J. Kolosnjaj-tabi, L. Lartigue, Y. Javed, N. Luciani, T. Pellegrino et al., Biotransformations of magnetic nanoparticles in the body, Nano Today, vol.11, issue.3, pp.280-284, 2016.

F. Mazuel, A. Espinosa, N. Luciani, M. Reffay, R. Le-borgne et al., Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels, ACS Nano, vol.10, issue.8, pp.7627-7638, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01518784

N. Feliu, D. Docter, M. Heine, P. Del-pino, S. Ashraf et al., In vivo degeneration and the fate of inorganic nanoparticles, Chemical Society Reviews, vol.45, issue.9, pp.2440-2457, 2016.

R. Mejías, L. Gutiérrez, G. Salas, S. Pérez-yagüe, T. M. Zotes et al., Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications, Journal of Controlled Release, vol.171, issue.2, pp.225-233, 2013.

A. Ruiz, L. Gutiérrez, P. R. Cáceres-vélez, D. Santos, S. B. Chaves et al., Biotransformation of magnetic nanoparticles as a function of coating in a rat model, Nanoscale, vol.7, issue.39, pp.16321-16329, 2015.

C. Carrillo-carrion, A. I. Bocanegra, B. Arnaiz, N. Feliu, D. Zhu et al., Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures, ACS Nano, vol.13, issue.4, pp.4631-4639, 2019.

S. J. Soenen, W. J. Parak, J. Rejman, and B. Manshian, (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications, Chemical Reviews, vol.115, issue.5, pp.2109-2135, 2015.

B. B. Manshian, S. Pokhrel, L. Mädler, and S. J. Soenen, The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality, Journal of Nanobiotechnology, vol.16, issue.1, p.85, 2018.

R. Uebe and D. Schüler, Magnetosome biogenesis in magnetotactic bacteria, Nature Reviews Microbiology, vol.14, issue.10, pp.621-637, 2016.

D. A. Bazylinski and R. B. Frankel, Magnetosome formation in prokaryotes, Nature Reviews Microbiology, vol.2, issue.3, pp.217-230, 2004.

C. T. Lefèvre and L. Wu, Evolution of the bacterial organelle responsible for magnetotaxis, Trends in Microbiology, vol.21, issue.10, pp.534-543, 2013.

I. Orue, L. Marcano, P. Bender, A. García-prieto, S. Valencia et al., Configuration of the magnetosome chain: a natural magnetic nanoarchitecture, Nanoscale, vol.10, issue.16, pp.7407-7419, 2018.

Y. A. Gorby, T. J. Beveridge, and R. P. Blakemore, Characterization of the bacterial magnetosome membrane., Journal of Bacteriology, vol.170, issue.2, pp.834-841, 1988.

A. Komeili, Z. Li, D. K. Newman, and G. J. Jensen, Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK, Science, vol.311, issue.5758, pp.242-245, 2006.

E. Cornejo, N. Abreu, and A. Komeili, Compartmentalization and organelle formation in bacteria, Current Opinion in Cell Biology, vol.26, pp.132-138, 2014.

A. Fischer, M. Schmitz, B. Aichmayer, P. Fratzl, and D. Faivre, Structural purity of magnetite nanoparticles in magnetotactic bacteria, Journal of The Royal Society Interface, vol.8, issue.60, pp.1011-1018, 2011.

M. L. Fdez-gubieda, A. Muela, J. Alonso, A. García-prieto, L. Olivi et al., Magnetite Biomineralization inMagnetospirillum gryphiswaldense: Time-Resolved Magnetic and Structural Studies, ACS Nano, vol.7, issue.4, pp.3297-3305, 2013.

J. Baumgartner, G. Morin, N. Menguy, T. Perez-gonzalez, M. Widdrat et al., Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates, Proceedings of the National Academy of Sciences, vol.110, issue.37, pp.14883-14888, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01018010

E. Alphandéry, Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine, Frontiers in Bioengineering and Biotechnology, vol.2, 2014.

R. Le-fèvre, M. Durand-dubief, I. Chebbi, C. Mandawala, F. Lagroix et al., Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma, Theranostics, vol.7, issue.18, pp.4618-4631, 2017.

