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Abstract  28 

The trees in agroforestry plots create spatial heterogeneity of high interest for adaptation, 29 

mitigation, and the provision of ecosystem services. But to what distance, exactly, from the 30 

tree? We tested a novel approach, based upon geostatistics and Unmanned Aerial Vehicle 31 

(UAV) sensing, to infer the distance at which a single agroforestry tree affects the 32 

surrounding under-crop, and to map yield, litter (i.e. stover) and crop-partial Land Equivalent 33 

Ratio (LERcp) at the whole-plot level. 34 

In an agro-silvo-pastoral parkland of semi-arid western Africa dominated by the multi-35 

purpose tree Faidherbia albida, we harvested the pearl-millet under-crop at the whole-plot 36 

scale (ca. 1 ha) and also in subplot transects, at three distances from the trunks. We observed 37 

that the yield was three times higher below the tree crown (135.6 g m-2) than at a distance of 38 

five tree-crown radii from the trunk (47.7 g m-2). Through geostatistical analysis of multi-39 

spectral, centimetric-resolution images obtained from an UAV overflight of the entire plot, we 40 

determined that the ‘Range’ parameter of the semi-variogram (assumed to be the distance of 41 

influence of the trees on the Normalized difference vegetation index (NDVI)) was 17 m. We 42 

correlated the yield (r2 = 0.41; RRMSE = 48%) and litter production (r2 = 0.46; RRMSE = 43 

35%) in subplots with NDVI, and generated yield and litter maps at the whole-plot scale. The 44 

measured whole-plot yield (0.73 t ha-1) differed from the one estimated via the UAV mapping 45 

by only 20%, thereby validating the overall approach. The litter was estimated similarly at 46 

1.05 tC ha-1 yr-1 and mapped. Using a geostatistical proxy for the sole crop, LERcp was 47 

estimated 1.16, despite the low tree density.  48 

This new method to handle heterogeneity in agroforestry systems is a first application. We 49 

also propose strategies for extension to the landscape level.  50 
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1 Introduction 53 

Agroforestry provides attractive alternatives to monoculture, especially when the benefits of 54 

association can be quantified and explained convincingly based upon phenomena such as 55 

extended resource acquisition, complementarity, and facilitation. Even before modern science 56 

provided such explanations, the benefits of agroforestry systems had been clear to traditional 57 

societies, which made those systems a prominent and enduring feature of their agriculture, 58 

especially in the tropics. Agroforestry was largely abandoned during the green revolution Jain 59 

(2010), but is enjoying a strong revival and increased interest, particularly in Africa (Mbow et 60 

al., 2014), in the context of climate change, food-security concerns, limits to growth 61 

(Meadows and Meadows, 2007), and sustainable-development goals (Griggs et al., 2013). 62 

Agroforestry systems are part of the bedrock of sustainable intensification because they are 63 

compatible with options such as conservation agriculture, agro-silvo-pastoralism, and 64 

precision agriculture (Aune et al., 2017). 65 

To what distance does a tree affect specific crop traits, e.g. biomass, productivity, yield, C 66 

sequestration, root distribution, resource acquisition, or hydraulic redistribution? Assessing 67 

the distance (radial extent) of influence of trees on the under-crops and adjusting tree density 68 

are key to managing agroforestry systems, with direct impacts on the system’s productivity, 69 

provision of ecosystem services and capacity to mitigate and adapt to climate changes. 70 

However, the difficulty and expense of manipulating tree densities (whether in orchards or in 71 

long-term scientific trials) discourages efforts. A partial remedy is the modeling of 72 

agroforestry in silico, which extends our ability to test optional densities under various 73 

scenarios (van Noordwijk and Lusiana, 1998; Luedeling et al., 2016; Vezy et al., 2018; 74 

Dupraz et al., 2019; Vezy et al., 2020), although within the limits of validation.  75 
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 A common assumption is that trees must influence the crop anyhow, even at large distances, 76 

above or belowground (Luedeling et al., 2016) and that the distance of influence depends on 77 

the crop trait of interest. Can we assess that distance for a single crop trait at least, like yield 78 

for instance? What is the pattern of influence? Is the effect multinomial, such as for 79 

windbreaks for example (McNaughton, 1988) or rather monotonic? Solving the question, trait 80 

by trait and statistically would simplify the process of adjusting tree density, according to the 81 

local priority. The usual way to address this issue experimentally is by designing subplot 82 

arrays in the form of rings or logarithmic spirals (Tomlinson et al., 1998) around the 83 

agroforestry trees, or in the form of transects between them (Louppe et al., 1996). Given the 84 

large heterogeneity induced by the trees, this requires a huge amount of replicates and field 85 

work and it is unlikely that it could be extrapolated at the whole-plot or landscape scale. 86 

However, the issue can also be framed as a problem in spatial- or geo-statistics, and 87 

investigated using interpolation solutions that treat the phenomena of interest (such as crop 88 

traits, or in-soil C stocks) as random variables within the tree interspace. In a recent review, 89 

Bayala et al. (2015) proposed combining yield mapping with geostatistics to address parkland 90 

effects on crops, accounting for directional variability. Surprisingly, there were few 91 

geostatistical applications under agroforestry so far: most of them characterize spatial 92 

dependence of soil properties (e.g. Simon et al. (2013)), fewer on crop traits (e.g. Mora and 93 

Beer (2013)) and hardly any or none on crop yield. We argue that given the high spatial 94 

heterogeneity of edapho-climatic conditions induced by the trees in agroforestry systems 95 

(Charbonnier et al., 2013; Charbonnier et al., 2014), and the large number of microclimate 96 

and productivity random variables that could truly be mapped therein, a great deal of valuable 97 

information may yet be brought to light through studies that complement classical 98 

experimental designs with geostatistical methods. 99 
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That same geostatistical information may help agroforestry systems fulfil their potential to 100 

provide reasonable options for mitigation, adaptation, and resilience in the face of climate 101 

changes (Albrecht and Kandji, 2003; Kumar and Nair, 2011; Lorenz and Lal, 2014; Zomer et 102 

al., 2016). In that respect, too, the densities of an agroforestry system’s trees and under-crop 103 

are important. Regarding mitigation, the build-up of tree perennial biomass stores C rapidly, 104 

but in the short term, whereas soil stores C for the long term, but via slow processes of uptake 105 

from the litter (crop residues, or stover), and only a small part of this achieves long residence 106 

times in stable organic matter pools. Crop productivity, litter, and SOC build-up are key 107 

factors in the long term (e.g. throughout rotations). We argue that neither the crop biomass 108 

and productivity (and its partitioning between residuals and exports), nor the soil component, 109 

nor the spatial variability of C sequestration inside the agroforestry plot should be neglected 110 

when estimating mitigation, especially for the long term. Here, again, is where geostatistics 111 

may prove valuable. The under-crops and the soil were long neglected or assumed to be 112 

neutral for C sequestration in agroforestry systems. They were not even accounted for in the 113 

IPCC guidelines (Smith et al., 2014). Only recently did Cardinael et al. (2018b) review 114 

coefficients for estimating C storage rates in biomass and soil, according to the type of land-115 

use change (LUC) and the world region—an effort to be further incorporated into Tier 1 IPCC 116 

guidelines. We argue that any method that could map metrics for crop biomass, C stock, NPP, 117 

and litter inside heterogeneous agroforestry systems has the potential to further improve Tier 118 

1 coefficients. 119 

Similar comments—including those regarding the crucial importance of tree density and of 120 

the distance to which the trees influence the under-crop— apply to agroforestry systems’ 121 

capacities for adaptation. It is often assumed that agroforestry trees create ‘islands of fertility’ 122 

around them (Félix et al., 2018). That is, trees may improve the microclimate locally, along 123 

with the soil’s infiltrability and its physical, chemical, and biological conditions.  124 
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Overall, the tree density and distance of influence of the trees on crops appear as a crucial 125 

aspect facing climate changes, both for mitigation and adaptation. Climate change could 126 

imply afforestation, reforestation and increase in tree density in conditions where the 127 

ecosystems were degraded, or where ecological intensification is needed, with consequences 128 

for mitigation and adaptation of climate change policies. The trade-offs between ecosystem 129 

services carry to scrutiny in the context of a modification of tree density and the question of 130 

adoptability is crucial. Any means to demonstrate the benefits on crop productivity and C 131 

stock or storage inside heterogeneous agroforestry systems, such as mapping and quantifying 132 

finely those variables under a range of tree densities, should be reflected in the impact. 133 

