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Abstract 24 

Mid-infrared reflectance spectroscopy (MIRS) is time- and cost-effective. It was used for 25 

quantifying soil inorganic carbon (SIC) concentration in France based on a national library, 26 

and performances were evaluated on an independent regional set. Our objective was to 27 

improve the accuracy of MIRS predictions based on common multivariate regression, through 28 

spiking (enrichment of the national library with some representative target samples) with 29 

possible extra-weighting (replication of spiking samples) and local calibration (only using 30 

calibration samples that are spectral neighbours of each target samples), which have not been 31 

fully explored yet, in combination especially. 32 

Global (i.e. common) calibration yielded accurate prediction (standard error of prediction, 33 

SEP, was ≈ 5 g kg-1), which could be improved when the library was completed with spiking 34 

samples (optimally 10 samples extra-weighted 40 times; SEP = 3.3 g kg-1). Using spiking 35 

samples only (without the library) yielded slightly less accurate results (SEP = 3.6 g kg-1). 36 

Prediction was more accurate using local calibration without spiking, but on a validation set 37 

that was reduced because some validation samples lacked calibration neighbours (SEP = 2.5-38 

2.7 g kg-1). Local calibration with spiking (optimally 10 samples without extra-weight) 39 

yielded somewhat less accurate prediction but for the full validation set when few calibration 40 

neighbours were required (SEP = 2.7 g kg-1), or higher accuracy on the reduced validation set 41 

when many neighbours were required (SEP = 2.3 g kg-1). 42 

These accurate predictions demonstrated the usefulness of representative spiking and local 43 

calibration for rendering large soil spectral libraries fully operational, while extra-weighting 44 

had no additional benefit. Along with more exhaustive spectral libraries, this paves the way 45 

for extensive use of MIRS for SIC determination. 46 

 47 

Highlights 48 

• We used a national MIRS library for quantifying soil inorganic C in a French region 49 

• Combining representative spiking and local calibration improved prediction markedly 50 

• Requiring more calibration neighbours increased accuracy but on less samples 51 

• MIRS could increasingly replace calcimetry for SIC analysis 52 

 53 

Keywords: Diffuse reflectance spectroscopy, national spectral library, carbonates, France. 54 

 55 

1. Introduction 56 
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In the context of increasing carbon dioxide (CO2) content in the atmosphere, there is growing 57 

interest in the potential of soils to sequester carbon (Lal, 2004; Lal et al., 2015; Dignac et al., 58 

2017). Comprehensive understanding of sinks and sources of soil carbon and their 59 

relationships with global change is a priority research topic, in order to produce accurate 60 

estimates of future atmospheric CO2 concentrations. The soil carbon pool comprises two 61 

distinct components, soil organic carbon (SOC) and soil inorganic carbon (SIC), which 62 

roughly contribute two-thirds and one-third, respectively (Batjes, 2014). Attention is paid 63 

firstly to SOC, which is larger and considered more dynamic than SIC and a key component 64 

in soil functioning. Nevertheless SIC is a pool of carbon that matters and may evolve with 65 

time, land use and climate change (Emmerich, 2003; Sanderman, 2012; Chevallier et al., 66 

2016), thus is worth quantifying. Moreover, to date, quantifying SOC in calcareous soils often 67 

requires determining SIC, SOC being consequently calculated by difference between total 68 

carbon determined by dry combustion and SIC determined by calcimetry. Direct measurement 69 

of SOC in calcareous soils is possible, through wet oxidation (Walkley and Black, 1984) or 70 

dry combustion after acid fumigation (Harris et al., 2001), but these methods use hazardous 71 

and polluting reactants, and have been regularly criticized for inaccurate results; thus 72 

alternative approaches are being looked for (Apesteguia et al., 2018). 73 

The usefulness of infrared diffuse reflectance spectroscopy coupled with chemometrics for 74 

quantifying soil properties cost- and time-effectively has been demonstrated extensively 75 

(Viscarra Rossel et al., 2006; Cécillon et al., 2009; Soriano-Disla et al., 2014; Gredilla et al., 76 

2016). Much attention has been paid to the prediction of SOC concentration by near infrared 77 

reflectance spectroscopy (NIRS), but better predictions have often been achieved for SIC 78 

concentration and/or using mid-infrared reflectance spectroscopy (MIRS; McCarty et al., 79 

2002; Bellon-Maurel and McBratney, 2011; Barthès et al., 2016). Quantification by NIRS and 80 

MIRS requires calibrations, using samples that have been characterized both spectrally and 81 

conventionally (e.g. dry combustion for total carbon and calcimetry for SIC). Large soil 82 

databases that include conventionally- and spectrally-analysed samples representative at a 83 

country or even wider scale are now becoming available (Brown et al., 2006; Genot et al., 84 

2011; Grinand et al., 2012; Viscarra Rossel and Webster, 2012; Stevens et al., 2013; Viscarra 85 

Rossel et al., 2016). Such spectral libraries pave the way for the development of many 86 

applications, as indicated by several works that used large-scale NIRS databases for making 87 

predictions on target sample sets, for instance at local scale (Brown, 2007; Sankey et al., 88 

2008; Guerrero et al., 2010, 2014; Gogé et al., 2014). Some studies tested specific approaches 89 

to improve NIRS or MIRS predictions when using large soil spectral libraries, for instance 90 
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local calibration: instead of using all library samples for building a prediction model, local 91 

calibration selects those most appropriate considering the target set, and in some cases, even 92 

builds a prediction model for each target sample separately, using calibration samples that are 93 

its spectral neighbours (Shenk et al., 1997; Ramirez-Lopez et al., 2013; Lobsey et al., 2017). 94 

Other studies tested spiking, which consists of enriching the calibration set with some samples 95 

originating from the target set (Sankey et al., 2008; Guerrero et al., 2010); these spiking 96 

samples can even be extra-weighted, to increase their influence in the calibration database 97 

(Guerrero et al., 2014). Noticeable improvements in predictions have been reported when 98 

applying local calibration (Genot et al., 2011; Rabenarivo et al., 2013; Gogé et al., 2014; 99 

Clairotte et al., 2016; Lobsey et al., 2017) or spiking, without extra-weighting (Guerrero et al., 100 

2010; Gogé et al., 2014), and even more, with extra-weighting (Guerrero et al., 2014, 2016). 101 

But local calibration and spiking have rarely been used in conjunction (Gogé et al., 2014), and 102 

have never been used with spectrally representative spiking samples or extra-weighting. 103 

The French soil quality monitoring network (Réseau de mesures de la qualité des sols, 104 

RMQS; Arrouays et al., 2002) represents a collection of soil samples originating from more 105 

than 2100 sites located regularly over the whole French metropolitan territory. A range of soil 106 

properties have been analysed on these samples, and their NIR and MIR spectra have been 107 

collected (Gogé et al., 2012; Grinand et al., 2012; Clairotte et al., 2016). 108 

The objective of this work was to improve MIRS prediction of SIC concentration in France 109 

based on the RMQS spectral library, through spiking with representative target samples 110 

(possibly extra-weighted) and local calibration, which have not been fully explored yet, in 111 

combination especially (i.e. local calibration after spiking).  112 

 113 

2. Materials and methods 114 

2.1. National soil library 115 

The soil samples used as calibration database belong to a large national soil library provided 116 

by the French national soil quality monitoring network (RMQS; Arrouays et al., 2002). The 117 

