates positive for 1102 

lpf2 formed significantly more biofilm than lpf2-negatives isolates (Vogeleer et al., 1103 

2015). In EPEC, LPF have been shown to contribute to the early stages of colonisation 1104 

of rabbits and the severity of diarrhoea (Newton et al., 2004). 1105 

1.3.2.2.2.11. E. coli common pilus (ECP) 1106 

In EHEC, ECP (previously called Mat for meningitis-associated temperature 1107 

dependent pilus) provides adherence to HEp-2, HeLa and HT-29 cells and allows 1108 

interaction between bacterial cells (Rendon et al., 2007). Secreted and assembled by a 1109 

T7SS, ECP expression is increased under environmental conditions that are 1110 

experienced in the GIT, e.g. low oxygen and high CO2 concentrations (Rendon et al., 1111 
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2007). However, its role seems to be secondary in the colonisation of the human or 1112 

bovine gut (Tatsuno et al., 2000, Dziva et al., 2004). The ecp operon has been identified 1113 

in numerous commensal and pathogenic E. coli, including DEC (Rendon et al., 2007). 1114 

1.3.2.2.2.12. Sorbitol-fermenting frimbriae protein (SFP) 1115 

In EHEC, the expression of sorbitol-fermenting frimbriae protein (SFP) pili is 1116 

induced in anaerobic conditions and leads to an increased adherence to Caco-2 and 1117 

HCT-8 cells, with a mannose-resistance hemagglutination phenotype (Brunder et al., 1118 

2001, Musken et al., 2008, Bielaszewska et al., 2009). These pili are encoded on the 1119 

sfpABDCDJG operon harboured in the virulence plasmid pSFO157 (Brunder et al., 1120 

2006). SFP pili are secreted and assembled by a T7SS (Brunder et al., 2001). Besides 1121 

E. coli O157, sfp has been identified in other EHEC serotypes, such as O165 1122 

(Bielaszewska et al., 2009), but its prevalence among STEC in general is thought to be 1123 

quite low (Toma et al., 2004). Distribution of the sfp operon in other DEC has not been 1124 

investigated in detail as of yet. 1125 

1.3.2.2.2.13. Curli 1126 

Curli are thin aggregative pili generally considered as one of the major 1127 

proteinaceous components of the E. coli biofilm matrix (Smyth et al., 1996, 1128 

Stathopoulos et al., 2000, Kostakioti et al., 2005, Evans & Chapman, 2014). These 1129 

peculiar pili are secreted and assembled by the T8SS through the extracellular-1130 

nucleation-pathway (ENP). Curli are helical filamentous amyloid fibres that facilitate 1131 

cell-surface and cell-cell interactions and promote biofilm formation (Olsen et al., 1132 

1993, Cookson et al., 2002, Szabo et al., 2005, Beloin et al., 2008, McCrate et al., 1133 

2013). In EHEC O157:H7, curli are associated with cellulose production, adherence to 1134 

spinach leaves and Hep-2 cells as well as abiotic surfaces (Kim & Kim, 2004, Pawar et 1135 

al., 2005, Macarisin et al., 2012). In ETEC, curli facilitate adherence to plastic surfaces 1136 
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(Szabo et al., 2005). Although curli were originally thought not be expressed by EPEC 1137 

(Ben Nasr et al., 1996), some strains were later reported to synthetise curli, playing a 1138 

role in bacterial adhesion and biofilm formation in condition mimicking human or 1139 

bovine hosts (Saldana et al., 2009). However, curli do not seem to be required for 1140 

biofilm formation and/or adhesion of EAEC strains (Sheikh et al., 2001, Berger et al., 1141 

2009, Pereira et al., 2010). In Shigella spp. and EIEC, CsgD and curli expression is 1142 

often inactivated (Sakellaris et al., 2000). Two operons are involved in curli production, 1143 

(i) the csgBAC operon, encoding the structural components of curli (CsgA and CsgB) 1144 

and an accessory protein (CsgC), and (ii) the csgDEFG operon, encoding a 1145 

transcriptional regulator (CsgD) and the secretion machinery for transport across the 1146 

OM (CsgE-G) (Arnqvist et al., 1994, Hammar et al., 1995, Beloin et al., 2008). In the 1147 

current model, CsgB is proposed as embedded in the OM where it acts as a nucleator 1148 

for the polymerisation of the major CsgA curlin (Van Gerven et al., 2015, Jain & 1149 

Chapman, 2019). While the exact structure of curli fibres has not yet been elucidated 1150 

with molecular resolution (Van Gerven et al., 2015, Jain & Chapman, 2019), the fibres 1151 

have been reported to display irregular thin branches, which would result from minor 1152 

incorporation of CsgB along the curli and promoting the formation of branched fibres 1153 

(Bian & Normark, 1997, Soto & Hultgren, 1999, Shu et al., 2012, DeBenedictis et al., 1154 

2017). Recently, CsgC and CsgE were demonstrated to highly inhibit CsgA aggregation 1155 

and CsgE was shown to prevent pellicle biofilm formation when added exogenously 1156 

(Andersson et al., 2013, Evans et al., 2015). 1157 

1.3.2.2.2.14. Haemolysin-coregulated protein (Hcp) 1158 

In EAEC, the haemolysin-coregulated protein (Hcp) tube formed by the Type 1159 

VI secretion system (T6SS) was suggested to be of importance for biofilm formation 1160 