Remote sensing and proxy-detection are attractive tools for the necessary mapping of target 134 

crop traits. As one example, the estimation of yields of cereal crops in a complex agricultural 135 

landscape was made possible by the democratization of satellite imagery of high spatial-136 

temporal resolution (VHR: e.g. Sentinel-2, Landsat 8 or PlanetScope). Leroux et al. (2019) 137 

exploited the VHR pathway in their recent study of an agroforestry parkland with an under-138 

crop of millet. They showed how the assessment of agronomic performances at the whole-plot 139 

level can be improved by integrating structural information from the parkland with a 140 

statistical model for estimating millet yields via remote sensing. However, this type of 141 

approach based upon yield subplots chosen randomly in the landscape could not integrate the 142 

intra-plot variability: therefore, it could not investigate the effects of environmental micro-143 

variability, or the farmers' precision practices, or the local impact of trees.  144 

In contrast, unmanned aerial vehicles (UAVs) can assess intra-plot variability even in 145 

heterogeneous agricultural landscape of smallholder farming system, thereby complementing 146 

satellite VHR data (Schut et al., 2018). The potential of UAVs for that purpose remains to be 147 

exploited fully. In Padua et al. (2017), a review of practical applications of UAVs in 148 

agroforestry, and in Adao et al. (2017), a forecast of developments in hyperspectral imaging, 149 
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we found few examples where UAVs were used to study systems with perennials and an 150 

under-layer. Rare examples were studied of orchards, considering only the fruit trees therein 151 

(Sarron et al., 2018). None considered the under-crop in an agroforestry system. Indeed, we 152 

are not aware of any studies that used UAV to obtain fine-scale data that was then analysed by 153 

geostatistical methods to address the central question of the distance at which the trees 154 

influence the under-crop. Therefore, we propose this novel approach here: we first assess 155 

yield and litter (a proxy for C input to the soil) of the under-crop classically, from subplot 156 

arrays. Second we scale those variables to the whole-plot level via a method that involves 157 

UAV-based mapping of spectral vegetation indices and correlation between spectral indices 158 

and groundtruth. Third we compute the distance of influence of the trees according to the 159 

geostatistical parameter ‘Range’.  160 

Based upon our results, we also propose a new variant of the land-equivalent ratio (LER).  161 

LER is a standard index for comparing the performances of crops in association vs. sole crops 162 

(i.e., those in separate monoculture fields) (Mead and Willey, 1980). The LER is defined as 163 

the ratio of the amounts of land that each of those agricultural systems requires in order to 164 

give the same production. 165 

For a crop under trees, Mead and Willey (1980) computed the LER as  166 

��� = ���� + ���� = �	


��

+ �	�

���
 ,       (eq. 1) 167 

where the subscripts C and T denote the crop and the tree, respectively; Yi is the yield in 168 

intercropping;  and Ys is the yield in sole-cropping.  169 

A LER greater than 1 indicates that the agroforestry system uses land more productively than 170 

sole-cropping. Although equation 1 gives a single LER value for the system, each term on the 171 

right-hand side is, in effect, the LER for its respective species. These partial LER are useful 172 

when data for only one crop partner is available or of direct interest: for instance it can be 173 
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calculated for the crop only, if there is no pure tree plot available. However, even when 174 

targeting the crop-partial LER (LERcp) only, one is limited when landscape of interest has few 175 

treeless areas. Because the few treeless patches that do exist therein may not be representative 176 

of (for example) prevailing soil conditions, basing an LER upon crop yields from those 177 

patches is risky. The work that we report here may offer a way out of that conundrum. We 178 

propose a method, based upon geostatistical inference, for determining the distance beyond 179 

which a tree in the agroforestry system of interest does not affect the under-crop, allowing to 180 

compute the crop-partial LER (LERcp) directly within complex agroforestry systems.  181 

In summary, the aims of the present study are to: (i) quantify the distance of influence of the 182 

tree on the under-crop; (ii) upscale productivity and litter results from small sampling plots to 183 

the whole stand through UAV-based mapping of spectral indices; and (iii) propose a simple 184 

method to assess LERcp within agroforestry systems where no true sole-crop control is 185 

available. 186 

Our study site is a Faidherbia albida parkland located in the groundnut basin of Senegal, 187 

western Africa, with pearl millet as the under-crop. Faidherbia albida is a multipurpose tree. 188 

It is emblematic of agroforestry in dry Africa because of its widespread adoption by rural 189 

peoples, with generally positive effects upon associated crops (CTFT, 1988). In contrast, 190 

pearl-millet (Pennisetum glaucum, L.) is the sixth cereal in terms of world production, with 191 

crucial role for food security in arid areas of sub-Saharan Africa and India. It is considered a 192 

“cereal of last resort” for farmers in especially challenging, arid conditions (Debieu et al., 193 

2017), where other crops would fail. Thus, pearl millet is a bastion of food security in the face 194 

of climate changes.  195 
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2 Materials and methods 196 

2.1 Study site, soil and climate:  197 

The study was conducted in the agroforestry parkland of Niakhar/Sob, in the groundnut basin 198 

of Senegal, western Africa (region of Fatick, 135 km East of Dakar). Within the site is a 50-199 

year-old observatory, the Health and Demographic Surveillance System (HDSS-Niakhar, 200 

https://lped.info/wikiObsSN/?HomePage) (Delaunay et al., 2018). The soil is sandy and very 201 

poor (0-20 cm layer: >85% sands; <1% clay; CEC < 2%; pH_H2O ca. 5.7) and several meters 202 

deep. It overlies an Eocene limestone bedrock. A brackish water table is present at around 6 203 

m. 204 

The climate is soudano-sahelian, with a wet season from June to October, followed by an 205 

eight-month dry season. According to Lalou et al. (2019), rainfall decreased from 900 to 400 206 

mm between 1950 and 1995 (the driest period), then recovered partially to ca. 500 mm by 207 

2015. The seasonal distribution shifted during that recovery period: less rain now falls during 208 

the early part of the wet season, and more at the end. The year 2018 was typical of the new 209 

distribution: only one heavy rain (haboob) fell by the end of June, allowing pearl millet to 210 

germinate. The ensuing dry spell, which lasted until August, reduced crop growth and 211 

threatened the crop’s very survival. The year’s total rainfall, as was measured on site with an 212 

automatic tipping bucket (Texas Electronics, model TE525mm), was 454 mm. 213 

Early that year, during the dry season, we launched the highly instrumented “Faidherbia-214 

Flux” site (http://agraf.msem.univ-montp2.fr/Senegal.html). It was set up within farmers’ 215 

active agro-silvo-pastoral bush fields, which are dominated by the multipurpose tree 216 

Faidherbia albida (Del.) A. Chev. In an area of 15 ha surrounding the experiment, the 217 

faidherbia density was 6.8 tree ha-1 and the canopy cover was 5.14 %. The under-crop here is 218 

a mosaic of crops, including pearl-millet (‘Souna’, a traditional, 90 days cycle duration, low 219 
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photoperiodic and heterogenous millet variety), groundnut, watermelon, cowpea, and fallow 220 

(Fig. 1). Faidherbia-Flux is located N: 14°29'44.916"; W: 16°27'12.851". It is registered with 221 

FLUXNET (http://daac.ornl.gov/FLUXNET/fluxnet.shtml) as ‘Sn-Nkr’. To accommodate the 222 

research needs of multidisciplinary teams, it has instruments and facilities for monitoring 223 

micro-meteorology; eddy-covariance fluxes of sensible heat, latent heat, and CO2; soil water; 224 

temperatures of land surface and soil; NDVI; soil respiration; sapflow; LAI; tree growth; 225 

growth of fine roots; crop productivity; and yields. Faidherbia-flux hosts several and multi-226 

disciplinary research teams and is widely open to collaboration 227 

2.2 Production, sampling, and laboratory analyses of the millet under-crop  228 

All of the agricultural practices (e.g. land preparation, sowing, thinning and weeding) were 229 

performed by the farmer, according to his usual preferences, habits, and calendar, in order to 230 

avoid disrupting long-term dynamic equilibria and ensure that results would be representative.  231 

Most management practices were identical whatever the tree presence, with exception to 232 

weeding probably, that occurred to be more necessary at large distances from the tree (see 233 