RMQS aims at providing a national overview of soil quality, identifying gradients, monitoring 118 

the evolution of soil quality over time with a frequency of a decade, and building a bank of 119 

soil samples. This soil library was built during a 10-year sampling campaign over the 120 

552 000 km² of the French metropolitan territory (Corsica included), which latitude ranges 121 

from 41 to 51°N and longitude from 5.0°W to 9.5°E. The sampling design was based upon a 122 

square grid with 16-km spacing. At the centre of each square, 25 individual core samples were 123 

taken at 0–30 cm depth using an unaligned sampling design within a 20 × 20 m area, and 124 
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were then bulked to obtain composite samples (Arrouays et al., 2002). Samples were also 125 

collected at 30–50 cm, but these were not considered for this study. In total, 2178 samples 126 

were considered here, representing numerous soil types: Cambisols, Calcosols, Luvisols, 127 

Leptosols, Andosols, Albeluvisols, etc. (IUSS Working Group WRB, 2014). 128 

 129 

2.2. Target set 130 

The target set was made of 164 composite topsoil samples originating from commercial 131 

vineyard plots (one sample per plot) located in nine villages or small towns of the Languedoc-132 

Roussillon region, in southern France. Vine represents the main agricultural production in 133 

Languedoc-Roussillon, which is the largest vine-growing region in France, and the studied 134 

vineyard plots were considered representative of Languedoc-Roussillon (Coll, 2011). The 135 

nine sites are presented in Table 1. Briefly, they have latitude ranging from 42.5 to 44.0°N, 136 

longitude from 2.5 to 4.0°E, elevation from 5 to 358 m a.s.l., with either Calcisols, Arenosols, 137 

Cambisols or Luvisols (IUSS Working Group WRB, 2014). Samples were taken from plots 138 

under different vineyard management systems, which varied according to the types of 139 

pesticides and fertilizers used, and possible inter-row weeding and grass cover. Samples were 140 

collected in inter-row centre at 0–15 cm depth using a hand-held gouge auger. Ten soil 141 

subsamples were taken in each plot and carefully mixed to form a composite sample. More 142 

information on the sites and samples has been provided by Coll (2011) and by Salomé et al. 143 

(2014, 2016). This set was independent from the national library. 144 

 145 

2.3. Soil conventional analysis 146 

All determinations of carbonate content were made in the Laboratoire d'analyses des sols 147 

from INRA (Institut national de la recherche agronomique) in Arras, France, which is 148 

ISO/CEI 17025:2005 accredited. They were carried out on finely ground (< 0.25 mm) 149 

aliquots of 2-mm sieved air-dried soils samples using a Bernard calcimeter, according to the 150 

standard French procedure NF ISO 10693 (ISO, 1995), which consists of measuring the 151 

volume of CO2 produced after the addition of chlorhydric acid (Pansu and Gautheyrou, 2006). 152 

The carbonate content was calculated after calibration with a pure calcium carbonate (CaCO3) 153 

standard and was expressed as equivalent CaCO3 content. Soil inorganic carbon content was 154 

calculated as 0.12 × soil CaCO3content (because the molar mass of carbon is 12 g mol-1 and 155 

that of CaCO3 is 100 g mol-1).  156 

According to the NF ISO 10693 procedure (ISO, 1995), acceptable repeatability for this 157 

analysis is 0.4 g kg-1 when SIC ≤ 6 g kg-1, 6% between 6 and 18 g kg-1, 1.1 g kg-1 between 18 158 
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and 21.6 g kg-1, and 5% when SIC > 21.6 g kg-1. Replicated measurements allowed 159 

calculating the expanded uncertainty associated with SIC analysis in the above-mentioned 160 

laboratory. Expanded uncertainty increases the standard measurement uncertainty, calculated 161 

as the quadratic sum of measurement repeatability and intermediate precision, by multiplying 162 

it by a coverage factor (> 1) related to the confidence level requested (JCGM, 2012). 163 

Measurement repeatability was calculated based on triplicate SIC analysis of 20 samples from 164 

an inter-laboratory network; intermediate precision, based on the analysis of control samples 165 

over time; and the coverage factor was fixed at 2 for achieving a confidence level of 0.95. In 166 

such conditions, and using a modelling approach, the expanded uncertainty was empirically 167 

estimated according to Equation 1: 168 

Expanded uncertainty = 0.025 SIC + 0.13 (SIC in g kg-1)  Equation 1 169 

Expanded uncertainty was considered as standard error of laboratory (SEL). On the target site, 170 

where SIC averaged 19 g kg-1 (Table 1), SEL could thus be estimated at 0.6 g kg-1 [i.e. 171 

(0.025×19)+0.13]. 172 

 173 

2.4. Measurement of mid-infrared reflectance (MIR) 174 

Air-dried, 2-mm sieved then finely ground samples were oven-dried overnight at 40°C before 175 

spectral analysis. Reflectance spectra in the mid-infrared region were acquired at 934 176 

wavenumbers between 4000 and 400 cm−1 (i.e. 2500 and 25 000nm, respectively) at 177 

3.86 cm−1 interval using a Fourier transform Nicolet 6700 (Thermo Fischer Scientific, 178 

Madison, WI, USA). This spectrophotometer is equipped with a silicon carbide source, a 179 

Michelson interferometer as dispersive element, and a DTGS (deuterated triglycine sulfate) 180 

detector. Soil samples were placed in a 17-well plate, where their surface was flattened with 181 

the flat section of a glass cylinder, and they were then scanned using an auto-sampler (soil 182 

surface area scanned: ca. 10 mm²). Each MIR spectrum resulted from 32 co-added scans, and 183 

the body of the plate (beside wells) was used as reference standard and scanned once per plate 184 

(i.e. every 17 samples). Reflectance was converted into apparent absorbance, which is the 185 

decimal logarithm of the inverse of reflectance. Twenty wavenumbers were removed due to 186 

often noisy spectrum end, and MIR spectra were used in the range from 4000 to 478 cm−1 187 

(2500 and 20 909 nm, respectively). 188 

 189 

2.5. Data analysis 190 

2.5.1. Principles 191 
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Mid-infrared absorbance spectra and SIC measurements of the national library samples were 192 

used to build a calibration model that expressed SIC content as a function of sample spectrum. 193 

The model was then applied on validation samples in order to predict their SIC content from 194 

their MIR spectrum. Modified Partial least squares regression (PLSR) was the linear 195 

multivariate regression procedure used to infer SIC content from spectra. To date, PLSR is the 196 

most common procedure for analysing infrared spectral data, in soil science in particular 197 

(Stenberg et al., 2010). It reduces a complex spectral matrix into a few orthogonal 198 

components (or terms, or latent variables LV), which are built in order to maximise their 199 

covariance with the variable of interest (here SIC; Bjørsvik and Martens, 2001). The 200 

modification proposed by Shenk and Westerhaus (1991) consisted of scaling the conventional 201 

data and the absorbance data at each wavelength to have a standard deviation of 1.0 before 202 

each PLS term. All calculations were done using the WinISI 4 software (Foss 203 

NIRSystems/Tecator Infrasoft International, State College, PA, USA). The accuracy of the 204 

prediction models was estimated on the validation set by computing the standard error of 205 

prediction (SEP, calculated according to Equation 2), bias (mean residual), coefficient of 206 

determination (R²val) and RPDval ratio (ratio of SDval to SEP, where SDval is the standard 207 

deviation of the validation set).  208 

SEP = �∑  (	
�	� )²��
�     Equation 2 209 

where yi and y�� are the observed and MIRS-predicted values for sample i, and n the total 210 

number of samples in the validation set. 211 

 212 

2.5.2. The validation set 213 

Out of the 164 samples of the target set, 30 were not used for validation but were kept for 214 

spiking (cf. 2.5.5). The validation set then included 134 samples. The 30 samples kept for 215 

spiking were the most representative spectrally, selected according to a procedure proposed 216 

by Shenk and Westerhaus (1991): 217 

- a principal component analysis (PCA) was performed on the spectra of the 164 target 218 

samples; 219 

- distances between samples in the PCA space were calculated using the Mahalanobis distance 220 