(Aschtgen et al., 2008). More than ten orthologues of the T6SS components have been 1161 
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identified in EHEC and EPEC strains. This system can also contribute to bacterial 1162 

aggregation at the host cell surface (Dudley et al., 2006, Shrivastava & Mande, 2008, 1163 

Lloyd et al., 2009, Aschtgen et al., 2010, Moriel et al., 2010). Further investigations 1164 

are required in DEC to determine the exact role and molecular mechanisms involved in 1165 

the colonisation processes by the Hcp and T6SS. 1166 

2. The different regulation levels involved in the expression 1167 

of colonisation factors 1168 

In general, the expression of genes encoded on genomes into proteins can be 1169 

regulated at pre-transcriptional, transcriptional, post-transcriptional, translational 1170 

and/or post-translational levels, as well as at translocational and post-translocational 1171 

levels, the latter of which are especially relevant and important for molecular 1172 

determinants expressed at the bacterial cell surface (Figure 3). With the rise of omic 1173 

approaches, however, some basic bacterial physiology concepts may sometimes be 1174 

overlooked and gene/protein expression is very often considered as being limited to 1175 

regulatory networks involving transcriptional repressors or activators. However, when 1176 

it comes to functions and activities, it is primarily proteins that can help to comprehend 1177 

bacterial physiology. It must also be kept in mind that the relationship between mRNA 1178 

and protein abundances only very partially correlates; mRNA levels are just a proxy for 1179 

the presence of a protein but is not directly proportionate with the increase or decrease 1180 

folds of protein expression and even less with its activity when we consider an enzyme 1181 

for instance (Vogel & Marcotte, 2012). Here, the different regulatory levels involved 1182 

in bacterial adhesion and biofilm formation are highlighted using key examples of 1183 

different SCFs. 1184 
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2.1. Regulation at the pre-transcriptional level: phase variation 1185 

Prior to transcription, some regulatory mechanisms can already be at work at 1186 

the DNA level, through phase variation. There are four main mechanisms of phase 1187 

variation (i) DNA inversion, (ii) slipped-strand mispairing, (iii) DNA methylation, and 1188 

(iv) DNA deletion (Henderson et al., 1999). As a commonality, all these regulatory 1189 

mechanisms primarily occur at the stage of DNA replication and a large majority of 1190 

genes regulated by phase variation are bacterial cell surface molecular determinants 1191 

(Owen et al., 1996, Holden & Gally, 2004). 1192 

In E. coli K12, T1P are well-known to be subjected to phase variation following 1193 

DNA inversion (Blomfield, 2001). The expression of the fim operon is under the control 1194 

of the fim promoter, which is located within the fimS-invertible element (Abraham et 1195 

al., 1985, Wright et al., 2007). The orientation of the promoter determines the ON or 1196 

OFF phase and then induces the expression of upstream genes or not. Two tyrosine 1197 

recombinases, FimB and FimE, are known to control the orientation of the fimS-1198 

invertible region. FimB predominantly switches the fim operon transcription from OFF 1199 

to ON, while FimE mediates ON to OFF phase switching (Klemm, 1986, Gally et al., 1200 

1996, Hannan et al., 2008). Of note, two DNA topological effectors participate in this 1201 

regulation, namely H-NS (histone-like nucleoid-structuring protein) and IHF 1202 

(integration host factor); these histones play complementary role, as the DNA inversion 1203 

is absolutely dependent upon IHF, whereas the inversion rate is slowed down with high 1204 

levels of H-NS and vice versa (Dorman & Ni Bhriain, 1993). The existence of this 1205 

regulation in DEC has not been examined as of yet. 1206 

Slipped-strand mispairing occurs in the course of DNA replication in repetitive 1207 

DNA regions, which can be positioned either upstream of a coding DNA sequence 1208 
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(CDS) and then influences the transcription, such as the promoter efficiency, or within 1209 

a CDS and can affect the translational reading frame resulting in a mutation frameshift 1210 

(Henderson et al., 1999). In E. coli, phase variation resulting from strand-slippage has 1211 

not been reported as yet, nonetheless, there is no molecular mechanistic constraint for 1212 

it not to occur (Torres-Cruz & van der Woude, 2003). 1213 

Phase variation resulting from DNA methylation corresponds to a bacterial 1214 

epigenetic mechanism (Henderson et al., 1999). Ag43 is probably one of most 1215 

investigated surface proteins subjected to such a regulatory mechanisms (van der 1216 

Woude & Henderson, 2008). This epigenetic regulation involves two proteins, the DNA 1217 

adenine methylase (Dam) and the OxyR transcriptional regulator (van der Woude & 1218 

Henderson, 2008). When Dam has methylated the GATC sites present in the operator 1219 

region in the course of DNA replication, the repressor OxyR cannot bind and 1220 

transcription by the RNA polymerase occurs and Ag43 is expressed (ON phase); 1221 

however, if OxyR binds the GATC sites before they are methylated by Dam, there is 1222 

no transcription and no Ag43 expression (OFF phase). Besides Ag43, several pili 1223 

secreted and assembled by the T7SS have been reported to be subjected to such an 1224 

epigenetic regulation in E. coli (Henderson et al., 1999, Blomfield, 2001). The pap 1225 