Results section). However, this should not affect the relationships between crop traits and 234 

vegetation indices which are fundamental for our purpose. The geostatistical model is 235 

assumed to take the whole intra-plot variability into account. 236 

Only the subplot harvest was performed by the scientific team. For crop yield, growth and 237 

litter (i.e. crop residues, or stover) variables, we tested the factor “Distance to tree” with three 238 

levels: below the tree crown, and at distances of 0.5 R, 2.5 R, and 5 R, where R is the radius 239 

of the tree crown (Fig. 2). We used N = 4 replicates per distance to tree, for a total of 12 240 

subplots.  241 

We pre-selected the four trees and transects using a recent dry-season Google Earth© image, 242 

in order to avoid the subjectivity of subplot selection directly in the field. We distributed the 243 
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subplots accordingly. The radius of each chosen tree was measured on the image, and later 244 

confirmed in the field. The average value of the distance from the tree trunk to the 5R 245 

subplots always exceeded 20 m.  246 

We fixed the number of sowing pockets (for whatever live or dead plant) per subplot at about 247 

15 (16.4 ± 1.6). Therefore, the area of each subplot varied somewhat (18.8 ± 6.9 m2), 248 

according to the sowing density used by the farmer. The area per pocket was 1.16 ± 0.5 m2.  249 

During the second week of October 2018, a team of six scientists was dispatched into the field 250 

to collect the subplots. We first collected all the ears (millet spikes) from each subplot, then 251 

split the vegetative biomass into leaves, stems, and roots (all roots collected in a 20 cm radius 252 

hemisphere below the plant) and measured the fresh weights in the field with scales accurate 253 

to within one gram. Only five pockets per plot were sent back to the lab for air drying, oven 254 

drying (65°C, 72h), and weighing. From the differences between fresh and dry weights, we 255 

calculated water contents for each pocket, from which we then inferred the dry biomasses of 256 

the whole subplots. We also measured the specific leaf area (SLA: m2 kg-1) on samples of 257 

fresh leaves, and computed the leaf area and the leaf area index (LAI) per subplot. The aerial 258 

part of weeds was likewise collected and weighed. LAI of weeds was estimated from above-259 

ground weed biomass, using (as a default) the SLA measured for millet. 260 

To secure an independent validation for the exercise of scaling-up yield from subplots to 261 

whole-plot, we assessed the whole-plot yield as well. For the whole-plot harvest, we relied on 262 

the farmer and his family. All ears were harvested the day after we collected our subplots, and 263 

then packed into bundles before transport to the village. We counted and weighed every 264 

bundle, then applied the ratio of fresh weight of ears to dry weight of grain obtained in the lab 265 

on the subplot samples. 266 

The litter (amount of crop and weeds residues left-over in the field after harvest, or stover) 267 

was computed as the whole biomass minus the crop ears. It was converted into gC m-2, 268 
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assuming a conversion rate of 0.47 (Smith et al., 2014) for illustration applications in the field 269 

of climate-change mitigation. 270 

All subsequent measurements are reported per unit ground area. 271 

2.3 UAV sensing and derived proxies for vegetation productivity 272 

UAVs were flown on 8 October 2018—the day before the pearl-millet harvest. Due to their 273 

reverse phenology, the faidherbia trees were defoliated at that date. To characterize the land 274 

cover of the agroforestry system (Fig. 1), we analysed UAV photogrammetry images 275 

according to the method described in Sarron et al. (2018). For spectral images, the UAV 276 

system was a FeHexaCopterV2 hexaCopter (Flying Eye Ltd., www.flyingeye.fr), with two 277 

onboard cameras fixed on a two-axis gimbal to point vertically downward. The first camera 278 

was an RGB ILCE-6000 digital camera (Sony Corporation, New York, NY, USA) with a 279 

6000 x 4000 pixel sensor equipped with a 60 mm focal length lens. To minimize the blurring 280 

effect and noise in the images, the camera was set on speed priority (1/1250 sec) and auto ISO 281 

mode. The second camera was an AIRPHEN multispectral camera (www.hiphen-plant.com, 282 

Avignon, France) equipped with an 8 mm focal length lens and acquiring 1280 x 960 pixel 283 

images. The AIRPHEN comprises six individual cameras equipped with filters centered on 284 

450, 530, 560, 675, 730 and 850 nm, with a spectral resolution of 10 nm. The flight plan was 285 

designed with Kopter tools (http://wiki.mikrokopter.de/fr/MikroKopterTool) to cover the 286 

entire area and ensure an 80% frontal and lateral overlap along the track. The UAV was flown 287 

at 4.5 m s-1 and at 50 m.a.g.l. with both cameras capturing images simultaneously at one-288 

second intervals. With this set up, we obtained a ground sample distance (spatial resolution of 289 

the images) of 0.6 and 2.7 cm for the RGB and Airphen Multispectral cameras, respectively. 290 

The area below the tree crowns was not covered because the UAVs could not navigate those 291 

spaces safely. 292 
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As a radiometric-calibration target, we followed the recommendations of  Jay et al. (2019) in 293 

using a 2.5 m² carpet panel placed horizontally on the ground at a distance of 1.5 times the 294 

height of the closest plants in order to limit adjacency effects. In addition, as geometric 295 

ground control points (GCPs) (Kääb et al., 2014), we placed six red discs of 50 cm diameter 296 

at corners of the field. The exact positions of these GCPs were defined with a GNSS-GPS 297 

providing an accuracy of 2 cm. Each UAV flight was performed around solar noon and lasted 298 

about 15 min., during which solar radiation was assumed to be stable.  299 

An automatic image-processing pipeline was designed to generate radiometrically calibrated 300 

and geometrically corrected multiband orthoimages using Agisoft PhotoScan digital 301 

photogrametric software (PhotoScan Professional 1.4, Agisoft LLC, Russia). Radiometric 302 

calibration included automatic correction of vignetting effects. Real reflectances were 303 

computed using a reference target positioned to the ground during UAV flights. This target 304 

was previously spectrally characterized in controlled conditions. Geometric correction 305 

involved, firstly, multiband co-registration to modify and adjust the images’ coordinate 306 

system to decrease geometric distortions and make pixels in different pictures coincide with 307 

the corresponding map-grid points. The co-registration process was based upon the internal 308 

GPS from raw image metadata. Orthorectification was then performed using GCPs to increase 309 

the accuracy of the generated orthoimages. 310 

We used RGB orthoimages to segment the pearl millet under-crop and remove the soil and the 311 

trees. For that purpose, we converted orthoimages from RGB to HSV color space, then carried 312 

out thresholding operations over green crops to create a millet mask. Calibrated reflectances 313 

in NIR, Red, and Green bands were extracted based on that mask, then used to derive the 314 

Normalized difference vegetation index ((NDVI) Rouse et al. (1974), according to the 315 

following equation: 316 
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                                                                                                 (eq.2)  317 

We used mostly the NDVI because it is the most widely used index for monitoring and 318 

estimating crop physiology and green biomass. We had six other well-known spectral indices 319 

for crop vegetation monitoring at hand, namely CTVI (Corrected Transformed Ratio 320 

Vegetation Index), GCVI (Green Chlorophyll Vegetation Index), GNDVI (Green Normalized 321 

Difference Vegetation Index), NDRE (Normalized Difference Red Edge Index), TTVI 322 

(Thiam’s Transformed Vegetation Index) and MSAVI2 (Seconded Modified Soil-Adjusted 323 

Vegetation Index). Since they were highly correlated, we decided not to combine them into 324 

multiple regressions. However, since MSAVI2 presented slightly better correlation results 325 

with e.g. yield and litter than NDVI, we presented its results as well. MSAVI2 is a vegetation 326 

index modified for the soil effects (Richardson and Wiegand, 1977; Qi et al., 1994) and it is 327 

thus well-designed for crop monitoring in sparsely vegetated areas. 328 

�����2 =  (�×���� �!(�∗���� #$�%×(�����&'#
�

         (eq.3) 329 

Where MSAVI2 is the index value, NIR and RED are respectively the Near Infrared and Red 330 

band reflectance from the UAV sensor. 331 

2.4 Geomatics: chain of processes 332 

For this task, we used QGIS (QGIS_Development_Team, 2019) and R (R_Core_Team, 333 

2017). To allow an intersection of the different geospatial layers used in our methodological 334 

framework, all layers were projected under the UTM 28 N /WGS84 coordinated references 335 

system. The TIF multi-band UAV ortho-image was converted into a mono-layer NDVI  or 336 