H (Mark and Tunnell, 1985);  221 

- the sample that had the most neighbours closer than a given distance d was selected while its 222 

neighbours were discarded;  223 

- the process was continued until no samples remained with neighbours closer than d;  224 
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- the distance d was set so that 30 samples could be selected.  225 

A PCA was also performed on the spectra of the national library. The spectra of the target 226 

samples were then projected onto this PCA space to calculate their Mahalanobis distance H 227 

and evaluate how they were represented spectrally by the library (Mark and Tunnell, 1985). 228 

 229 

2.5.3. Global calibration 230 

Global PLSR, which is the common PLSR procedure, uses all calibration samples for 231 

building a unique model that is then applied uniformly to all validation samples. The number 232 

of PLSR latent variables that minimized the standard error of cross-validation (SECV) was 233 

retained for the prediction model, with an upper limit set to 16 (SECV was calculated using 234 

Equation 2, with n being the number of calibration samples). The cross-validation was carried 235 

out by dividing the calibration set into four groups composed cyclically (i.e. the 1st, 5th, 9th 236 

samples in the first group, the 2nd, 6th, 10th samples in the second group, etc.), after the 237 

samples had been ranked by increasing SIC values. Three groups were used to develop the 238 

model and one to test it, and the procedure was performed four times to use all samples for 239 

both model development and prediction. The residuals of the four predictions were pooled to 240 

calculate SECV. 241 

 242 

2.5.4. Local calibration 243 

In contrast, local PLSR makes prediction for each validation sample individually, only using 244 

calibration samples that are its spectral neighbours (Shenk et al., 1997). These neighbours 245 

were selected according to the correlation coefficient R between the spectra of calibration 246 

samples and each validation sample, with an R cut-off value below which samples were not 247 

considered neighbours. According to preliminary tests, this R cut-off value was set at 0.95. 248 

The minimum number of calibration neighbours requested was varied from 4 to 50. It is 249 

important to note that prediction was not made for validation samples that did not have 250 

enough calibration neighbours. There was firstly no requirement on the maximum number of 251 

calibration neighbours; then this maximum was set to 300 and 100, but this had limited 252 

interest and the corresponding results will not be presented. 253 

Actually local calibration differs from global calibration on two points: (i) prediction is made 254 

on each validation sample individually, only using calibration neighbours, not all calibration 255 

samples; and (ii) prediction is not made for validation samples that do not have enough 256 

calibration neighbours (i.e. that are poorly represented by the calibration set). To separate 257 

these both aspects, prediction was also made using all calibration samples (i.e. global 258 
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calibration), but only on the validation samples that had enough calibration neighbours. In 259 

that case, predictions by local and global calibration were made on the same validation 260 

samples, and the difference between local and global calibrations was only due to calibration 261 

by neighbours. 262 

In local calibration the number of latent variables was not determined through cross-263 

validation. Instead, each prediction was calculated as the weighted average of the predicted 264 

values generated with 3 to 16 latent variables, each weight being calculated as the inverse of 265 

the product of the root mean square (RMS; cf. Equation 3) of spectral residuals (i.e. the 266 

difference between the actual spectrum and the spectrum approximated using the considered 267 

number of latent variables) and RMS of the regression coefficients using the considered 268 

number of latent variables (Shenk et al., 1997). 269 

RMS = �∑  �
²��
�      Equation 3 270 

where xi are the values considered (i.e. spectral residuals or regression coefficients) and n 271 

their number. 272 

 273 

2.5.5. Spiking 274 

Spiking consists of adding a few target samples to the calibration set, so that the prediction 275 

model better suits the validation set (Guerrero et al., 2010). This was achieved using the 30 276 

representative target samples removed from the validation set (cf. 2.5.2), which will thereafter 277 

be called "spiking samples". Spiking was performed for both global and local calibrations and 278 

different sizes were tested for the spiking subset: 7, 10, 15, 20 and 30 samples. When 7 to 20 279 

samples were used for spiking, they were selected as the most spectrally representative in the 280 

set of 30 samples removed from the target set (in which they were the most spectrally 281 

representative, cf. 2.5.2). 282 

Moreover, the spiking subset could be extra-weighted, which consisted of adding several 283 

copies of this subset to the calibration set, in order to increase its influence in the calibration 284 

(Guerrero et al., 2014). Different weights were tested, from 10 to 200, which means that each 285 

spiking sample was represented by 10 to 200 replicates in the calibration set, respectively. Of 286 

course spiking uses (some) target samples for calibration, but the improvement in model 287 

performance really seems worthwhile (Guerrero et al., 2010, 2014, 2016). Spiking without or 288 

with extra-weighting was performed for both global and local calibration. 289 

 290 

2.5.6. Pre-processing 291 



10 
 

In addition, different common spectrum pre-processing methods, or pretreatments, were 292 

tested: none (no scatter correction); standard normal variate transformation (SNV), which 293 

consists of mean-centring and variance-scaling the spectrum; detrending (D), which consists 294 

of removing a linear trend from the spectrum; SNVD (i.e. both SNV and D); and 295 

multiplicative scatter correction (MSC), which consists of centering and scaling the spectrum 296 

with, respectively, the intercept and slope calculated when regressing linearly this spectrum 297 

against the average calibration spectrum (Geladi et al., 1985; Barnes et al., 1989). These 298 

transformations were possibly followed by first derivation. Derivation aims at reducing 299 

baseline variation and enhancing spectral features, and was calculated over a 5-, 15- or 20-300 

point gap, with 5-point smoothing, in order to reduce signal random noise (Bertrand, 2000). 301 

The conditions of derivation were denoted 155, 1155 and 1205 for first derivation with 5-, 15- 302 

and 20-point gap, respectively, and 5-point smoothing. No derivation and no smoothing was 303 

denoted 001. 304 

 305 

3. Results 306 

3.1. Distributions of SIC content 307 

In the national library and target set, minimum SIC content was ≈ 0 g kg-1 (under the 308 

detection limit), maximum was 104 and 86 g kg-1, mean 6.4 and 18.8 g kg-1, median ≈ 0 and 309 

13.3 g kg-1, and standard deviation 16.0 and 21.4 g kg-1, respectively. The national library was 310 

dominated by samples with no SIC (53%) or very low SIC content (22% with 311 

0 < SIC < 1 g kg-1), while soils with SIC > 20 and > 50 g kg-1 accounted for 12% and 4% of 312 

the library, respectively (Fig. 1). Indeed, the French territory has large mountain regions with 313 

acid rocks and soils (Arrouays et al., 2011). In the target set, samples with no SIC accounted 314 

for a noticeable proportion of the set (31%), but SIC-rich soils were more frequent: samples 315 

with SIC > 20 and > 50 g kg-1 accounted for 43% and 11% of the set, respectively (Fig. 1). 316 

Carbonated rocks and soils cover an important proportion of the region considered, in 317 

southern France. 318 

 319 

3.2. Prediction of SIC content using global calibration without spiking 320 

Global calibration without spiking represents usual calibration, built with the whole national 321 

library. In these conditions, the best MIRS predictions were achieved using the pretreatment 322 