(pyelonephritis-associated pilus) operon in UPEC is considered as a paradigm where 1226 

the Dam methylation of a GATC-II site in the operator region prevents binding of the 1227 

repressor Lrp (leucine-responsive regulatory protein), and consequently the papBA 1228 

operon is transcribed and the pili are expressed (ON phase). In the absence of 1229 

methylation at GATC-II, Lrp can bind to the operator, repress the transcription and 1230 

ultimately prevent pili formation (OFF phase). Additionally, this repression can be 1231 

lifted when Lrp binds to another site called GATC-I. Among DEC, CS31A pili are 1232 

subjected to this same regulatory mechanism (Crost et al., 2003, Graveline et al., 2014). 1233 
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As a general trend, phase variation due to DNA deletion is irreversible due to 1234 

the loss of the genetic element bearing the gene of interest. In E. coli, DNA deletion is 1235 

responsible for unilateral flagellar phase variation as reported in the H3, H47 and H17 1236 

strains (Zhou et al., 2015). While most flagellins are encoded by fliC in E. coli, H3 and 1237 

H47 are encoded by flkA and H17 is encoded by flnA. For H3 and H47, their production 1238 

results from the expression of flkAB operon, where the transcriptional regulator FlkB 1239 

represses fliC (Feng et al., 2008). Upon excision of the flk region from the chromosome, 1240 

flkAB is irreversibly deleted, the repression of fliC is released and the FliC flagellin is 1241 

produced. Similarly, the H17 strain can irreversibly switch flagellar antigens to H4 1242 

(Ratiner, 1967). It appears this flagellar phase variation can be caused by excision of 1243 

flnA (Liu et al., 2012). When flnA is present in the chromosome, the translation of FliC 1244 

H4 is inhibited and only FlnA H17 is produced; once flnA is excised, the repression of 1245 

the fliC is released and only the FliC H4 is produced. The ∼35 kb DNA deletion region 1246 

containing the flnA gene is excised as a covalently closed extrachromosomal circular 1247 

form. While some DNA deletion can occur through homologous recombination 1248 

(Henderson et al., 1999), flagellar phase variation is mediated by non-homologous 1249 

recombination via an integrase of the tyrosine recombinase family (Feng et al., 2008). 1250 

The flagellar phase variation mechanisms in some other E. coli H variants and 1251 

especially in DEC remain to be defined. 1252 

2.2. Regulation at the transcriptional level: regulators and 1253 

effectors 1254 

Regulation at the transcriptional level is the most well-known level of gene 1255 

regulation and quite often the only one really considered as a proxy for protein 1256 

expression levels. Transcriptional regulators can either be repressors or activators but 1257 
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it is wrong to assume a repressor will systematically repress transcription or an activator 1258 

will activate transcription. A second crucial partner to the process must also be 1259 

considered, that is the effector, which can be of two types, either an inducer or a co-1260 

repressor. Four possibilities for regulation at the transcriptional level can be 1261 

discriminated: (i) positive control of an inducible gene, where an activator is activated 1262 

by an inducer, (ii) positive control of a repressible gene, where an activator is 1263 

inactivated by an inhibitor, (iii) negative control of an inducible gene, where a repressor 1264 

is inactivated by an inducer, or (iv) negative control of a repressible gene, where a 1265 

repressor is activated by a co-repressor. Additionally, a so-called repressor can act as 1266 

an activator for some genes and vice versa. In other words, the up-expression or down-1267 

expression of a regulator is not sufficient to know what kind of transcriptional 1268 

regulation is taking place without knowing the nature and level of the inducer. 1269 

Bacteria can sense and respond to environmental cues thanks to a large range of 1270 

two-component signal transduction systems where a sensor activates a transcriptional 1271 

regulator, which further represses or activates gene expression (Hoch, 2000, 1272 

Zschiedrich et al., 2016). Some of these systems participate in cell-to-cell 1273 

communication (CTCC) via a signal molecule called auto-inducer (AI) (Bassler, 2002). 1274 

Quorum sensing (QS) is only one of the different functions of CTCC, which specifically 1275 

refers to the sensing of the cell density (quorum); QS should not be considered 1276 

synonymous with CTCC because some sensing can be unrelated to QS sensu stricto 1277 

but to diffusion sensing, confinement or efficiency sensing for instance (Redfield, 2002, 1278 

Platt & Fuqua, 2010, West et al., 2012). This semantic issue is of particular importance 1279 

in biofilm formation, since by definition, bacteria cells are at a high density following 1280 

sessile development and therefore the notion of QS makes little sense. Transcriptional 1281 

regulators of virulence and SCFs have been the subject of intense and extensive 1282 



 

 55 

research and scientific literature in DEC (Beloin et al., 2008, Tobe, 2008, Pruss, 2017, 1283 

Rossi et al., 2018). For these reasons only some key examples will be provided to 1284 

illustrate the relevance of differentiating the regulation at different levels. 1285 

At the transcriptional level, PNAG production is regulated by NhaR, a 1286 

transcriptional regulator of the LysR family, which activates the transcription of the 1287 

pgaABCD operon by binding to two sites near the -35 region of the promoter (Goller et 1288 

al., 2006). In EPS, the production of colanic acid is consistently upregulated within 1289 

biofilms by the RcsA transcriptional activator (Matthysse et al., 2008, May & Okabe, 1290 

2008). The transcription of the wca operon is regulated by the rcsABCF locus that 1291 

encodes a two-component system (Gervais & Drapeau, 1992, Ebel & Trempy, 1999, 1292 

Beloin et al., 2008). However, the signal sensed by the RcsC sensor kinase remains 1293 

unknown (Whitfield & Roberts, 1999, Oropeza et al., 2015). H-NS is known to act as 1294 

a transcriptional repressor in bacteria, a so-called bacterial transcriptional silencing, 1295 

analogous to eukaryotic silencing by histones (Landick et al., 2015, Grainger, 2016). 1296 