M. Boucher, F. Geffroy, S. Prévéral, L. Bellanger, E. Selingue et al., Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor, Biomaterials, vol.121, pp.167-178, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01707807

A. Roda, L. Cevenini, S. Borg, E. Michelini, M. M. Calabretta et al., Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors, Lab on a Chip, vol.13, issue.24, p.4881, 2013.

E. Alphandéry, S. Faure, O. Seksek, F. Guyot, and I. Chebbi, Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy, ACS Nano, vol.5, issue.8, pp.6279-6296, 2011.

A. P. Sangnier, S. Preveral, A. Curcio, A. K. Silva, C. T. Lefèvre et al., Targeted Thermal Therapy with Genetically Engineered Magnetite Magnetosomes@ Rgd: Photothermia Is Far More Efficient Than Magnetic Hyperthermia, J. Control, vol.279, pp.271-281, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01950959

C. Chen, S. Wang, L. Li, P. Wang, C. Chen et al., Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI, Biomaterials, vol.104, pp.352-360, 2016.

C. Herborn, N. Papanikolaou, R. Reszka, K. Grünberg, D. Schüler et al., Magnetosomen als biologisches Modell der Eisenbindung: Messung der Relaxivität in der MRT, RöFo - Fortschritte auf dem Gebiet der R, vol.175, issue.6, pp.830-834, 2003.

Z. Xiang, X. Yang, J. Xu, W. Lai, Z. Wang et al., Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide, Biomaterials, vol.115, pp.53-64, 2017.

J. Sun, T. Tang, J. Duan, P. Xu, Z. Wang et al., Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity, Nanotoxicology, vol.4, issue.3, pp.271-283, 2010.

L. Qi, X. Lv, T. Zhang, P. Jia, R. Yan et al., Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells, Scientific Reports, vol.6, issue.1, 2016.

J. Cypriano, J. Werckmann, G. Vargas, A. Lopes-dos-santos, K. T. Silva et al., Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: Implications for medical and biotechnological applications, PLOS ONE, vol.14, issue.4, p.e0215657, 2019.

F. F. Guo, W. Yang, W. Jiang, S. Geng, T. Peng et al., Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1, Environmental Microbiology, vol.14, issue.7, pp.1722-1729, 2012.

K. Li, C. Chen, C. Chen, Y. Wang, Z. Wei et al., Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation, Enzyme and Microbial Technology, vol.72, pp.72-78, 2015.

C. L. Monteil, N. Menguy, S. Prévéral, A. Warren, D. Pignol et al., Accumulation and Dissolution of Magnetite Crystals in a Magnetically Responsive Ciliate, Applied and Environmental Microbiology, vol.84, issue.8, pp.e02865-17, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01950914

R. Liu, J. Liu, J. Tong, T. Tang, W. Kong et al., Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia, Progress in Natural Science: Materials International, vol.22, issue.1, pp.31-39, 2012.

M. A. Soldatov, J. Göttlicher, S. P. Kubrin, A. A. Guda, T. A. Lastovina et al., Insight from X-ray Absorption Spectroscopy to Octahedral/Tetrahedral Site Distribution in Sm-Doped Iron Oxide Magnetic Nanoparticles, The Journal of Physical Chemistry C, vol.122, issue.15, pp.8543-8552, 2018.

/. Octahedral and . Tetrahedral, Insight from Xray Absorption Spectroscopy to Octahedral/Tetrahedral Site Distribution in Sm-Doped Iron Oxide Magnetic Nanoparticles, J. Phys. Chem. C, vol.122, pp.8543-8552

F. Mazuel, A. Espinosa, G. Radtke, M. Bugnet, S. Neveu et al., Biodegradation: Magneto-Thermal Metrics Can Mirror the Long-Term Intracellular Fate of Magneto-Plasmonic Nanohybrids and Reveal the Remarkable Shielding Effect of Gold (Adv. Funct. Mater. 9/2017), Advanced Functional Materials, vol.27, issue.9, 2017.

A. Hassan and C. Wilhelm, Magneto-Thermal Metrics Can Mirror the Long-Term Intracellular Fate of Magneto-Plasmonic Nanohybrids and Reveal the Remarkable Shielding Effect of Gold, Adv. Funct. Mater, vol.27, p.1605997, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01479779

A. Van-de-walle, A. Plan-sangnier, A. Abou-hassan, A. Curcio, M. Hémadi et al., Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells, Proceedings of the National Academy of Sciences, vol.116, issue.10, pp.4044-4053, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02409281

E. Jansen, A. Kyek, W. Sch?fer, and U. Schwertmann, The structure of six-line ferrihydrite, Applied Physics A: Materials Science & Processing, vol.74, issue.0, pp.s1004-s1006, 2002.