None1155 (i.e. first derivation with 15-point gap and 5-point smoothing) and yielded 323 

SEP = 5.2 g kg-1 and RPDval = 3.7 (Table 2 and Fig. 2a). 324 
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Predictions were particularly poor for the samples that originated from Aigues-Mortes. When 325 

projected onto the PCA space of the national library, most Aigues-Mortes samples were not 326 

close to national library samples (Fig. 3), though only two were spectral outliers formally (i.e. 327 

their Mahalanobis distance H with the national library, i.e. its centre, was > 3). Salomé et al. 328 

(2014), who studied the same sample set, also observed that the soils from Aigues-Mortes 329 

were particular, being quite rich in SIC though very sandy. 330 

 331 

3.3. Prediction of SIC content using global calibration with spiking 332 

3.3.1. Global calibration using spiking samples only (and not the national library) 333 

Firstly calibrations were built using only spiking samples, to address their importance, and the 334 

national library was not used. This led to surprisingly accurate predictions on the 134 335 

validation samples (SEP ranged from 4.5 to 3.6 g kg-1 and RPDval from 4.3 to 5.3; Table 2 for 336 

10 and 30 spiking-calibration samples, and Fig. 4). Actually global calibration with 10 337 

representative samples from the target site led to more accurate predictions than global 338 

calibration using the national library (RPDval = 5.3 vs. 3.7, respectively). 339 

 340 

3.3.2. Global calibration using the national library; effect of the number of spiking samples 341 

Then calibrations were built using the national library enriched with representative spiking 342 

samples. Adding one copy of the spiking samples had little effect on prediction, due to the 343 

large size of the library (SEP = 4.9 g kg-1 and RPDval = 3.9 with 10 to 30 spiking samples; 344 

Table 2 and Fig. 4), as also observed by Guerrero et al. (2014). So the spiking samples were 345 

extra-weighted, meaning that each was replicated 10 to 200 times (Guerrero et al., 2014).  346 

As could be expected, prediction accuracy tended to increase with the number of spiking 347 

samples; but rather unexpectedly, the additional benefit was limited beyond 10 spiking 348 

samples (Fig. 4). Predictions using 7 spiking samples were rather poor (SEP ≈ 5 g kg-1 and 349 

RPDval < 4 with extra-weight ≥ 10), probably because 7 spiking samples were not sufficient to 350 

represent the validation set correctly. 351 

 352 

3.3.3. Global calibration using the national library; effect of the weight of spiking samples 353 

As could also be expected, prediction accuracy increased with the weight of spiking samples, 354 

but the additional benefit was limited beyond 40 replicates (Fig. 4): with 10 spiking samples 355 

replicated 40 times vs. 30 spiking samples replicated 200 times, SEP was 3.3 vs. 3.0 g kg-1 356 

and RPDval 5.9 vs. 6.4, respectively (Table 2). Thus prediction accuracy was little improved 357 

when multiplying the number of spiking samples by three and their weight by five, which 358 
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required three times more conventional analyses, noticeably more computational time, thus 359 

did not seem relevant. Computational time was not measured. However 10 spiking samples 360 

replicated 40 times vs. 30 spiking samples replicated 200 times represented additions of 400 361 

vs. 6000 samples to a library already including 2178 samples, resulting in calibration datasets 362 

of 2578 vs. 8178 samples, respectively.  363 

It seemed that SEP continued to decrease slightly when the weight of spiking samples 364 

increased beyond 200, but this was not explored because it required much computational time. 365 

It would be expected that, with ever increasing weight of spiking samples, prediction 366 

performance would approach that achieved when using spiking samples only (SEP = 3.6-367 

4.0 g kg-1 for ≥ 10 spiking samples; Fig. 4). 368 

 369 

3.4. Prediction of SIC content using local calibration without spiking 370 

3.4.1. Number of calibration neighbours 371 

Local calibration makes prediction on each validation sample separately, only using 372 

calibration samples that are its spectral neighbours according to correlation between spectra, 373 

with an R cut-off value that was set to 0.95; and there is no prediction for validation samples 374 

that do not have enough calibration neighbours. Fig. 5a presents the distribution of validation 375 

samples according to their number of spectral neighbours in the national library; in particular, 376 

1 validation sample had no calibration neighbour, 5 samples had 4 to 9 calibration neighbours, 377 

and all 6 samples with < 10 calibration neighbours originated from Aigues-Mortes (cf. 3.2). 378 

Most validation samples had more than 100 calibration neighbours, except those from 379 

Aigues-Mortes, which had 22 in average (data not shown). 380 

 381 

3.4.2. Local calibration without spiking; effect of the number of calibration neighbours 382 

required 383 

When the minimum number of calibration neighbours was set to 4, local calibration had 384 

limited benefit when compared with global calibration (SEP = 4.4-4.8 g kg-1 and 385 

RPDval = 4.1-4.4 on 133 validation samples; Table 3). When the minimum number of required 386 

neighbours was increased from 4 to 10, 20, 30 then 50, progressively the number of validation 387 

samples that had enough neighbours decreased to 115 samples, while prediction accuracy 388 

increased (SEP decreased to 2.7 g kg-1 and RPDval increased to 7.6; Table 3 for ≥ 50 389 

neighbours, other data not shown). 390 

 391 

3.4.3. Reasons for differences between local and global calibration without spiking 392 
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Actually local calibration did not yield much better prediction than global calibration on the 393 

same validation samples (RPDval = 4.1 vs. 4.0 on 133 samples with ≥ 4 neighbours required 394 

and 7.6 vs. 6.4 on 115 samples with ≥ 50 neighbours, respectively, i.e. an increase ≤ 1.2; 395 

Table 3). By contrast, global calibration on these validation samples that had enough 396 

calibration neighbours yielded noticeably more accurate prediction in general than global 397 

calibration on the whole validation set (RPDval = 6.4 vs. 3.7 on 115 vs. 134 samples, 398 

respectively, i.e. an increase of 2.6 when ≥ 50 neighbours were required), except when few 399 

calibration neighbours were required (RPDval = 4.0 vs. 3.7 on 133 vs. 134 samples, 400 

respectively, with ≥ 4 neighbours; Tables 3 and 2). These comparisons show that without 401 

spiking, most improvement in prediction accuracy from global to local calibration resulted in 402 

general from removing validation samples with too few calibration neighbours; while the 403 

benefit of calibration by neighbours was limited. This was however not the case when few 404 

calibration neighbours were required for local calibration: in that case, improvement from 405 

global to local calibration resulted mainly from calibration by neighbours, because almost all 406 

validation samples had enough neighbours thus were predicted. But this improvement from 407 

global to local calibration, due to calibration by neighbours, was limited. 408 

 409 

3.5. Prediction of SIC content using local calibration with spiking 410 

Local calibration was carried out using the national library enriched with 7 to 30 spiking 411 

samples originating from the target sites, and extra-weighted 10 to 50 times, or not extra-412 

weighted. When extra-weighted, a spiking sample neighbouring a validation sample was 413 

represented by several copies, among the calibration samples used for making a prediction on 414 

this validation sample. 415 

 416 

3.5.1. Local calibration with spiking; effect of the number of spiking samples 417 

Local calibration with 7 spiking samples had little effect on prediction results when compared 418 

with local calibration without spiking (e.g. with ≥ 50 calibration neighbours required, 419 