While RcsA is present at a low amount in the cell, this was found to be partially due to 1297 

transcriptional silencing by H-NS (Sledjeski & Gottesman, 1995). Cellulose synthesis 1298 

is under the control of the CsgD transcriptional regulator (Romling et al., 2000, 1299 

Zorraquino et al., 2013). Interestingly in EIEC, csgD expression is often inactivated 1300 

(Sakellaris et al., 2000), suggesting that biofilm formation can interfere with 1301 

pathogenesis, making these strains poor biofilm formers. 1302 

While no specific transcriptional regulator has been identified for the expression 1303 

of AIDA-I, it was shown that transcription was enhanced in the absence of H-NS and 1304 

RfaH transcriptional regulators (Benz et al., 2010). Similarly, the transcription of ehaG 1305 

and fdeC is regulated by H-NS (Totsika et al., 2012, Easton et al., 2014). 1306 
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CS31A synthesis is dramatically reduced in media containing alanine or 1307 

leucine, suggesting that these amino acids can play a role as effectors (Crost et al., 1308 

2003). The ON/OFF switch is locked in the OFF phase by alanine, whilst leucine 1309 

repressed transcription but without affecting the switch frequency. Analysis of clp 1310 

expression indicated that alanine and leucine could repress clp transcription by a 1311 

methylation-independent mechanism but also by either promoting methylation or 1312 

methylation protection of GATC-II and GATC-I respectively, which increased the 1313 

methylation pattern characteristic of repressed cells. Furthermore, alanine prevented 1314 

the AfaF-dependent methylation protection and thus the appearance of cells in the ON 1315 

phase. Additional regulatory proteins, including ClpB, cAMP, receptor protein (CRP) 1316 

and H-NS, also play important roles in the transcriptional expression of the operons of 1317 

the pap family combined with regulation at a pre-transcriptional level by phase 1318 

variation (Blomfield & van der Woude, 2007). 1319 

For the T4P in EPEC, the expression of the bfp operon is controlled by the BfpT 1320 

(also called PerA) transcriptional regulator, a member of the AraC family, encoded on 1321 

the enteroadherence factor plasmid (Tobe et al., 1992, Gomez-Duarte & Kaper, 1995). 1322 

The expression of CFA/I is positively regulated by CfaR, whereas for the expression of 1323 

CFA/II, CS1 and CS2 is positively regulated by the rns gene product (a homologue to 1324 

cfaR with 96 % identity) (Caron & Meyer, 1989, Caron & Scott, 1990, Savelkoul et al., 1325 

1990). The expression of AAF is induced by the transcriptional activator AggR (an 1326 

homologue of AraC) also located on pAA (Nataro et al., 1994); YafK and Fis (factor 1327 

for inversion stimulation) have also been reported to regulate AAF/II transcription 1328 

(Sheikh et al., 2001). From a transcriptional regulation point of view, lpf1 is repressed 1329 

by H-NS and activated by Ler in response to different environmental conditions (Torres 1330 

et al., 2007, Rojas-Lopez et al., 2011), whereas lpf2 transcription appears to be 1331 
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activated by Fur (Torres et al., 2007). Regulation of curli biogenesis is complex and 1332 

involves several two-component systems, such as EnvZ/OmpR, CpxA/CpxR or 1333 

CpxR/H-NS/RstA/IHF/OmpR (Vidal et al., 1998, Prigent-Combaret et al., 2000, 1334 

Prigent-Combaret et al., 2001, Beloin et al., 2008, Ogasawara et al., 2010, Laverty et 1335 

al., 2014). In EPEC, Fis has been identified as a negative transcriptional regulator of 1336 

csgA expression (Saldana et al., 2009). Curli expression can be triggered by a large 1337 

range of environmental signals such as the temperature, osmolarity or redox potential 1338 

(Olsen et al., 1993, Prigent-Combaret et al., 1999, Gerstel & Romling, 2001, Evans & 1339 

Chapman, 2014). 1340 

The transcriptional regulatory control of the locus of enterocyte effacement 1341 

(LEE) encoding the injectisome is undoubtedly one of the most extensively investigated 1342 

in DEC, and in particular in EPEC and EHEC (Schmidt, 2010, Stevens & Frankel, 1343 

2014, Franzin & Sircili, 2015). For additional information about the complex regulation 1344 

networks of specific, global and phage encoded regulators, as well as environmental 1345 

signals such as nutrient sources or metabolic products from the host or microbiota that 1346 

can affect the transcription of the LEE-encoded genes, readers are referred to recent, 1347 

specific reviews on the topic (Connolly et al., 2015, Furniss & Clements, 2018, 1348 

Platenkamp & Mellies, 2018, Turner et al., 2018). 1349 

2.3. Regulation at a post-transcriptional level 1350 

At least three main regulation mechanisms can occur post-transcriptionally, (i) 1351 

the stability of mRNA, which can be quantified by determining its half-life, (ii) a 1352 

riboswitch, where a molecule such as a metabolite can change the folding of an mRNA 1353 

with the formation of a termination hairpin that stops the on-going transcription by the 1354 

RNA polymerase, or (iii) attenuation based on the formation of terminator/anti-1355 
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terminator loops, which couple or uncouple the transcription by the RNA polymerase 1356 

with the translation of the mRNA. Such post-transcriptional regulations are important 1357 

regulatory mechanisms that are generally overlooked and underestimated, most likely 1358 

because they cannot be easily investigated and estimated by transcriptomic analysis on 1359 

its own (Vogel & Marcotte, 2012). 1360 

Recently, it was shown that the expression level of agn43 can be controlled by 1361 

antitermination of transcription and translation initiation in the leader mRNA 1362 