MSAVI2 TIF raster using the rgdal (Bivand et al., 2014) and raster (Hijmans, 2015) libraries 337 

in R.  338 

We created shape files in QGIS for the following: the whole-plot; non-cultivated areas 339 

(shelters and tower); the cultivated area; crowns of faidherbia trees; and the periphery of those 340 
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crowns (a proxy for under-crown conditions). We also created shapefiles for eight of the 341 

twelve harvested subplots (i.e., only for those at 2.5R and 5R). No shape files were created for 342 

the four subplots at 0.5R (below the crown). Indeed, we observed that the UAV could not 343 

sense below faidherbia’s crowns, despite the trees’ defoliated state. We thus used proxies for 344 

the 0.5R subplots, i.e., shape files just in the periphery of the four target-tree crowns, 345 

assuming that the yield conditions were representative of the 0.5R subplots (verified in 346 

Results section). Next, we computed the position of faidherbia centroids. Given the very high 347 

resolution (a few cm2) of the UAV ortho-image, we aggregated each whole image into a grid 348 

of ca. 5 m2 cells for the whole-plot and ca. 1 m2 cells for the subplots. Average NDVI or 349 

MSAVI2 ± SD was computed for each cell of the grids, and its coordinates recorded.  350 

A distance matrix was computed between each grid cell and the faidherbia centroids. We used 351 

the proximal tree only (k = 1), and also took into account the trees outside the limits of the 352 

whole-plot.  353 

We used the resulting file, which combined NDVI or MSAVI2 and distance to the proximal 354 

tree, to perform geostatistics at the whole-plot scale. The average NDVI or MSAVI2 and per 355 

harvest subplot and tree-periphery file was used to correlate with crop productivity and litter. 356 

2.5 Geostatistics 357 

The distance to tree effect, corresponding to the ‘Range’ parameter, was analyzed with 358 

geostatistics in R, from the table of attributes supplied at the end of the geomatics chain, using 359 

the libraries gstat (Pebesma, 2004) and sp (Bivand et al., 2008). We plotted semi-variograms 360 

of the grid cells’ NDVIs according to the distance to the proximal tree crown centroid (a 361 

proxy for the position of the tree trunk), up to a maximum distance of 60 m, and following 362 

four azimuths (N, S, E, W). The tree crown radius in the plot covered by UAV was quite 363 

homogeneous, 4.67 m +/- 0.88 m (SD) so we used absolute distances to the trunk rather than 364 
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e.g. distances relative to the crown radius. We used the automap library and the 365 

autofitVariogram function to select the best geostatistical model, here ‘Ste’, which is the 366 

Matern model parameterized according to (Stein, 2012). 367 

2.6 Land Equivalent Ratio (LERcp) 368 

The Land equivalent Ratio (LER) is usually computed following equation 1. In the present 369 

case, the LER of interest is the crop-partial LER (LERcp) since we have no information on 370 

tree-partial LER (absence of pure tree control in the parkland).  371 

We discarded the option of computing LERcp using the measured (i.e. from plant harvest in 372 

5R subplots) values of sole crop yield (Ys), due to the low spatial representability of the 5R 373 

subplots and to our aim of developing a LERcp method independently from harvest. Instead, 374 

we used the estimated yields per zone (from UAV-NDVI flights, combined with 375 

geostastistics). The estimated yield was mapped using the correlation from Fig. 7d. We split 376 

the map into three distinct zones within the whole-plot: (i) below the tree crown (not sensed 377 

by UAV, but we used polygons just around the tree crown instead), (ii) between the edge of 378 

the tree crown and the limit of the Range, and (iii) beyond the limit of the Range. To compute 379 

Ys, we used the area beyond the Range. The estimated whole-plot yield, Yi was thus the sum 380 

of the average estimated yield in each zone, weighted per area in each zone. We computed the 381 

yield estimated for the pixels below the value of the Range only, as another metrics for Yi. 382 

Finally we compared two LERcp values, depending on both options for Yi. 383 

2.7 Statistical analysis 384 

This task was performed using the R software (R_Core_Team, 2017). One-way ANOVAs 385 

were performed when the variables met criteria of (i) variance homogeneity according to the 386 

Bartlett test, and (ii) normality of distribution of the residues, according to the Shapiro-Wilk 387 



 

19 

 

test and Q-Q plot. Otherwise, we performed a Kruskal-Wallis non-parametric test. A Tukey 388 

honestly significant difference test was then performed between levels inside each factor. 389 
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3 Results  390 

3.1 Millet performance in subplots according to the distance to Faidherbia 391 

In the subplots experiment, millet yield was significantly higher (p = 0.028; and by a factor of 392 

about three) below the tree crown (0.5R: 136 ± 35 SD ggrain m-2) than at the largest distance 393 

(5R: 48 ± 33 SD ggrain m-2) (Fig. 3a; Tab. 1). The yield at the intermediary distance (2.5 R) 394 

was not significantly different than and 0.5R and 5R extremes (p = 0.13 and p = 0.56, 395 

respectively) and will not be discussed further. 396 

The stem biomass and total biomass (above + belowground) of millet was also significantly 397 

higher at 0.5 R than at 5R (p = 0.03 and p = 0.04, respectively), again by a factor of about 398 

three (Tab. 1). The biomass of weeds was significantly higher (p = 0.021) far from the trees, 399 

indicating that they may have introduced significant noise in the NDVI or MSAVI2 signals in 400 

this study (Fig. 3b). 401 

The litter (i.e. crop residues, or stover) of millet crop + weeds (expressed in gC m-2) was 402 

significantly higher at 0.5R (Tab. 1). 403 

The following variables were not significantly different (at the 0.05 level) between 0.5R and 404 

5R (Tab. 1): the NDVI (p = 0.09), the MSAVI2 (p = 0.07), the leaf dry mass (p = 0.1), the 405 

specific leaf area (SLA: p = 0.83), the leaf area index (LAI: p = 0.2), the root dry mass (p = 406 

0.14) and the ratio of root mass to total dry mass (p = 0.33). 407 

3.2 Distance of influence of faidherbia on the millet crop 408 

We zoomed on the NDVI ortho-image (Fig. 4a) to show one transect example (Fig. 4b) of 409 

NDVI in the pearl-millet (left), according to the distance to a faidherbia tree (right). Greener 410 

pixels (high NDVI) predominated close to the faidherbia tree and beneath, whereas white bare 411 

soil was abundant at a distance. When the UAVs were flown (October), faidherbia was still 412 
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defoliated, and high NDVI values can be perceived below the tree crowns. However, the high 413 

density of branches prevented us from sampling cell grids directly below tree crowns. This 414 

finding suggests that optical sensors mounted on UAVs do not give satisfactory results 415 

through tree crowns, even for a defoliated tree. Fig 4c shows one pearl millet pocket. The 416 

centimetric resolution allows leaves to be distinguished. 417 

Semi-variograms were performed to contrast NDVI of grid cells in the whole-plot cultivated 418 

with pearl-millet, and the distance to the centroid of the proximal faidherbia-tree crown (Fig. 419 

5, 6), up to a maximum distance of 60 m.  The best model fit (Fig. 6) was ‘Ste’, displaying a 420 

monotonic and asymptotic shape. The ‘Range’, which is assumed here to indicate the 421 

statistical distance of influence of the faidherbia tree on the crop NDVI, was 17 m. We found 422 

little or no effect of the azimuth on the shape of the semi-variograms (Fig. 5). Therefore, on 423 

the further assumption that the system was isotropic, we pooled all grid cells before applying 424 

the model fit (Fig. 6). The Range was identical for MSAVI2 (data not shown). This distance 425 

of influence (the Range) was substantially less than the distance from the 5R plots to the tree 426 

(always > 20 m), suggesting that 5R plots were located in an area little affected by the tree, 427 

regarding the NDVI or MSAVI2 at least.  428 

3.3 Upscaling yield and productivity from small subplots to the whole plot 429 

At the whole-plot scale, we harvested 52 bundles, whose fresh mass averaged 23.36 ± 2.96 kg 430 

each. In the subplots, we obtained a conversion rate (from fresh mass of ears to dry mass of 431 

grain) of 0.52 (Tab. 3). The total harvest was thus 632 kggrain, to which we added the 17.63 kg 432 

obtained in the subplots. The effective whole-plot area for crops was 8929 m2. Thus, the 433 

measured (from harvest) whole-plot yield was 0.73 tgrain ha-1. 434 

We sought correlations between crop traits, or between one single vegetation productivity 435 

index, NDVI or MSAVI2, and some crop traits of interest within the 12 harvested subplots 436 
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(Fig. 7; Tab. 2). We found a reasonable positive correlation between millet grain yield and 437 

millet LAI (Fig. 7a; r2 = 0.63; RRMSE =33%). The correlation was even better between LAI 438 

and the whole-plant biomass (Fig. 7b; r2 = 0.80; RRMSE =23%), suggesting that LAI is a 439 

good indicator of the millet productivity. However, we found a weaker correlation between 440 