RPDval = 7.6 without spiking or with 7 spiking samples extra-weighted 10 times, on 420 

133 samples; Table 3 without spiking, data not shown for 7 spiking samples). 421 

Using 10 spiking samples was more useful, but the effects varied, depending firstly on the 422 

number of calibration neighbours required (Table 3): 423 

• with few neighbours required (i.e. 4), prediction was much better with than without 424 

spiking, on all validation samples (RPDval = 7.2-7.3 on 134 samples vs. 4.1 on 425 
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133 samples, respectively; Fig. 2b for extra-weight 1, i.e. no extra-weighting), because 426 

spiking increased the number of calibration neighbours thus improved prediction accuracy; 427 

• with many neighbours required (i.e. 50), the effect was less clear and depended on the 428 

extra-weight of spiking samples: 429 

- with low extra-weight (×1 or ×10), prediction was moderately better with than without 430 

spiking, on the same (reduced) validation set (RPDval = 8.9-9.1 vs. 7.6 on 115 samples, 431 

respectively; Fig. 2c for extra-weight 10), because the small number of replicates from 432 

spiking samples did not provide enough calibration neighbours; 433 

- with high extra-weight (×50), prediction was moderately less accurate with than without 434 

spiking, but on all validation samples (RPDval = 6.8 on 134 samples vs. 7.6 on 435 

115 samples, respectively; Table 3), because the large number of replicates from 436 

spiking samples provided enough calibration neighbours. 437 

Using more than 10 spiking samples did not improve prediction thus had no interest (with 438 

either 10 or 30 spiking samples ×1 or ×10, RPDval = 7.2-7.3 on 134 samples with ≥ 4 439 

neighbours required; and RPDval = 8.8-9.2 on 115-116 samples with ≥ 50 neighbours; 440 

Table 3). Surprisingly, the number of spiking samples had little effect on the number of 441 

validation samples that had enough calibration neighbours (using either 10 or 30 spiking 442 

samples, this number was 134 with ≥ 4 neighbours requested, and 115 or 116 with ≥ 50 443 

neighbours; Table 3). Actually, the distribution of validation samples according to their 444 

number of calibration neighbours was not much affected by the number of spiking samples 445 

(Fig. 5b vs. 5e, 5c vs. 5f, and 5d vs. 5g). 446 

 447 

3.5.2. Local calibration with spiking; effect of the weight of spiking samples 448 

Extra-weighting the spiking samples had little effect on prediction results, with either few 449 

calibration neighbours required (i.e. 4; with 10 spiking samples ×1 to ×50, RPDval = 7.2-7.3 450 

on 134 samples) or many neighbours required (i.e. 50; with 10 spiking samples ×1 or ×10, 451 

RPDval = 8.8-9.2 on 115-116 samples; Table 3). Thus extra-weighting had limited interest in 452 

local calibration, which contrasted with global calibration. High extra-weight of spiking 453 

samples allowed making prediction on all 134 validation samples when many neighbours 454 

were required (i.e. 50; for 10 spiking samples ×50, RPDval = 6.8-7.2); but similar result was 455 

achieved when few neighbours were required (for 10 spiking samples ×1, RPDval = 7.3; 456 

Table 3). 457 

 458 
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3.5.3. Local calibration with spiking; effect of the number of calibration neighbours required 459 

As observed for local calibration without spiking (cf. 3.4.2), increasing the minimum number 460 

of calibration neighbours improved prediction accuracy on a validation set that was reduced 461 

(with 10 spiking samples×1 and ≥ 4 vs. ≥ 50 neighbours required, SEP = 2.7 vs. 2.3 g kg-1 and 462 

RPDval = 7.3 vs. 8.9 on 134 vs. 115 samples, respectively); but this effect vanished at high 463 

extra-weight (with 10 spiking samples ×50 and ≥ 4 vs. ≥ 50 neighbours required, SEP = 2.7 464 

vs. 2.7 g kg-1 and RPDval = 7.2 vs. 6.8 on 134 samples, respectively; Table 3). 465 

 466 

3.5.4. Reasons for differences between local and global calibration with spiking 467 

To compare local and global calibration with spiking, it was useful to consider whether 468 

prediction was possible for all validation samples or not, as was also the case without spiking. 469 

Prediction was possible for all validation samples when all had enough calibration 470 

neighbours, which was achieved (i) when few calibration neighbours were required, or 471 

(ii) when many were required but spiking samples were highly extra-weighted. In that case 472 

where prediction was possible for all validation samples, the difference with global calibration 473 

was not due to the removal of validation samples with too few calibration neighbours. The 474 

difference was only due to calibration by neighbours, and the benefit of local calibration was 475 

noticeable, but it decreased when extra-weighting increased (with 10 spiking samples ×1, ×10 476 

and ×50, local calibration with ≥ 4 neighbours vs. global calibration yielded RPDval = 7.3 vs. 477 

3.9, 7.2 vs. 5.0 and 7.2 vs. 5.9 on 134 samples, respectively; Table 3). Indeed, extra-weighting 478 

the spiking samples improved prediction using global calibration but not using local 479 

calibration. By contrast, when prediction was not possible for some validation samples with 480 

too few calibration neighbours, which in general were poorly predicted otherwise, the 481 

difference between local and global calibration was larger and had two causes: the removal of 482 

poorly predicted samples from the validation set, which was the dominant cause in general, 483 

and calibration by neighbours (with 10 spiking samples ×1 and ×10, local calibration with 484 

≥ 50 neighbours vs. global calibration on the same validation samples vs. global calibration 485 

on the complete validation set yielded RPDval = 8.9-9.1 vs. 7.5-7.8 vs. 3.9-5.0 on 115 vs. 115 486 

vs. 134 samples, respectively; Tables 3 and 2, and Fig. 2c and 2d for local and global 487 

calibration with same calibration and validation samples). 488 

 489 

3.6. Complementary considerations 490 
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The absolute value of bias was large (< -1 g kg-1) with global calibration and < 10 spiking 491 

samples, or ≥ 10 spiking samples extra-weighted < 20 times. With ≥ 10 spiking samples or, in 492 

local calibration, with ≥ 50 neighbours required, prediction improvement was mainly an effect 493 

of bias reduction. Guerrero et al. (2014) also attributed to large bias the poor prediction of 494 

SOC content of target samples when using a large unspiked NIRS library. 495 

Mean SIC was 17.8 g kg-1 on the validation set, thus SEL could be estimated at 0.6 g kg-1 496 

according to Equation 1 (with SEL = expanded uncertainty), and its contribution to SEP was 497 

limited.  498 

 499 

4. Discussion 500 

4.1. Global calibration without spiking 501 

Studying almost the same national library than in the present work, also with MIRS, Grinand 502 

et al. (2012) obtained SEP = 2.9 g kg-1 and RPDval = 5.6 in average when calibrating 503 

randomly (with five replicates) on 20% of the library and validating on 80%, and 504 

SEP = 2.4 g kg-1 and RPDval = 6.8 when calibrating on 80% and validating on 20%. This 505 

seems better than in the present study, but actually, mean SIC was smaller in the national 506 

library than in our target set, and SEP represented 38% to 45% of the mean vs. 29% here. 507 

McCarty et al. (2002) made global MIRS calibrations on profile samples from 14 locations in 508 

nine US states, with RPDval that could be estimated at 8.0 in external random validation (i.e. 509 

possibly non-independent) and at 2.4 in independent validation (one-site-out). This pointed 510 

out that, even for soil attributes linked to molecular functional groups that absorb in the MIR 511 

range, such as SIC content, global calibration without spiking may lead to poor independent 512 

validation when validation samples are poorly represented by calibration samples, as noticed 513 

by Guerrero et al. (2014) from their study and several other works. Similar performances 514 