(Wallecha et al., 2014). Among EPS determinants, PNAG production is regulated by 1363 

the RNA-binding protein CsrA (carbon storage regulatory protein A) post-1364 

transcriptionally (Boles & Horswill, 2011, Wang et al., 2017), where CsrA binds 1365 

cooperatively to the pgaA mRNA and competes for recognition with the 30S ribosomal 1366 

subunit. By binding to sites located in the mRNA leader, CsrA can further destabilise 1367 

the pgaA transcript. The transcription of yeeJ is increased in absence of the mRNA 1368 

regulator PNPase, an exoribonuclease polynucleotide phosphorylase component of the 1369 

degradosome (Martinez-Gil et al., 2017). 1370 

Pili produced by the pap operon appears to be regulated post-transcriptionally 1371 

as a result of differential mRNA stability (Baga et al., 1988). The study demonstrated 1372 

that the papBA transcript is processed and the resulting mRNA encoding the major pilin 1373 

subunit accumulated. The difference in abundance of the two mRNA species could be 1374 

readily explained by differences in their half-life. In E. coli, RNA degradation occurs 1375 

via the degradosome thanks to the combination of endoribonuclease and 1376 

exoribonuclease activities (Burger et al., 2011, Bandyra et al., 2013). 1377 
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2.4. Regulation at the translational level 1378 

While attenuation collaterally affects the translation, three main mechanisms 1379 

are directly involved in the regulation of translation, (i) anti-sense RNAs (including the 1380 

small RNAs), which hybridise with mRNA and thus block the binding of the ribosome, 1381 

(ii) riboregulation, where a ligand changes the mRNA folding, which consequently 1382 

prevents the binding of the ribosome, and (iii) translational efficiency depending on the 1383 

codon usage. 1384 

In addition to CsrA, PNAG synthesis is regulated by two small RNAs, CsrB 1385 

and CsrC, which actually sequester CsrA and thus activate the translation of the 1386 

pgaABCD transcript (Liu et al., 1997, Weilbacher et al., 2003). For colanic acid 1387 

production, the low level of expression from the rcsA promoter by H-NS transcriptional 1388 

silencing is alleviated by the DsrA small RNA (Sledjeski & Gottesman, 1995). 1389 

In E. coli, the OmpA protein is expressed to very high levels, is growth rate 1390 

dependent and is a paradigm for riboregulation (Lugtenberg et al., 1976, Koebnik et 1391 

al., 2000). Actually, the ompA mRNA half-life increases proportionally with the 1392 

bacterial growth rate (Nilsson et al., 1984). While a specific region of the transcript is 1393 

targeted by the RNaseE (endoribonuclease E), binding of the ribosome induces 1394 

conformational changes that mitigate the mRNA degradation (Emory & Belasco, 1990, 1395 

Emory et al., 1992, Hansen et al., 1994). As an antagonist, Hfq can bind the transcript 1396 

to decrease its stability, thus inducing RNA decay (Nilsson et al., 1984, Vytvytska et 1397 

al., 2000). Hfq facilitates the binding of a small RNA called MicA in the vicinity of the 1398 

ribosome-binding site, thus preventing ribosomal recruitment (Udekwu et al., 2005). 1399 
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2.5. Regulation at the post-translational level 1400 

Regulations at the post-translational level comprises the most diverse range of 1401 

molecular mechanisms and is hierarchically the most important (Figure 3). In metabolic 1402 

pathways, regulation at the post-translational levels is a key mechanism, particularle in 1403 

relation to the modulation of the enzymatic activity, which can be influenced by 1404 

physical parameters (pH, temperature, ionic force, redox, etc…), inducers and 1405 

inhibitors (irreversible or reversible: competitive, non-competitive, uncompetitive or 1406 

mixed inhibition) (Guedon et al., 2000, Desvaux & Petitdemange, 2002, Desvaux, 1407 

2004); retro-inhibition and pro-activation can also occur and may also involve allosteric 1408 

enzymes. Protein activity can be further altered by numerous post-translational 1409 

modifications, namely (i) proteolytic cleavage, and (ii) chemical modifications such as 1410 

disulphide bonds, phosphorylation, acetylation, methylation, adenylation or 1411 

uridylation. Post-translational regulation also includes the protein folding, 1412 

association/dissociation of homo- and heteromers, the degradation of proteins 1413 

following the N-terminal rule by the ClpAP proteolytic complex, which can all 1414 

influence the protein half-life, as well as the protein translocation to a final subcellular 1415 

location. Indeed, the maturation of a protein can also occur at translocational and post-1416 

translocational levels. 1417 

As an example of post-translational regulation, the decreased production of 1418 

colanic acid at 37°C results from the degradation of the RcsA transcriptional activator 1419 

by the Lon protease (Ebel & Trempy, 1999). This post-translational regulation 1420 

alleviates the wca transcription and explain the low amount of RcsA in cell (Sailer et 1421 

al., 2003). As a two-component system, the RcsA regulator is activated by the transfer 1422 

of a phosphate group from the RcsC sensor, which is per se another post-translational 1423 

regulation level (Desai & Kenney, 2017). For cellulose biosynthesis, the catalytic 1424 
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activity of the BcsA-B complex using UDP-glucose as a substrate is allosterically 1425 

controlled by cyclic-di-GMP (c-di-GMP) on the PilZ domain of the cellulose synthetase 1426 