LAI and NDVI, for millet + weeds altogether (Fig. 7c; r2 = 0.47; RRMSE =22%): indeed, the 441 

NDVI sensed by the UAV was influenced by both crop and weeds; therefore, we had to group 442 

them before correlating. Please recall that because the UAV could not sense the 0.5R plots, 443 

we used a proxy NDVI from the surroundings of the tree where the 0.5R plot had been 444 

harvested. We compared the yield measured in the 0.5R subplots (1.36 t ha-1) with the one 445 

estimated from NDVI around the same trees (1.21 t ha-1)  and they were actually similar 446 

(Table 3), suggesting that using the surrounding of the trees was a reasonable proxy.  447 

For the most crucial correlation here—that between millet grain yield and spectral index of 448 

millet+weeds— MSAVI2 (Fig. 7e) performed only marginally better than NDVI (Fig. 7d), 449 

thus we decided to stick to NDVI in order to remain more generic. However, both correlations 450 

remained pretty loose (NDVI: Fig. 7d and Table 2, r2 = 0.41, RRMSE = 48%; MSAVI2: Fig. 451 

7e and Table 2, r2 = 0.47, RRMSE = 46%). 452 

We found a better correlation between NDVI and litter (expressed in gC m-2) of the millet + 453 

weeds (Fig. 7f and Table 2; r2 =0.46; RRMSE = 35%).  454 

We used coefficients from Fig. 7d to further convert NDVI values into millet grain yield at 455 

the whole-plot scale. In the whole-plot millet yield map that we computed using this 456 

relationship (Fig. 8a), it can be seen that yield appeared higher near the trees. A slight 457 

distance-decay effect is visible as well. We finally validated the yield map (Fig. 8a) using the 458 

whole-plot measured yield. The yield estimated from NDVI was 811 kgDM grain for the plot 459 

(Tab. 3). Therefore, the error was 20%, which is considered reasonable, in spite of the rather 460 

weak relationship obtained in Fig. 7d.  461 
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In Fig. 8b, we propose a crop + weed litter map (expressed in gC m-2) as an example for 462 

mitigation applications. The UAV-estimated litter production was 1.05 tC ha-1 (Tab. 3). 463 

3.4 Measuring and estimating crop-partial LER without a true sole crop reference 464 

In Tab. 3, we computed the crop-partial LER (LERcp)  from Eq. 1. The measured LERcp using 465 

the estimated whole-plot yield was 1.1. Using the plot yield in the area below the Range only, 466 

LERcp was 1.16, both suggesting that the agroforestry system, even at that low tree density 467 

(6.8 tree ha-1) spared more than 10% of land.   468 
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4 Discussion 469 

What agroforestry research lacks desperately, in order to move beyond the classical 470 

dichotomy between shaded and non-shaded plots (Charbonnier et al., 2014), are maps of 471 

random variables inside heterogeneous agroforestry systems, for whatever tree spacing. For 472 

instance, the MAESPA 3D model (Duursma and Medlyn, 2012) has been applied in 473 

agroforestry and 2D horizontal maps have been proposed recently for the light distribution 474 

within the crop (Charbonnier et al., 2013), for  the crop’s surface temperature (Vezy et al., 475 

2018), for crop photosynthesis, transpiration, and water-use efficiency (Charbonnier, 2013), 476 

and for light-use-efficiency (LUE) (Charbonnier et al., 2017). 2D and 3D maps of root 477 

distribution have been proposed as well, with the uptake of water and nutrients (van 478 

Noordwijk and Lusiana, 1998; Dupraz et al., 2019).  479 

Indeed, the ability to produce intra-plot yield maps and inter-plot LERcp is crucial to fostering 480 

agroforestry research. This could aid as well in the management of cropping systems, in 481 

particular for precision agriculture (for instance varying the crop density according to the 482 

distance to the tree), or in mixed-cropping (distributing the crops responsive and non-483 

responsive to the tree effects in the adequate plot locations). In this article, we combined state-484 

of-the-art proxy-sensing technology with a geostatistical method in an original way, to 485 

propose a novel statistical approach for assessing the distance at which trees influence crops. 486 

4.1 Upscaling yield from the subplots to the whole-plot through UAV-NDVI 487 

The weak but statistically significant correlation that we found between NDVI and pearl-488 

millet yield (Fig. 7d; r2 = 0.41; RRMSE = 48%) is below the range of correlation found in 489 

studies that used remote sensing to estimate pearl-millet yields in West Africa and the 490 

MSAVI2 relationship is only marginally better. For example, Rasmussen (1992) in an early 491 

study and Leroux et al. (2015) both used low-resolution satellite images and were able to 492 
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explain more than 90% and 65% of the millet-yield variability in northern Burkina Faso and 493 

south-western Niger, respectively. The difference between the strength of their correlations 494 

and the strength of our own requires some explanations. The first reason is that our study is 495 

based on one single plot, so we focused on the intra-plot variability, which is assumed to be 496 

much lower than the inter-plot variability normally observed at the landscape scale, thus 497 

affecting the correlation; (ii) we used pure spectral indices only, not mixed with covariates 498 

such as microclimate or soil or practices that do co-vary at the landscape scale (indeed, we 499 

tried to combine 7 spectral indices that we had at hand but they were so correlated that we 500 

abandoned such a pathway); (iii) the millet was a traditional variety, by nature very 501 

heterogeneous, and it suffered from a severe drought in July 2018 (representative of the new 502 

rainfall period after the big drought 1970-2000, though), with impact on survival, which 503 

increased the fraction of visible soil and noise; (iv) we could not fly the UAV below the tree 504 

crown and relied on a proxy (the difference between measured yield in 0.5R subplots and 505 

estimated yield in the periphery of the crown remained small though, Table 3) ; last, the 506 

significantly greater amount of weeds (Tab. 1) in the sole crop (5R) may have compensated 507 

for the decline of its crop NDVI.  508 

The weakness of our correlation between NDVI and pearl-millet yield likely affected the 509 

scaling-up of yield from subplots to the whole-plot, and therefore the value of LERcp that we 510 

obtained. Nevertheless, the match between the measured yield and the yield estimated through 511 

UAV-NDVI remained satisfactory, with an error below 20% (Tab. 1). It is probable that 512 

compensation effects occur at that scale. We suggest that the method proposed here, although 513 

affected by a locally-weak calibration at the subplot-scale, may find interesting developments, 514 

provided that the calibration phase is improved.  515 

We stress also that one weakness of the work reported here is that the UAV-NDVI yield 516 

predictions are based upon a single UAV image acquisition (at harvest), rather than upon 517 
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images obtained throughout the cropping season. The latter approach generally gives more-518 

accurate estimates of yield because the processes of plant development and growth are 519 

nonlinear (Rasmussen, 1992; Maselli et al., 2000; Leroux et al., 2015).  520 

4.2 A new method to assess the distance of influence of the tree on specific crop 521 

traits 522 

The distance to which the tree influences the crop is a key topic when designing agroforestry 523 

systems. It is a specific trait of a given agroforestry system that underpins the system’s overall 524 

performances (e.g. net primary productivity, yield, response to climate changes and LERcp). It 525 

has received much attention in the past from researchers, who assessed it through complex 526 

field experiments that used subplot arrays around the agroforestry trees: e.g. rings (Louppe et 527 

al., 1996), logarithmic spirals (Tomlinson et al., 1998), and transects between trees. However, 528 

such experiments are so time-consuming and costly that in practice, the tree density is 529 

normally fixed by the farmer according to empirical observations or preferences. Scientific 530 

experiments come later, by which time the arrangement of trees is generally fixed. As a result, 531 

the classical experiment compares agroforestry plots with sole-crop plots, if by chance any are 532 

available nearby (Cannavo et al., 2011; Hergoualc’h et al., 2012; Schnabel et al., 2018).  533 