J. Sánchez-marcos, M. A. Laguna-marco, R. Martínez-morillas, E. Céspedes, N. Menéndez et al., X-Ray Absorption and Mössbauer Spectroscopies Characterization of Iron Nanoclusters Prepared by the Gas Aggregation Technique, Journal of Nanoscience and Nanotechnology, vol.12, issue.11, pp.8619-8623, 2012.

L. Marcano, D. Muñoz, R. Martín-rodríguez, I. Orue, J. Alonso et al., Magnetic Study of Co-Doped Magnetosome Chains, The Journal of Physical Chemistry C, vol.122, issue.13, pp.7541-7550, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02976433

D. Malferrari, E. Castellini, F. Bernini, A. S. Rubio, G. R. Castro et al., Chemical trapping of gaseous H 2 S at high and low partial pressures by an iron complex immobilized inside the montmorillonite interlayer, Microporous and Mesoporous Materials, vol.265, pp.8-17, 2018.

D. Carta, M. F. Casula, A. Corrias, A. Falqui, G. Navarra et al., Structural and magnetic characterization of synthetic ferrihydrite nanoparticles, Materials Chemistry and Physics, vol.113, issue.1, pp.349-355, 2009.

A. Espinosa, J. Kolosnjaj-tabi, A. Abou-hassan, A. Plan-sangnier, A. Curcio et al., Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo, Advanced Functional Materials, vol.28, issue.37, p.1803660, 2018.

A. L. Rossi, M. M. Longuinho, M. N. Tanaka, M. Farina, R. Borojevic et al., Intracellular pathway and subsequent transformation of hydroxyapatite nanoparticles in the SAOS-2 osteoblast cell line, Journal of Biomedical Materials Research Part A, vol.106, issue.2, pp.428-439, 2017.

F. Brem, A. M. Hirt, M. Winklhofer, K. Frei, Y. Yonekawa et al., Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue, Journal of The Royal Society Interface, vol.3, issue.11, pp.833-841, 2006.

A. Kobayashi, N. Yamamoto, and J. Kirschvink, Studies of Inorganic Crystals in Biological Tissue: Magnetic in Human Tumor., Journal of the Japan Society of Powder and Powder Metallurgy, vol.44, issue.3, pp.294-300, 1997.

H. Sant?ovaia, G. Marques, A. Santos, C. Gomes, and A. Rocha, Magnetic susceptibility and isothermal remanent magnetization in human tissues: a study case, BioMetals, vol.28, issue.6, pp.951-958, 2015.

R. R. Baker, J. G. Mather, and J. H. Kennaugh, Magnetic Bones in Human Sinuses, Nature, vol.301, p.78, 1983.

K. E. Murros, J. Wasiljeff, E. Macías-sánchez, D. Faivre, L. S. Soinne et al., Magnetic Nanoparticles in Human Cervical Skin, Frontiers in Medicine, vol.6, p.123, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02146592

Q. Pankhurst, D. Hautot, N. Khan, and J. Dobson, Increased Levels of Magnetic Iron Compounds in Alzheimer's Disease, Journal of Alzheimer's Disease, vol.13, issue.1, pp.49-52, 2008.

G. Plascencia-villa, A. Ponce, J. F. Collingwood, M. J. Arellano-jiménez, X. Zhu et al., High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer?s disease, Scientific Reports, vol.6, issue.1, pp.1205-1215, 2016.

C. X. Wang, I. A. Hilburn, D. Wu, Y. Mizuhara, C. P. Cousté et al., Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain, eneuro, vol.6, issue.2, pp.ENEURO.0483-18.2019, 2019.

S. Mériaux, M. Boucher, B. Marty, Y. Lalatonne, S. Prévéral et al., Magnetosomes, Biogenic Magnetic Nanomaterials for Brain Molecular Imaging with 17.2 T MRI Scanner, Advanced Healthcare Materials, vol.4, issue.7, pp.1076-1083, 2015.

B. Ravel and M. Newville, ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT, Journal of Synchrotron Radiation, vol.12, issue.4, pp.537-541, 2005.