BcsA (Omadjela et al., 2013). Actually, the PilZ domain was the first effector identified 1427 

that is activated upon binding of c-di-GMP (Ryan et al., 2012). Furthermore, the 1428 

diguanylate cyclase AdrA exhibiting a GGDEF domain regulates c-di-GMP production 1429 

(Romling et al., 2000, Zorraquino et al., 2013). C-di-GMP is a ubiquitous second 1430 

messenger produced by the diguanylate cyclase exhibiting GGDEF domain, which is 1431 

antagonistically degraded by the phosphodiesterases exhibiting EAL domain (Romling 1432 

& Amikam, 2006). This molecule controls the motility and virulence of planktonic 1433 

cells, as well as cell adhesion and persistence of multicellular communities (Jenal & 1434 

Malone, 2006, Romling & Amikam, 2006, Beloin et al., 2008).  1435 

As an autotransporter, Ag43 exhibits a signal peptide, which drives the 1436 

preprotein to the Sec export system for translocation across the CM before being 1437 

cleaved off after translocation into the periplasm. In the periplasm, several chaperones 1438 

participate in the folding prior to the translocation across the OM through a cooperative 1439 

mechanism involving the translocation assembly (TAM) and β-barrel assemby (BAM) 1440 

machineries (Selkrig et al., 2014). Additionally, the passenger of Ag43 is glycosylated, 1441 

which stabilises its conformation (Sherlock et al., 2006). These different post-1442 

translational, translocational and post-translocational levels all contribute to the 1443 

regulation of the expression of this surface protein. While glycosylation is not that 1444 

important for the functions of Ag43 (Reidl et al., 2009), in TibA it is necessary for 1445 

autoaggregation, adhesion to epithelial cells and biofilm formation (Cote et al., 2013). 1446 
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Conclusion and perspectives 1447 

Reviewing the different cell-surface molecular determinants that can participate 1448 

in the surface colonisation process in DEC, from bacterial adhesion to biofilm 1449 

formation, the wealth of SCFs at play is clearly highlighted. While some of these 1450 

molecular determinants still remain to be fully characterised, their interplay in surface 1451 

colonisation must also be carefully considered and kept in mind. The flagella, as force-1452 

generating cell-surface organelles, have been demonstrated to be important for biofilm 1453 

formation (Hobley et al., 2015), but expression of strong adherence factors could 1454 

replace motility in the early stages of biofilm formation (Pratt & Kolter, 1998, Donlan, 1455 

2002). Although flagella expression is repressed during the switch from the planktonic 1456 

to sessile lifestyle to reduce the motility capacity of the bacteria, these surface 1457 

organelles have a structural and architectural role in the EPM (Hung et al., 2013, Serra 1458 

et al., 2013). While the expression of flagellar genes are repressed, genes involved in 1459 

the biosynthesis of the EPM components are generally activated during the biofilm 1460 

maturation step (Guttenplan & Kearns, 2013). In E. coli K12, capsule polysaccharide 1461 

and T1P appear to block the autoaggregation mediated by Ag43 by physically shielding 1462 

intercellular Ag43-Ag43 interaction (Hasman et al., 1999, Schembri et al., 2004), 1463 

whilst, in turn, the autoaggregation overrides bacterial motility (Ulett et al., 2006). In 1464 

some ExPEC, T1P expression appears to be further modulated and influenced by 1465 

OmpA or OmpX, together with an increase of exopolysaccharide production, as well 1466 

as a decrease in bacterial motility (Otto & Hermansson, 2004, Teng et al., 2006). In 1467 

NMEC, OmpA would act together with Hek in the invasion of epithelial cells (Smith 1468 

et al., 2007, Fagan et al., 2008). All-in-all, this suggests the OMPs’ composition of the 1469 

OM may act as a signal in physiological adaptation of bacteria for surface adhesion and 1470 

colonisation; this research direction is one of the next frontiers to be explored in DEC. 1471 
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As a general trend, the average number of pili types appears lower in commensal 1472 

compared to pathogenic E. coli (Spurbeck et al., 2011). For instance, curli or 1473 

conjugative pili can compensate for motility during initial adhesion and biofilm 1474 

development (Prigent-Combaret et al., 2000, Ghigo, 2001, Reisner et al., 2003, Beloin 1475 

et al., 2008). Plasmids in general can encode numerous SCFs as shown in ETEC and 1476 

EAEC (Amabile-Cuevas & Chicurel, 1996, Mainil et al., 1998, Ghigo, 2001, Molin & 1477 

Tolker-Nielsen, 2003, Kaper et al., 2004, Wuertz et al., 2004, Beloin et al., 2008, Ong 1478 

et al., 2009). While conjugative plasmids can confer initial adhesion capacity and 1479 

modulate the biofilm architecture (Ghigo, 2001, Wuertz et al., 2004), the genetic 1480 

mobility of this extrachromosomal gene pool and its contribution to biofilm formation 1481 

remain poorly investigated in DEC (Dudley et al., 2006). In Pseudomonas aeruginosa, 1482 