Bayala et al. (2015) proposed to combine yield mapping and a geostatistical approach as a 534 

more systematic way of assessing the tree effects on crop productivity. We developed that 535 

approach in the present study. The positive effect of the Faidherbia albida tree on the crop 536 

yield was demonstrated here in three ways: by photography (Fig. 2), by subplot transects at 537 

three distances to the tree (Fig. 3; Tab. 1), and by spectral indices (e.g. NDVI, MSAVI2) 538 

measured on the subplot transects (Tab. 1: significant but only at 10%, though). The distance 539 

effect itself was quantified through geostatistics of NDVI  at the whole-plot scale (Figs 5, 6): 540 

we obtained a Range of 17 m, indicating that crop NDVI (same result for MSAVI2), itself 541 
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correlated to crop yield, was influenced by the tree up to that distance. Even if 17 m is just the 542 

beginning of the plateau observed on Fig. 6, it remains a statistical metrics with strong 543 

advantages when compared to the classical approach: it statistically defines an unequivocal 544 

metrics. Therefore, it can be argued that beyond that limit, the crop’s NDVI is statistically 545 

unaffected by the trees, according to the model. We stress that this metrics is valid first for the 546 

crop spectral index of interest, second for crop traits well correlated to this spectral index, but 547 

not for all crop traits in general. Obviously, the tree could affect some other crop traits at 548 

larger distances. However, the better the spectral index is correlated to a crop trait of interest 549 

(e.g. yield or litter), the better the Range parameter is representative of a statistically 550 

significant limit for the trait, between affected and non-affected areas. That latter condition, 551 

applied to yield, by definition constitutes sole-cropping. This assertion is in agreement with a 552 

recent review by Sileshi (2016), which evidenced through classical methods that faidherbia 553 

does not affect pearl millet at distances greater than 16 m from the tree trunk. More 554 

specifically, Sileshi (2016) reported that the response ratio, used as a measure of the effect 555 

size, was lower than 1, meaning no influence of trees on the crop at a distance of more than 16 556 

m from the trunk.  557 

Actually, the distance of influence on yield and litter measured here by the geostatistical 558 

metric Range could vary, according for instance to: other crop traits of interest but not related 559 

to a spectral index (e.g. grain quality); the crop species; the microclimate and soil conditions; 560 

the density of the crop; the diameter of the tree-crowns and the agricultural practices (e.g. tree 561 

pruning, thinning, root cutting, fertilization)... Basically here, we just proposed a method to 562 

measure that Range locally, a gateway to test its variability more widely. 563 
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4.3 Added value of a metrics for the distance of influence of the tree on crops 564 

Specifically here, we found that the distance of influence for faidherbia upon millet crop 565 

NDVI in a range of spacings between trees was, on average, 17 m. We computed that 9.99 566 

(~10) discs of radius = 17 m fit into one ha, according to a staggered arrangement (a 60° 567 

diamond pattern being the pattern with the minimum possible empty space left).We can 568 

compute that at 10 trees ha-1, 9.3% of the plot is not benefiting from the tree influence. At the 569 

tree density in the surroundings of our experimental plot (6.8 tree ha-1, measured on 15 ha), 570 

the non-influenced area represents 38% of the plot.  571 

Above 10 trees ha-1, the area of influence of several trees merges. Do we know already how a 572 

crop placed under the influence of several trees will behave? No,  actually it might depend on 573 

(i) the fit of the geostatistical model (Fig. 6), which was monotonic and asymptotic here with 574 

a shape very consistent to what was observed through classical methods (Sileshi, 2016), but 575 

merging areas could have complex effects with multinomial shapes, such as those 576 

encountered for temperature and evapotranspiration in the leeward portions of windbreaks for 577 

instance (McNaughton, 1988); (ii) interactions between trees and livestock: a higher tree 578 

density might dilute the beneficial effect of the tree, which in the case of faidherbia in a agro-579 

silvo-pastoral parkland is at least partly a result of manure deposition by the livestock (the 580 

more trees, the less manure is likely to be deposited under each). 581 

What the Range informs is that 10 trees per ha would minimize the spaces where the millet 582 

crop yield is not supported by the trees. There is still a long way, from proposing a metrics for 583 

the distance of influence of trees on specific traits of crops, to adjusting the tree density for a 584 

variety of ecosystem services or responses to climate changes. However, the above-described 585 

method allows to at least minimizing the spaces of no influence, without taking much risk in 586 

merging areas of influence, which is an added value when the effect of the tree on the target 587 

crop is positive. Therefore, we argue that we can reasonably estimate the yield of crops up to 588 
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tree densities corresponding to the maximum compaction of discs with radius = Range. 589 

Beyond that density, interactions between areas of influence remain unknown. 590 

In addition, the same Range metrics allows to compute LERcp, which is discussed below to 591 

extend the added-value. 592 

4.4 Trade-offs when adjusting tree density 593 

Regarding the various ecosystem services that might be worth targeting during the design of 594 

tree spacing, a multi-criteria approach is recommended. Trade-offs between ecosystem 595 

services should be considered as well: the faidherbia has a positive effect on millet yield and 596 

its density could probably be increased from this simple point of view However, a higher 597 

density of faidherbia, which is essentially a phreatophytic species (Roupsard et al., 1999), 598 

may lower the level of the water table, thereby affecting partitioning between blue and green 599 

waters. This specific trade-off is analogous to that for irrigation, and needs to be quantified: 600 

consumption of groundwater may be beneficial to food security in the short term, but harmful 601 

to sustainability.  602 

A further consideration is that although faidherbia is the parkland’s dominant tree species, it is 603 

not the only one, and the spatial distributions of the others may affect resources-use patterns 604 

among the different components of parkland (Luedeling et al., 2016). Hence, according to the 605 

land-use system, effects of faidherbia on crop yields can be mitigated, as already shown in 606 

studies conducted at landscape scale (eg. Hadgu et al. (2009)). 607 

A final—and delicate—point to consider is the farmer’s receptiveness to changing the current 608 

tree density, which is the result of tradition combined with his own preference and labour, 609 

modulated by constraints (Sambou et al., 2017). Of interest is to investigate how the distance 610 

of influence of trees on crops converges with the design that he actually adopted. The Serer 611 

tradition recommends 7 faidherbia trees per plot (of ca. 1 ha each) to fill one family’s granary 612 
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(of ca. 5 m3 each) (R. Diatte, pers. comm.) which is very consistent to what was measured 613 

here (6.8 tree ha-1), or also in Lericollais (1972).  614 

4.5 Computing the crop-partial Land Equivalent Ratio (LERcp) 615 

The method proposed here offers the possibility to estimate the crop-partial LER in conditions 616 

where no true sole crop is available, basing on a metrics for defining the distance of influence 617 

of the trees, which is provided by the geostatistical ‘Range’ parameter.  618 

Using that information, researchers can (potentially) identify multiple areas of unaffected 619 

under-crop throughout the landscape, for the variable of interest. This method could 620 

dramatically extend the range of locations for which LERcp can be estimated. Application of 621 

this method at the landscape scale could provide LERcp data for future model validation as 622 

well.  623 

The yield of the crop in the agroforestry system, Yi (eq. 1) is certainly dependent upon the tree 624 

density, d, as is the value computed for LERcp: therefore, it would be worth writing them both 625 

Yi,d and LERcp,d. As we provide the possibility to compute LERcp,d in a wide range of tree 626 

densities, such as usually occurring at the landscape scale, it becomes possible to study the 627 

relationship between tree density and LERcp. This approach also gives the yield in absence of 628 

tree influence (Ys). Ys can be seen as a local reference, to study the effect of other variables 629 

that affect yield, other than the presence of trees, and that vary in the landscape (e.g. soil 630 

fertility, management, etc.). It is a way of standardizing for the effect of trees in the landscape 631 

Model simulations could address Yi,d, Ys and LERcp,d as well. 632 

4.6 Applications for Mitigation 633 

The net carbon balance of an ecosystem, often referred to as net ecosystem productivity 634 