(RPDval = 2.4) were achieved in independent validation after global visible-and-NIRS 515 

(VNIRS) calibration by Brown et al. (2006) on a very large and diverse set of 516 

> 4100 independent samples from four continents, and by Morgan et al. (2009) on a set of 517 

core samples from six central Texas fields. Brown et al. (2006) used boosted regression trees, 518 

which outperformed PLS regression, and achieved RPDval = 2.7 when using sand content as 519 

auxiliary predictor. Comstock et al. (2019) used a national US library made of 1268 MIR 520 

spectra and PLS global calibration for predicting SIC on 209 independent samples in two US 521 

states, and achieved SEP = 3.1 g kg-1 and RPDval = 6.4. This suggests that the target samples 522 

were better represented by the national library than in the present study, though this aspect 523 

was not specified, from spectral viewpoint especially. These references and our work 524 
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underline that prediction accuracy is greatly affected by sample set diversity, especially by the 525 

distribution of the variable of interest and by the ability of the calibration set to represent the 526 

validation samples, which vary across studies thus render comparisons difficult. 527 

 528 

4.2. Global calibration with spiking 529 

The results achieved when using spiking samples only (and not the national library) for 530 

calibration were not very different from those reported by Grinand et al. (2012). These 531 

authors used MIRS for predicting SIC within the same library than in the present study: 532 

random calibration on 10% of the library yielded RPDval = 5.0 on the remaining samples, 533 

close to RPDval = 5.3 achieved here when using 10 representative target samples to make 534 

prediction on 134 (i.e. 7%). 535 

Moreover, several literature papers have reported NIRS or VNIRS predictions at local scale 536 

through global calibration on a large soil library completed with spiking samples. Sankey et 537 

al. (2008) performed global VNIRS calibration at local scale in north-western USA and 538 

reported better SIC predictions when enriching a national soil library with spiking samples, 539 

but predictions were not necessarily better than when using these spiking samples only (i.e. 540 

without the national library). These authors used more spiking samples than in the present 541 

study (50% of the target set), which could explained the limited benefit of the national library; 542 

but we also achieved comparably accurate predictions when using local samples only than 543 

when using them for spiking the national library (Table 2). Overall, Sankey et al. (2008) 544 

achieved poor predictions (RPD < 1.6, SEP > 80% of the mean), probably due to less 545 

informative spectral range (VNIR vs. MIR) and to random selection of spiking samples, 546 

which did not optimize their representativeness. Guerrero et al. (2010) also observed that 547 

global NIRS-PLSR calibration of soil nitrogen (N) in south-eastern Spain using only a few 548 

samples from the target site could yield similarly and even more accurate validations than 549 

large regional libraries spiked with these samples; thus additional information provided by 550 

regional libraries was not particularly useful. The spiking samples, which were not replicated, 551 

had more influence in general when the library size decreased (different sizes being 552 

considered). This led to the idea of extra-weighting the spiking samples, the interest of which 553 

was demonstrated next by Guerrero et al. (2014). These authors used a national NIRS library 554 

from Spain to build global PLS calibrations of SOC content for target sites in Spain, UK and 555 

Sweden. They got better predictions when the spiking subset was selected according to 556 

spectral representativeness, which was our choice. Moreover, they observed for large libraries 557 

that increasing the weight of spiking samples was more useful than increasing their number. 558 
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They did not fully explore the effect of varying extra-weighting but tested a weight 559 

determined as the ratio of library size to target set size, which would yield 13 in the present 560 

study. We also observed that extra-weighting of spiking samples was more fruitful than 561 

spiking our national library with more than 10 spiking samples, because these represented the 562 

target set correctly. Guerrero et al. (2014) reported accurate predictions when using spiking 563 

samples only, but more accurate predictions when using libraries enriched with extra-564 

weighted spiking samples, which was also our observation. In contrast, predicting SIC in a 565 

24-km² area using the same national library than in the present study but in the VNIR range, 566 

Gogé et al. (2014) found that spiking the national library had limited benefit. They attributed 567 

this result to the strong spectral features of carbonates, which would render the national 568 

library sufficient, while spiking improved prediction accuracy for soil properties supposedly 569 

less strongly featured (SOC, clay, etc.). In this work, the spiking samples were selected at 570 

random, thus not particularly representative of the target site, moreover they were not extra-571 

weighted, and we can assume this also limited the benefit of spiking. 572 

 573 

4.3. Local calibration without spiking 574 

We observed that some validation samples had few calibration neighbours, thus were poorly 575 

represented by the national library, though most of them were not spectral outliers (according 576 

to the Mahalanobis distance H calculated between each validation sample and the library 577 

centre, cf. 3.2). Brown et al. (2005) developed and applied global VNIRS calibrations on six 578 

sites of north-western USA having similar features, and similarly observed, in one-site-out 579 

cross-validations, that SIC predictions might be poor in some individual sites though they 580 

were well represented spectrally by the other sites. This underlines that target samples may be 581 

well represented globally by a calibration set according to usual tests (e.g. H distance between 582 

target samples and the calibration set, i.e. its centre), but nevertheless have few spectral 583 

neighbours in this set, which often leads to poor predictions. 584 

In their above-cited paper that dealt with VNIRS prediction of SIC in a 24-km² area, based on 585 

the same national library than in the present study, Gogé et al. (2014) compared global 586 

calibration with locally weighted calibration involving 300 neighbours (in this local 587 

calibration approach, neighbours' contribution to prediction increases with their spectral 588 

similarity to the target sample). They found little difference in prediction accuracy between 589 

both approaches. This again was attributed to the strong spectral features of carbonates, which 590 

would be correctly represented by the whole library (i.e. would render specific representation 591 

by spectral neighbours useless), while local calibration was more useful for predicting soil 592 
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properties supposedly less strongly featured (e.g. SOC or clay). Moreover, the authors 593 

underlined that the optimal number of calibration neighbours, which was fixed according to 594 

preliminary work, depended on the soil property considered and on the library. 595 

Local calibration involves two aspects: not predicting validation samples with too few 596 

calibration neighbours, on the one hand, and calibration by neighbours, on the other hand. In 597 

the present study, calibration by neighbours had limited benefit without spiking: when local 598 

calibration outperformed global calibration clearly, this was mainly due to not predicting 599 

validation samples with too few calibration neighbours; and this occurred when many 600 

calibration neighbours were required. This suggests that strongly improving prediction 601 

accuracy at the level of the validation set (i.e. SEP, RPDval, etc.) was only possible when 602 

removing and making no prediction on validation samples poorly represented by the 603 

calibration database. It seems relevant to not use a spectral library for making prediction on 604 

samples it poorly represents; but having to make prediction on less samples to improve 605 

overall prediction accuracy may be somewhat disturbing. Actually, making no prediction on 606 

target samples poorly represented by the calibration set is not specific to local calibration, and 607 

may occur in global calibration too: a cut-off value of a distance parameter between each 608 

target sample and the calibration set can also be used for removing target samples that are 609 

considered outliers (e.g. Castaldi et al., 2018, who used the H distance). We must admit the 610 

incomplete ability of MIRS to quantify SIC and other soil properties on certain samples as 611 

long as soil spectral libraries are incomplete. It is however predictable that the 612 

representativeness of soil spectral libraries will become more and more complete with time. 613 