T4P have been primarily regarded as involved in the attachment of epithelial cells in 1483 

the course of an infection but later were demonstrated to also bind to abiotic surfaces 1484 

such as polyvinyl chloride, polystyrene and stainless steel (Giltner et al., 2006) and it 1485 

even appeared to exhibit a much higher affinity towards steel than the mucosal 1486 

epithelial surface, which emphasises the relevance of examining T4P in both 1487 

environmental and clinical conditions (Yu et al., 2007, Burgess et al., 2014). In the 1488 

human and animal cutaneous pathogens Erysipelothrix rhusiopathiae, the RspA 1489 

(rhusiopathiae surface protein A) and RspB surface proteins have been shown to 1490 

specifically bind several ECM components, namely fibronectin, collagens I and IV, but 1491 

also polystyrene shedding light on the ecophysiology of this microorganism through its 1492 

binding ability to adhere to both biotic and abiotic surfaces (Shimoji et al., 2003). These 1493 

aspects have not been reported or examined as yet in DEC but are particularly relevant 1494 

considering the presence of T4P and ECM-binding proteins, especially some ATs, in 1495 

the various E. coli enteropathotypes. 1496 
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The regulatory network for the production of colonisation factors is often 1497 

depicted as being restricted to the transcriptional level. However, this review clearly 1498 

demonstrates that the range of regulation levels is much broader and even more 1499 

complex (Figure 3). As a general trend, it is important to stress and keep in mind that 1500 

the primary functional and regulation level is post-translational and not transcriptional, 1501 

as is sometimes assumed. Whenever DNA replication, RNA polymerisation or protein 1502 

synthesis occur, enzymes are essential and required for these physiological processes 1503 

at pre-transcriptional, transcriptional and translational regulation levels, respectively; 1504 

any abrupt changes in the environmental conditions, such as some physicochemical 1505 

parameters (e.g. pH, temperature, redox potential), will have a first and direct effect on 1506 

the enzyme activity before the cell can even change its transcription profile. For the 1507 

SCFs, the interplay taking place at the other regulation levels is extremely complex and 1508 

their hierarchy is extremely difficult to establish at a global scale. As well as this, some 1509 

regulatory mechanisms in the expression of SCFs in DEC have not been fully 1510 

investigated, such as attenuation, riboswitches or translational efficiency, but their 1511 

involvement cannot be excluded. As molecular cell-surface determinants, the SCFs in 1512 

DEC need to be translocated across a LPS-diderm bacterial cell envelope to be 1513 

functional and active, which involves further translocational and post-translocational 1514 

regulation levels that should not be overlooked in a regulatory network. To this end, 1515 

our view of the regulatory network for the production of SCFs in E. coli remains 1516 

incomplete and there is far from an integrated view of all regulation mechanisms. In 1517 

addition, findings from investigations using domesticated laboratory strains of E. coli 1518 

must be interpreted with caution and reinvestigation in DEC genetic backgrounds 1519 

would be wise (Hobman et al., 2007). This will undoubtedly lead to new discoveries in 1520 
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the field in the years to come and contribute to our understanding of DEC colonisation 1521 

mechanisms. 1522 

In DEC, SCFs have often been examined for their contribution to bacterial 1523 

virulence and thus investigated in conditions related to human infection (Nataro & 1524 

Kaper, 1998, Kaper et al., 2004, Rossi et al., 2018). In addition to humans, the GIT of 1525 

a wide range of animals also harbours E. coli strains, both commensal and pathogenic 1526 

(Escobar-Paramo et al., 2006, Croxen et al., 2013, Smati et al., 2015, Torres, 2017). 1527 

Following shedding from these animal reservoirs, E. coli is also found in the 1528 

environment. Outside the host, the range of extraintestinal environmental conditions 1529 

that can be encountered by this species is wide, ranging from soil, water to plants, as 1530 

well as food matrices and food processing facilities (van Elsas et al., 2011, Giaouris et 1531 

al., 2014, Jang et al., 2017). As foodborne zoonotic pathogens, understanding the 1532 

ecophysiology of DEC necessitates considering its lifestyle outside the human host. In 1533 

fact, the role of SCFs should be placed in a context much broader than the colonisation 1534 

of the GIT, as they can also play an important role in the colonisation of other 1535 

environmental niches. A focus solely on the physiopathology and GIT environment 1536 

may bias and limit a full understanding of the wide diversity of SCFs in E. coli. While 1537 

the notion of virulence factors is a major contribution to the field of microbial 1538 

pathogenesis (Falkow, 1988, Finlay & Falkow, 1989), a change of paradigm with the 1539 

concept of coincidental by-products of commensalism (Le Gall et al., 2007, Diard et 1540 

al., 2010, Leimbach et al., 2013) or niche factors (Hill, 2012) is necessary to more 1541 

accurately apprehend and understand the ecophysiology of pathogenic species in the 1542 

food chain and in one-health approach. 1543 

Taking a one-health approach considering the whole food chain, the physiology 1544 

of DEC should not only be considered with respect to human infection only, but also in 1545 
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conditions representative of upstream, i.e. from the natural environments, 1546 

animal/human reservoirs, agri-food environments and foodstuffs (Burgess et al., 2014). 1547 

Investigating the ecophysiology of the DEC with respect to the various biotopes and 1548 

biocoenoses encountered in different ecosystems from natural environments, animal 1549 

reservoirs, food matrices, food-processing environments, to human ingestion should 1550 

shed new light on the relevance and contribution of the SCFs for this species and inform 1551 

the design of strategic, targeted interventions to improve public health.  1552 
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Figure legends 3367 

Figure 1: Schematic representation of the exopolymeric matrix (EPM) in E. coli 3368 

biofilm. By analogy with the extracellular matrix (ECM) in mammalian tissue, the 3369 