(NEP) is actually the difference between net primary productivity (NPP) and heterotrophic 635 

respiration (Rh) (Roy et al., 2001). Other GHG gases contributing to CO2eq were considered 636 
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out of scope here. Therefore, the task of finding ways to calculate the NPP and Rh more 637 

conveniently and accurately is central to mitigation accounting. In heterogeneous systems 638 

such as agroforestry, maps of fluxes (e.g. yield, NPP per organ, and litter, i.e. crop residues or 639 

stover) should improve the C accounting at the whole-plot scale. Tree NPP is key for short-640 

term mitigation (e.g. one rotation), and assessing tree NPP is rather easy from tree-volume 641 

functions. Litter input is a fraction of NPP, which in turn is a relatively small fraction of NPP 642 

in woody perennials. In contrast, it is a large fraction of NPP in palms, for example (Navarro 643 

et al., 2008; Fan et al., 2015), and up to 100% of NPP in annual crops. Assessment of tree 644 

litter remains challenging, especially belowground, but can be approached by determining 645 

fine-root lifespan in rhizotrons or by sequential coring (Navarro et al., 2008; Defrenet et al., 646 

2016). For crops, which mostly produce litter or exports, we stress that the UAV method 647 

proposed above not only allows mapping of crop yield, but potentially, too, of the partitioning 648 

of crop NPP into organs that will be exported (e.g. ears) or left to decompose in the plot 649 

(litters of stems, leaves, and below-ground biomass). Here, we used UAV to upscale crop 650 

litter from subplot to whole plot, and estimated that 1.05 tC ha-1 yr-1 was left in the field by 651 

millet and weeds. Rh does depend upon litter, but its relative contribution to NEP is affected 652 

strongly by the local soil’s physical, chemical, and biological properties. Rh is difficult to 653 

measure, but can be computed from the difference between soil respiration and soil 654 

autotrophic respiration, both easier to measure.  655 

Litter is probably the most important variable in SOC build-up (Cardinael et al., 2018a; 656 

Fujisaki et al., 2018), together with soil properties, following eq. 4:  657 

∆)�*	+ = �, + �- − ��*	+ + )	/012� − )�30*42�      (eq. 4) 658 

Where: ∆Csoil is the net soil C balance; L is litter (subscripts a is for above-ground and B is for 659 

below-ground); R is respiration; C is carbon (inputs are for instance manure; exports is litter 660 

removed post-harvest). All expressed in tC ha-1 yr-1. 661 
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If ∆Csoil can be assessed from soil sampling in e.g. synchronic or diachronic experiments, it 662 

can also be inferred from the net balance of its C fluxes, as from eq. 4, where above and 663 

below-ground litter play key roles. 664 

In this respect, our work is relevant to the Clean Development Mechanisms (CDM) projects. 665 

CDM projects could take crops and soil into account, rather than the trees alone. Our 666 

methodology also offers the possibility of developing diachronic approaches, which are 667 

considered to be more accurate (Costa Junior et al., 2013). In a recent review, Cardinael et al. 668 

(2018b) stressed that in agroforestry systems worldwide, the ageing and heterogeneity of a 669 

plot affects, strongly, the rates at which SOC and biomass accumulate after LUC. Because 670 

those rates depend upon the tree density, the method proposed here to improve the crop 671 

contribution throughout the landscape should help improve the estimates needed by the CDM 672 

projects. 673 

4.7 Applications for Adaptation 674 

Any method that can map crop productivity on a fine scale within heterogeneous agroforest 675 

plots will be capable, inherently, of providing the data needed for studying the links between 676 

crop performance, distance to tree (or tree planting pattern), microclimate, and fertility. At the 677 

landscape scale, that same capability should be useful in screening for favourable or adverse 678 

conditions, and for further investigating their determinants (e.g. soil, fertility, or 679 

management). Precision agriculture, taking into account the maps of tree influence to adjust 680 

crop density or distribute mixed crop species at the field scale could enhance crop 681 

productivity and adaptation. We argue here that fine-scale mapping of complex landscapes 682 

can identify conditions conducive to adaptation to climate changes. For instance, analysis of 683 

the landscape could provide data for drawing response curves relating productivity or LERcp 684 

to tree density. This suggestion assumes that trees create ‘islands of fertility’ and buffer the 685 



 

33 

 

adverse environment, thereby improving adaptation and resilience. Moreover, from the 686 

interpretation of maps of productivity at the landscape scale, it should be possible to survey 687 

the ‘good practices’ of farmers regarding adaptation, after which those practices would be 688 

further disseminated. 689 

4.8 Improving the process 690 

Although we argue that the overall process proposed here is valid, we also propose an 691 

improved protocol that would refine it: (i) harvest the georeferenced subplots arrays according 692 

to randomly chosen distances from the tree (a freedom offered by the geostatistical approach), 693 

not necessarily in transects under a factorial plan; (ii) assess the spectral index of the areas 694 

below tree crowns manually, using the same camera as on the UAV; (iii) correlate yield (Yi 695 

and Ys) and crop-partial LER of locations throughout the landscape using co-variables such as 696 

microclimate, soil, and agricultural practices; (iv) combine several spectral indices with co-697 

variables to improve yield prediction. This improved methodology can be used also in 698 

combination with classical remote sensing (Schut et al., 2018) to bridge intra-plot and inter-699 

plot scales and provide local calibrations for remote-sensing purposes.  700 
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5 Conclusions 701 

The distance of influence of the trees upon the under-crops of agroforestry systems, according 702 

to specific target services, is crucial to adjusting the tree density for improving productivity 703 

and resilience, and to avoiding or minimizing trade-offs. The methodology we propose here is 704 

original and infers that distance from UAV mapping of a spectral index, a geostatistical 705 

approach, a field calibration, and a validation of the whole-plot yield map. 706 

Although the method still needs development, especially to (i) sense the yield below the tree 707 

crown and (ii) combine several spectral indices with co-variables to improve yield prediction, 708 

it already opens new avenues for filling some gaps in agroforestry research. Among those 709 

gaps are the distance of influence of the tree (a gateway to adjusting tree density); the 710 

estimation of litter (i.e. crop residues, or stover) per ha (a gateway for soil C-sequestration 711 

models); the computation of crop-partial LER (LERcp) using a reasonable proxy (found 712 

directly within the agroforestry plot) for the sole crop; the downscaling of remote-sensing 713 

approaches inside agroforestry plots; and the mapping of crop yields at landscape scale while 714 

accounting for tree effects. 715 

We invite a large community to test and further develop this new tool, by mapping and 716 

comparing yield, NPP, litter, yield under agroforestry, sole-crop yield and crop-partial LER at 717 

the levels of the agroforestry plot and landscape. 718 
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[NB: Figures can be printed in colour on the web and in gray scale on paper] 

Figure Captions: 

 

Figure 1 Study site, land cover, and experimental display. a/UAV-based map (September 2018, wet season) of 

“Faidherbia-Flux”, located in farmers’ agro-silvo-pastoral bush fields, dominated by the multipurpose tree 

Faidherbia albida, here defoliated (white crowns); b/ land-cover map, a mosaic of under-crops (e.g. pearl 

millet, groundnut, cowpea, watermelon, and grass fallow); c/Overview of the landscape from the eddy-

covariance tower (30 m high) during the wet season. The Faidherbia albida trees are defoliated, underneath. 

 

Figure 2: Millet-crop sampling at three distances from the Faidherbia albida trees. We compared three 

distances to tree: below the tree crown (0.5 R), at 2.5 radii (2.5 R), and at 5 radii (5R), where R is the radius of 

the tree crown. N = 4 replicates (4 transects) per distance to tree. Total number of subplots = 12. Note that the 

development of the millet crop appears to be better below the tree crowns. Image taken from the eddy-

covariance tower (September 2018). 

 

Figure 3: Effect of the distance from the faidherbia tree upon two crop traits, as assessed in 12 harvest subplots: 

a/ pearl-millet yield; b/aerial biomass of weeds. Distances are: below the tree crown (0.5 R), at 2.5 radii (2.5 R) 

and at 5 radii (5R), where R is the radius of the tree crown. N = 4 replicates (4 transects) per distance to tree.  

 

Figure 4: NDVI sensed by UAV above the agroforestry plot, just before pearl-millet harvest, in October 2018. 

The greener the color, the higher the NDVI. Faidherbia trees were defoliated, and appear as white discs in the 

landscape. Bare soil appears white, as well: a/: general overview of the central whole-plot, cultivated in pearl-

millet and surrounded by other crops; b/ example of NDVI transect between pearl-millet (left) and a faidherbia 

tree (right); c/ detail of one pearl-millet plant showing the centimetric resolution of the UAV image. 

 



Figure 5: Directional (N,S,E,W) semi-variograms between NDVI of grid cells in the area of the whole-plot that 

is cultivated with pearl-millet, and the distance to the centroid of the proximal faidherbia tree crown. The semi-

variograms are very similar when using MSAVI2. 