 614 

4.4. Local calibration with spiking 615 

Few authors have performed local calibration with spiking. Gogé et al. (2014) performed 616 

locally weighted calibration with spiking for VNIRS prediction of SIC in a 24-km² target area 617 

using the French national library. This approach had little benefit when compared to locally 618 

weighted calibration without spiking and to global calibration with and even without spiking, 619 

which again was attributed to the strong spectral features of carbonates. Limited effect of 620 

spiking might also be attributed to random selection of spiking samples. Seidel et al. (2019) 621 

used VNIRS and PLS for predicting SOC in two fields in Germany. Spectral neighbours of 622 

target samples (50 per sample) were selected from a national library then all used for building 623 

global calibration. Selecting spectral neighbours in the national library reminds of local 624 

calibration, though prediction was not made for each target sample individually. However, 625 

there was no threshold below which a calibration sample was not considered as neighbour; 626 
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and as target samples were poorly represented by the national library (as specified by PCA), 627 

predictions were poor without spiking (RPDval ≤ 1.3 vs. ≤ 1.2 with the full national library). 628 

This underlines the interest of such threshold (e.g. cut-off R), which ensures that samples used 629 

for calibration are really neighbours, and that if neighbours are lacking, there will be no 630 

prediction for the target samples considered, thus no risk of poor prediction. Then Seidel et al. 631 

(2019) observed that spiking improved predictions markedly (RPDval ≥ 2.5, ≥ 2.9 and ≥ 3.3 632 

with 10, 15 and 20 spiking samples, respectively). 633 

In the present study, prediction using local calibration became possible for all validation 634 

samples through spiking, when either few calibration neighbours were required or when 635 

spiking samples were heavily extra-weighted. Prediction accuracy was similar in both cases, 636 

indicating that extra-weighting had little interest in local calibration, which contrasted with 637 

global calibration. When compared with global calibration with spiking, the benefit of local 638 

calibration with spiking resulted often from not predicting validation samples poorly 639 

represented by the calibration database, as already observed without spiking. But in contrast 640 

to what was observed without spiking, noticeable benefit could also result from calibration by 641 

neighbours, when the spiking samples were moderately extra-weighted (i.e. global calibration 642 

was little improved by spiking) and few calibration neighbours were required (i.e. prediction 643 

using local calibration was possible for all validation samples). 644 

The optimisation of parameters proposed here could not be generalised, as it clearly depended 645 

on the size, spectral diversity and spectral proximity of the calibration database and validation 646 

set. Values proposed for number and extra-weight of spiking samples and number of 647 

calibration neighbours could be seen as orders of magnitude. 648 

 649 

5. Conclusion 650 

Global calibration yielded accurate prediction (RPDval ≈ 4), which could be noticeably 651 

improved when the library was completed with extra-weighted spiking samples (optimally 652 

10 samples × 40 times; RPDval ≈ 6). Prediction was more accurate using local calibration 653 

without spiking, but on a validation set that was reduced from 134 to 115 samples 654 

(RPDval ≈ 8; on the same reduced set, global calibration without spiking yielded RPDval ≈ 6). 655 

Local calibration with spiking (optimally 10 samples without extra-weight) yielded 656 

moderately less accurate prediction but for the full validation set when ≥ 4 calibration 657 

neighbours were required (RPDval ≈ 7), or higher accuracy on 115-116 samples when 658 

≥ 50 neighbours were required (RPDval ≈ 9).  659 
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Of course, parameter optimisation depended on the size, diversity and proximity of the 660 

calibration database and validation set, and the optimums proposed here could not be 661 

generalised (number and extra-weight of spiking samples, number of calibration neighbours). 662 

Nevertheless, the results of the present study confirmed that MIRS prediction of SIC is 663 

accurate, and demonstrated that the usefulness of large soil spectral libraries can be improved 664 

by the combination of representative spiking and local calibration, while extra-weighting of 665 

spiking samples has no additional effect. 666 

Local calibration raised the question of either making prediction, or not, on validation samples 667 

poorly represented by the calibration database, as long as the database is incomplete; and the 668 

choice depends on user's priority (e.g. most accurate prediction or prediction on all samples). 669 

Anyway, identifying such samples is crucial, at least to know that prediction is not fully 670 

reliable for them. Moreover, it is predictable that spectral libraries will become more and 671 

more complete with time, and that accurate prediction will become possible for all samples. In 672 

such conditions, calcimetry could be increasingly replaced by MIRS for SIC analysis. 673 
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Table 1. Presentation of the sites of the target set. 883 

 884 

Town or 

village 

Number 

of plots 

Longitude 

and latitude 

Elevation 

(m a.s.l.) 

Soil typea Mean clay 

content 

(%) 

Mean sand 

content 

(%) 

SIC range 

and mean 

(g kg-1) 

Terrats 11 42° 36’ 27ˮ N, 

02° 46’ 14ˮ E 

135 Luvisol and 

Cambisol 

27 41 0-3, 0 

Lesquerde 19 42° 48’ 01ˮ N, 

02° 31’ 47ˮ E 

358 Arenosol 7 81 0-1, 0 

Montagnac 21 43° 28’ 50ˮ N, 

03° 29’ 02ˮ E 

54 Calcisol 38 32 23-84, 50 

Faugères 21 43° 33’ 57ˮ N, 

03° 11’ 19ˮ E 

284 Cambisol 16 52 0-12, 1 

Aigues-Mortes 18 43° 34’ 02ˮ N, 

04° 11’ 33ˮ E 

5 Arenosol 7 88 17-25, 23 

Vergèze 17 43° 44’ 37ˮ N, 

04° 13’ 14ˮ E 

32 Cambisol 36 18 2-50, 28 

Jonquières  

Saint-Vincent 

19 43° 49’ 38ˮ N, 

04° 33’ 48ˮ E 

37 Rhodic 

Luvisol 

18 43 0-6, 1 

Saint-Hippolyte- 

du-Fort 

15 43° 57’ 56ˮ N, 

03° 51’ 28ˮ E 

170 Calcisol 42 22 7-86, 43 

Saint-Victor- 

la-Coste 

23 44° 03’ 38ˮ N, 

04° 38’ 29ˮ E 

143 Calcisol 16 54 1-43, 20 

Whole target set 164 - - - - - 0-86, 19 

National library 2178 - - - - - 0-104, 6 

aIUSS Working Group WRB (2014). 885 

 886 

 887 
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Table 2. Prediction results after global calibration without or with spiking. 888 

 889 

Spiking 

samples 

and weight 

Best pre- 

treatment 

Calibration 
 

Validation 

Ncal
a Meancal

b SDcal
b LVc SECVd R²cv

e RPDcv
f 

 
Nval

a Meanval
b SDval

b SEPd bias slope R²val
e RPDval

f 

0 None1155 2178 6.4 16.0 11 2.7 0.97 6.0 134 17.8 19.3 5.2 -2.8 1.10 0.96 3.7 

10×1 D1155 10 spiking samples only 22.7 30.2 3 5.3 0.97 5.7 134 17.8 19.3 3.6 0.4 1.04 0.97 5.3 

30×1 D1205 30 spiking samples only 23.3 29.0 3 5.0 0.97 5.8 134 17.8 19.3 3.8 -0.6 1.10 0.97 5.1 