EPM in bacterial biofilm can be further discriminated between (i) the EPM closely 3370 

associated with the bacterial cells, i.e. the cell-associated EPM (caEPM) (purple shade 3371 

background), and (ii) the interstitial EPM (iEPM) (white background). Molecular 3372 

determinants of the caEPM are attached, anchored or linked to the bacterial cell surface. 3373 

Besides cell-surface proteinaceous determinants including monomeric proteins (not 3374 

depicted in the picture) and supramolecular protein structures, such the flagella and pili, 3375 

molecular components of caEPM further comprise extracellular polysaccharides (EPS), 3376 

namely some lipopolysaccharides (LPS) as well as poly-b-1,6-N-acetyl-D-glucosamine 3377 

(PNAG) and colanic acid, which both form a capsule. Together with colanic acid that 3378 

can be released from the bacterial cell surface, cellulose can compose the EPS part of 3379 

the iEPM. Besides extracellular DNA (eDNA), some exoproteins (not depicted in the 3380 

picture) and outer membrane vesicles (OMV) may also constitute the iEPM in E. coli 3381 

biofilm. 3382 

Figure 2: Schematic representation of the cell-surface proteinaceous determinants 3383 

acting as CFs in DEC. Monomeric proteins are depicted in shades of red, whereas 3384 

multimeric protein complexes are depicted in shades of blue. Whenever possible,  3385 

molecular structures were obtained from the protein databank (PDB) (Berman et al., 3386 

2002, Rose et al., 2017) or the electron microscopy databank (EMBD) (Lawson, 2010). 3387 

Regarding ATs, no structure for ATAs is currently available but Ag43 (PDB: 4KH3) is 3388 

provided as a representative of a SAAT and EspP (PDB: 3SLI, 3SZE) as a 3389 

representative of SPATE. Intimin (PDB: 3NCW, 4E1S) is given as a representative of 3390 



 

 124 

an IAT. Proteins secreted across the OM by the T5SS are first exported via the Sec 3391 

translocase (SecYEG-DF/SecA) (PDB: 2AKH, 3AQO, 5XAM) across the inner 3392 

membrane (IM). Dispersin (PDB 2JVU) is secreted via T1SS (PDB: 5066). Besides 3393 

ATs, all OMPs including the Hra, OmpA (PDB: 2GE4) and Iha are first exported via 3394 

Sec before being integrated into the OM via the b-barrel assembly machinery (Bam) 3395 

complex (BamABCDE) (PDB: 5LJO). The surface-associated lipoprotein of E. coli 3396 

(SslE) is secreted by a T2aSS (EMDB: 1763, PDB: 3CIO, 3OSS, 4KSR, 2W7V, 2BH1) 3397 

after Sec export. Like the moonlighting proteins represented here by GAPDH 3398 

(PDB: 5ZA0), the secretion mechanisms of Efa-1 remain unknown. EibD 3399 

(PDB: 2XQH) is provided as a representative of TAAs. The injectisome is secreted and 3400 

assembled by the T3aSS (EMDB: 1875). The flagellum (EMDB: 1132, 1873; 3401 

PDB: 1IO1) is secreted and assembled by the T3bSS (EMDB: 1887). The T4P 3402 

(EMDB: 0070) is secreted and assembled by the T2bSS. The conjugative pilus (CP) 3403 

(PDB: 5LEG) is secreted and assembled by the T4bSS (EMDB: 2567). The T1P 3404 

(EMDB: 3222), CS31A, AAF (PDB: IUT2, 2XQ), CFA (EMDB: 1952), F9 pilus, ELF, 3405 

LPF (PDB: 5AFO), ECP (PDB: 3QS3) and SFP are all secreted and assembled by T7SS 3406 

(PDB: 4J3O) after Sec export. The curli are secreted and assembled by the T8SS 3407 

(EMDB: 2750). Hcp form a tube, which is displayed extracellularly upon triggering of 3408 

the T6SS (EMDB: 2524; PDB: 4HKH, 3RX9, 4JIV). 3409 

Figure 3: Regulation levels and control mechanisms for the expression of genes 3410 

encoding colonisation factors in DEC. Respective to biochemical process, the 3411 

sequential steps and events for gene/protein expression flow from pre-transcriptional, 3412 

transcriptional, post-transcriptional, translational to post-translational regulation levels 3413 

(as depicted by blue arrows). Thus, at least five regulation levels can be considered in 3414 

bacteria and at each level, different control mechanisms can be at play. Besides, for a 3415 



 

 125 

same protein encoded gene different regulation levels and regulatory mechanisms can 3416 

intervene, e.g. the expression of Ag43 is regulated at pre-transcriptional level by DNA 3417 

methylation, at transcriptional level by OxyR, at post-transcriptional level by 3418 

antitermination of transcription and translation initiation in the leader mRNA, and also 3419 

at post-translational levels with its autoaggregative activity modulated by pH, its native 3420 

folding requiring chaperones and final subcellular localisation by translocation across 3421 

the OM. Besides rRNA, tRNA and sRNA, biological functions and activities are 3422 

essentially represented by proteins and the hierarchy of regulations levels and control 3423 

mechanisms (as depicted by shades of red) is opposite to the gene/protein expression 3424 

flow; e.g. whatever the pre-transcriptional (with DNA replication), transcriptional (with 3425 

mRNA synthesis), post-transcriptional (with the modulation of transcripts) or 3426 

translational (with the protein synthesis) levels, they are all strictly depend on enzyme 3427 

activites which can be regulated at post-translational levels in the first place with direct 3428 

and immediate effect due to modulation of their catalytic activity by temperature or pH 3429 

for instance. 3430 
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