 

Figure 6: Distance of influence of the faidherbia tree upon NDVI of pearl millet. Semi-variogram between 

NDVI of all grid cells in the area of the whole-plot that is cultivated with pearl-millet, and the distance to the 

centroid of the proximal faidherbia tree crown. The ‘Range’, or distance of influence is 17 m, corresponding to 

the red dotted line. The semi-variogram is very similar when using MSAVI2. 

 

Figure 7: Correlations between a single reflectance index (NDVI or MSAVI2) and some crop traits within the 

harvested subplots (N=12). Because the UAV could not sense the 0.5R plots, we used pixels from the 

surroundings of the tree where the 0.5R plot had been harvested, as proxy to compute NDVI or MSAVI2,.  

 

Figure 8: Whole-plot maps. a/ yield mapping (orange area) using the relationship from Fig. 7e (scale is in ggrain 

m-2; RMSE = 41.45; RRMSE = 48%); b/map of litter from crop+weeds (scale in gC m-2; RMSE = 48.65; 

RRMSE = 35%) using the relationship from Fig. 7f. The grey shapes correspond to the faidherbia trees. The 

grey rectangles are shelters. It can be seen that yield and litter are higher in the surroundings of the trees.
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Figure 16:  
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Table 1: One-way ANOVA statistics for effect of the Faidherbia albida tree upon average ± SD crop traits, as 

assessed in 12 harvest subplots according to three distances from the tree: below the tree crown (0.5 R), at 2.5 radii 

(2.5 R), and at 5 radii (5R), where R is the radius of the tree crown. N = 4 replicates (4 transects) per distance to tree.  

Variable 0.5R 2.5R 5R 

Variances 

homogeneity 

(Bartlett) 

Normality 

of the 

residues 

(Shapiro) Test F-value p-value 

  a ab b           

Grain Dry Mass (ggrain m-2) 

135.60 ± 

35.47  

76.49 ± 

45.74  

47.77 ± 

32.89  0.85 0.14 ANOVA 5.43 0.028 

  a ab b           

Stem Dry Mass (g m-2) 

156.06 ± 

37.69  

86.61 ± 

45.42  

70.56 ± 

31.86  0.85 0.42 ANOVA 5.51 0.027 

  a ab b           

Whole-plant Dry Mass (g m-2) 

453.89 ± 

118.12  

270.68 ± 

135.27  

209.94 

± 

101.08  0.90 0.10 ANOVA 4.56 0.043 

  a ab b           

Weeds aerial Dry Mass (g m-2) 

210.12 ± 

53.48  

403.47 ± 

76.28  

689.20 

± 

439.40  0.003 0.01 

 

Kruskal- 

Wallis - 0.021 

  a ab a           

Millet + Weeds Litter (gC m-2) 

198.50 ± 

52.10  

121.35 ± 

53.80  

99.47 ± 

41.45  0.91 0.08 ANOVA 4.43 0.046 

  a a a           

NDVI 

0.54 ± 

0.08  

 0.45 ± 

0.03  

 0.47 ± 

0.03  0.16 0.32 ANOVA 3.13 0.093 

  a a a           

MSAVI2 

0.63 ± 

0.07  

 0.55 ± 

0.03  

 0.56 ± 

0.03  0.18 0.37 ANOVA 3.69 0.068 

  a a a           

Leaf Dry Mass (g m-2) 

59.76 ± 

19.45  

40.84 ± 

14.95  

33.45 ± 

12.50  0.77 0.37 ANOVA 2.91 0.106 

  a a a           

SLA (mleaf
-2 kgDM

-1) 

10.37 ± 

2.10  

10.92 ± 

1.60  

10.97 ± 

0.61  0.20 0.78 ANOVA 0.18 0.835 

  a a a           

LAI (mleaf
-2 msoil

-2) 

0.63 ± 

0.28  

0.44 ± 

0.13  

0.37 ± 

0.15  0.39 0.99 ANOVA 1.96 0.197 

  a a a           

Root Dry Mass (g m-2) 

56.21 ± 

21.05  

32.07 ± 

14.21  

31.59 ± 

17.45  0.82 0.15 ANOVA 2.51 0.136 

  a a a           

Root-to-tot. ratio (groot gplant-1) 

0.17 ± 

0.03  

0.19 ± 

0.05  

0.24 ± 

0.09  0.25 1.00 ANOVA 1.26 0.330 

  a a a           

Head minor effect (% or ear) 

6.74 ± 

4.60  

7.59 ± 

6.70  

6.54 ± 

3.36  0.54 0.48 ANOVA 0.05 0.953 



Table 2: Correlation statistics between crop traits, or between NDVI or MSAVI2 and some crop traits, within the 12 harvested subplots. 

  

Figure Y Variable X Variable Equation 

Normality 

of the 

residues 

(Shapiro) r2 RMSE 

RRMSE 

(%) p-value 

7a Millet grain yield (g m-2) Millet LAI (mleaf
2 msoil

-2) Y =194.347*X - 6.178 0.22 0.63 32.87 37.9 0.002 

7b Millet total dry mass (g m-2) Millet LAI (mleaf
2 msoil

-2) Y = 645.968*X + 3.055 0.23 0.80 71.84 23.1 <0.001 

7c LAI of millet + weeds (mleaf
2 msoil

-2) NDVI of millet + weeds Y = 2.2956*X - 0.4054 0.79 0.47 0.15 21.6 0.014 

7d Millet grain yield (g m-2) NDVI of millet + weeds Y = 551.1*X - 181.8 0.52 0.41 41.45 47.9 0.024 

7e Millet grain yield (g m-2) MSAVI2 of millet + weeds Y = 594.3*X - 257.8 0.58 0.47 39.37 45.5 0.014 

7f Millet+weeds litter (gC m-2) NDVI of millet + weeds Y = 706.2*X - 204.2 0.15 0.46 48.65 34.8 0.016 

 

 

 

  



 

Table 3: Computation of pearl-millet yield and crop-partial Land Equivalent Ratio (LERcp) from subplots to the whole-plot scale; comparison (error) between 

measurements (in subplots and at the whole-plot scale) and estimations via UAV-NDVI product. Yi is the yield in agroforestry used to compute LERcp. 

Method Variable of interest Value Unit 

Whole-plot QGIS Whole plot area 8994 m2 

characteristics QGIS Shelter area 62 m2 

  QGIS Trunk basal area 2.4 m2 

  QGIS Whole plot effective area 8929 m2 

  Manual Subplots area 226 m2 

  QGIS F. albida canopy projected area 862 m2 

  QGIS F albida canopy cover 9.6 % 

Harvest Measured Subplots harvest 17.6 kgDM grain 

  Measured Whole-plot bundle harvest (without subplots) 52.0  # bundles 

  Measured Whole-plot bundle harvest (without subplots) 1214.6 kgDM bundles 

  Measured Rate of conversion bundle-to-grain 0.52 / 

  Measured Whole-plot grain harvest (without subplots) 632.0 kgDM grain 

  Measured Whole-plot harvest 650 kgDM grain 

  UAV-NDVI (Estimated) Estimated Whole-plot harvest 811 kgDM grain 

Yield Measured Millet yield as sole crop (5R) 0.48 tDM grain ha-1 

  Measured Millet yield half-distance (2.5R) 0.76 tDM grain ha-1 

  Measured Millet yield under tree crown (0.5R) 1.36 tDM grain ha-1 

  Measured Whole-plot Yield 0.73 tDM grain ha-1 

  UAV-NDVI (Estimated) Estimated Millet yield sole crop (dist>Range) 0.82 tDM grain ha-1 

  UAV-NDVI (Estimated) Estimated Millet yield agroforestry (Crown<dist<Range) 0.92 tDM grain ha-1 

  UAV-NDVI (Estimated) Estimated Millet yield agroforestry (dist<Crown) 1.21 tDM grain ha-1 

  UAV-NDVI (Estimated) Estimated Whole-plot  Yield 0.91 tDM grain ha-1 

  Error Yield  Error 19.9 % 

LERcp UAV-NDVI (Estimated) LERcp with Yi = actual whole plot yield 1.10 / 

  UAV-NDVI (Estimated) LERcp with Yi =  whole plot yield for dist <Range 1.16 / 

Millet+Weeds litter UAV-NDVI (Estimated) Estimated Litter (Crop + weeds) 1.05 tC ha-1 

  