10×1 D1155 2188 6.5 16.1 11 2.7 0.97 6.0 134 17.8 19.3 4.9 -2.5 1.09 0.96 3.9 

10×10 D1205 2278 7.1 17.1 13 2.9 0.97 5.9 134 17.8 19.3 3.9 -1.2 1.07 0.97 5.0 

10×40 D1205 2578 8.9 19.5 14 3.2 0.97 6.1 134 17.8 19.3 3.3 -0.1 1.04 0.97 5.9 

10×50 D1155 2678 9.4 20.0 14 3.2 0.97 6.3 134 17.8 19.3 3.3 0.2 1.03 0.97 5.9 

30×10 None1155 2478 8.4 18.8 11 2.8 0.98 6.7 134 17.8 19.3 4.0 -1.6 1.08 0.97 4.8 

30×200 D1155 8178 18.8 26.8 14 3.1 0.99 8.7 134 17.8 19.3 3.0 -0.2 1.04 0.98 6.4 

 
890 

a Ncal and Nval are the number of calibration samples and of validation samples predicted, respectively. 891 
b Meancal, SDcal, Meanval and SDval are the mean and standard deviation over the calibration and validation set, respectively (in g kg-1). 892 
c LV is the number of PLS latent variables (or terms). 893 
d SECV and SEP are the standard error of cross-validation and prediction, respectively (in g kg-1). 894 
e R²cv and R²val are the determination coefficient for cross-validation and validation, respectively. 895 
f RPDcv is the ratio of SDcal to SECV, RPDval is the ratio of SDval to SEP. 896 

897 
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Table 3. Prediction results after local calibration without or with spiking (and comparison with global calibration on the same validation samples). 898 

 899 

Spiking 

samples 

and weight 

Procedure Best pre- 

treatment 

Validation 

Nval
a Meanval

b SDval
b SEPc bias slope R²val

d RPDval
e 

0 Local calibration using 4 to possibly 2178 calibration neighbours None001 133 17.8 19.4 4.8 -2.0 1.07 0.95 4.1 

0 Global calibration with 2178 samples and the same 133 validation samples None1155 133 17.8 19.4 4.9 -2.7 1.09 0.96 4.0 

0 Local calibration using 50 to possibly 2178 calibration neighbours None001 115 17.0 20.7 2.7 -0.8 1.02 0.99 7.6 

0 Global calibration with 2178 samples and the same 115 validation samples None1155 115 17.0 20.7 3.3 -1.6 1.05 0.98 6.4 

10×1 Local calibration using 4 to possibly 2188 calibration neighbours SNV001 134 17.8 19.3 2.7 -0.0 1.01 0.98 7.3 

10×1 Local calibration using 50 to possibly 2188 calibration neighbours SNVD001 115 17.0 20.7 2.3 -0.5 1.03 0.99 8.9 

10×1 Global calibration with 2188 samples and the same 115 validation samples SNV1155 115 17.0 20.7 2.7 -0.2 1.00 0.98 7.8 

10×10 Local calibration using 4 to possibly 2278 calibration neighbours SNV001 134 17.8 19.3 2.7 -0.5 1.01 0.98 7.2 

10×10 Local calibration using 50 to possibly 2278 calibration neighbours SNVD001 115 17.0 20.7 2.3 -0.4 1.03 0.99 9.1 

10×10 Global calibration with 2278 samples and the same 115 validation samples D1205 115 17.0 20.7 2.7 -0.5 1.04 0.98 7.5 

10×50 Local calibration using 4 to possibly 2678 calibration neighbours SNV001 134 17.8 19.3 2.7 -0.5 1.01 0.98 7.2 

10×50 Local calibration using 50 to possibly 2678 calibration neighbours D001 134 17.8 19.3 2.7 -0.8 1.03 0.98 6.8 

10×50 Global calibration with 2678 samples and all 134 validation samples D1155 134 17.8 19.3 3.3 0.2 1.03 0.97 5.9 

30×1 Local calibration using 4 to possibly 2208 calibration neighbours SNV001 134 17.8 19.3 2.7 -0.5 1.03 0.98 7.2 

30×1 Local calibration using 50 to possibly 2208 calibration neighbours SNVD001 115 17.0 20.7 2.3 -0.5 1.03 0.99 9.2 

30×1 Global calibration with 2208 samples and the same 115 validation samples SNV1155 115 17.0 20.7 2.6 -0.4 1.00 0.98 7.9 

30×10 Local calibration using 4 to possibly 2478 calibration neighbours SNV001 134 17.8 19.3 2.7 -0.5 1.04 0.98 7.2 

30×10 Local calibration using 50 to possibly 2478 calibration neighbours SNV001 116 17.0 20.6 2.3 -0.5 1.04 0.99 8.8 

30×10 Global calibration with 2478 samples and the same 116 validation samples SNVD1155 116 17.0 20.6 2.5 -0.2 1.03 0.99 8.2 

 900 
a Nval is the number of validation samples predicted. 901 
b Meanval and SDval are the mean and standard deviation over the validation set (in g kg-1). 902 
c SEP is the standard error of prediction (in g kg-1). 903 
d R²val is the determination coefficient for validation. 904 
e RPDval is the ratio of SDval to SEP. 905 
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Figure captions 

 

Fig. 1. Distribution of soil inorganic carbon (SIC) content in the national library 

(2178 samples, 0–30 cm depth) and in the target set (164 samples, 0–15 cm depth). 

 

Fig. 2. Comparison between reference measurements and MIRS predictions of SIC content on 

the validation set using (a) global calibration without spiking, (b) local calibration using 4 to 

2188 spectral neighbours from the national library enriched with 10 spiking samples without 

extra-weighting, (c) local calibration using 50 to 2278 neighbours from the national library 

enriched with 10 spiking samples extra-weighted 10 times, and (d) global calibration with 

similar spiking conditions and the same validation samples. 

 

Fig. 3. Projection of the validation samples on the PCA built with the national library. 

 

Fig. 4. Standard error of prediction (SEP) of SIC content when performing global MIRS 

calibration with the national library and spiking samples, as affected by the number and 

weight of spiking samples, or with spiking samples only (i.e. without the national library). 

 

Fig. 5 Distribution of validation samples according to their number of spectral neighbours in 

the calibration set (a) without spiking; (b) with 10 spiking samples replicated 1 time, 

(c) replicated 10 times, and (d) replicated 50 times; and (e) with 30 spiking samples replicated 

1 time, (f) replicated 10 times, and (g) replicated 50 times. 
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Fig. 1. Distribution of soil inorganic carbon (SIC) content in the national library 

(2178 samples, 0–30 cm depth) and in the target set (164 samples, 0–15 cm depth). 
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Fig. 2. Comparison between reference measurements and MIRS predictions of SIC content on 

the validation set using (a) global calibration without spiking, (b) local calibration using 4 to 

2188 spectral neighbours from the national library enriched with 10 spiking samples without 

extra-weighting, (c) local calibration using 50 to 2278 neighbours from the national library 

enriched with 10 spiking samples extra-weighted 10 times, and (d) global calibration with 

similar spiking conditions and the same validation samples. 
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Fig.3. Projection of the validation samples on the PCA built with the national library. 
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Fig. 4. Standard error of prediction (SEP) of SIC content when performing global MIRS 

calibration with the national library and spiking samples, as affected by the number and 

weight of spiking samples, or with spiking samples only (i.e. without the national library). 
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Fig. 5. Distribution of validation samples according to their number of spectral neighbours in 

the calibration set (a) without spiking; (b) with 10 spiking samples replicated 1 time, 

(c) replicated 10 times, and (d) replicated 50 times; and (e) with 30 spiking samples replicated 

1 time, (f) replicated 10 times, and (g) replicated 50 times. 
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