W. H. Vriezen, R. Feron, F. Maretto, J. Keijman, and C. Mariani, Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set, New Phytol, vol.177, pp.60-76, 2008.

H. Wang, The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis, Plant Cell, vol.17, pp.2676-2692, 2005.

T. Pandolfini, Seedless fruit production by hormonal regulation of fruit set, Nutrients, vol.1, pp.168-177, 2009.

J. C. Serrani, O. Ruiz-rivero, M. Fos, and J. L. García-martínez, Auxin-induced fruit-set in tomato is mediated in part by gibberellins, Plant J, vol.56, pp.922-934, 2008.

M. Jong, M. Wolters-arts, J. L. García-martínez, C. Mariani, and W. H. Vriezen, The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development, J. Exp. Bot, vol.62, pp.617-626, 2011.

M. J. Holden, J. A. Marty, and A. Singh-cundy,

L. Pascual, J. M. Blanca, J. Cañizares, and F. Nuez, Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set, BMC Plant Biol, vol.9, p.67, 2009.

P. Carbonell-bejerano, C. Urbez, A. Granell, J. Carbonell, and M. A. Perez-amador, Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis, BMC Plant Biol, vol.11, p.84, 2011.

J. Normanly, J. D. Cohen, and G. R. Fink, Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.10355-10359, 1993.

Y. Zhao, Auxin biosynthesis, Arab. Book, vol.12, p.173, 2014.

B. Wang, Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis, Proc. Natl. Acad. Sci, vol.112, pp.4821-4826, 2015.

E. Zazímalová, A. S. Murphy, H. Yang, K. Hoyerová, and P. Hosek, Auxin transporters-Why so many? Cold Spring Harb, Perspect. Biol, vol.2, p.1552, 2010.

N. Dharmasiri, S. Dharmasiri, M. Estelle, S. Kepinski, and O. Leyser, The F-box protein TIR1 is an auxin receptor, Nature, vol.435, pp.441-445, 2005.

E. J. Chapman and M. Estelle, Mechanism of auxin-regulated gene expression in plants, Annu. Rev. Genet, vol.43, pp.265-285, 2009.

B. Van-de-poel, D. Smet, and D. Van-der-straeten, Ethylene and hormonal cross talk in vegetative growth and development, Plant Physiol, vol.169, pp.61-72, 2015.

B. M. Binder, The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling, Plant Cell, vol.19, pp.509-523, 2007.

M. Liu, J. Pirrello, C. Chervin, J. Roustan, and M. Bouzayen, Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation, Plant Physiol, vol.169, pp.2380-2390, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636936

A. N. Stepanova and J. M. Alonso, Ethylene signaling and response: where different regulatory modules meet, Curr. Opin. Plant Biol, vol.12, pp.548-555, 2009.

J. H. Shin, The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene, New Phytol, pp.820-836, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02386613

K. R?zicka, Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution, Plant Cell, vol.19, pp.2197-2212, 2007.

J. Hua, EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis, Plant Cell, vol.10, pp.1321-1332, 1998.

C. P. Yau, Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions, J. Exp. Bot, vol.55, pp.547-556, 2004.

S. Jegadeesan, Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions, Plant Reprod, vol.31, pp.1-17, 2018.

L. V. Kovaleva, A. Dobrovolskaya, A. Voronkov, and V. Rakitin, Ethylene is involved in the control of male gametophyte development and germination in Petunia, J. Plant Growth Regul, vol.30, pp.64-73, 2011.

X. L. Feng, Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis, Plant Mol. Biol, vol.61, pp.215-226, 2006.

Z. Gan, Downregulation of the auxin transporter gene SlPIN8 results in pollen abortion in tomato, Plant Mol. Biol, vol.99, pp.561-573, 2019.

R. B. Goldberg, T. P. Beals, and P. M. Sanders, Anther development: basic principles and practical applications, Plant Cell, vol.5, pp.1217-1229, 1993.

K. Takada, K. Ishimaru, H. Kamada, and H. Ezura, Anther-specific expression of mutated melon ethylene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants, Plant Cell Rep, vol.25, pp.936-941, 2006.

I. Rieu, M. Wolters-arts, J. Derksen, C. Mariani, and K. Weterings, Ethylene regulates the timing of anther dehiscence in tobacco, Planta, vol.217, pp.131-137, 2003.

Y. Wang and P. P. Kumar, Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence, J. Exp. Bot, vol.58, pp.533-544, 2007.

V. Cecchetti, M. M. Altamura, G. Falasca, P. Costantino, and M. Cardarelli, Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation, Plant Cell, vol.20, pp.1760-1774, 2008.

Q. Duan, D. Wang, Z. Xu, and S. Bai, Stamen development in Arabidopsis is arrested by organ-specific overexpression of a cucumber ethylene synthesis gene CsACO2, Planta, vol.228, pp.537-543, 2008.

D. Wang, Ethylene perception is involved in female cucumber flower development, Plant J, vol.61, pp.862-872, 2010.

K. Takada, K. Ishimaru, K. Minamisawa, H. Kamada, and H. Ezura, Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum, Plant Sci, vol.169, pp.935-942, 2005.

Y. Cheng, X. Dai, and Y. Zhao, Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis, Genes Dev, vol.20, pp.1790-1809, 2006.

K. Okada, J. Ueda, M. K. Komaki, C. J. Bell, and Y. Shimura, Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation, vol.3, pp.677-684, 1991.

R. E. Koning, The role of auxin, ethylene, and acid growth in filament elongation in Gaillardia grandiflora (Asteraceae), Am. J. Bot, vol.70, pp.602-610, 1983.

C. Ferrándiz, Carpel development, pp.1-73, 2010.

I. Martínez-fernández, The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium, Front. Plant Sci, vol.5, p.210, 2014.

D. De-martinis and C. Mariani, Silencing gene expression of the ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco References the early phase of pollen tube growth in Petunia inflata, J. Plant Physiol, vol.160, pp.261-269, 2003.

, Plant Cell, vol.11, pp.1061-1072, 1999.

M. Trigueros, The NGATHA genes direct style development in the Arabidopsis gynoecium, Plant Cell, vol.21, pp.1394-1409, 2009.

A. F. Edlund, R. Swanson, and D. Preuss, Pollen and stigma structure and function: the role of diversity in pollination, Plant Cell, vol.16, pp.84-97, 2004.

R. Palanivelu, L. Brass, A. F. Edlund, and D. Preuss, Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels, Cell, vol.114, pp.47-59, 2003.

C. S. Whitehead, D. W. Fujino, and M. S. Reid, Identification of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in pollen, Sci. Hortic, vol.21, pp.291-297, 1983.

X. S. Zhang and S. D. Neill, Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination, Plant Cell, vol.5, pp.403-418, 1993.

J. T. Lindstrom, C. Lei, M. L. Jones, and W. R. Woodson, Accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) in Petunia pollen is associated with expression of a pollen-specific ACC synthase late in development, J. Am. Soc. Hortic. Sci, vol.124, pp.145-151, 1999.

S. D. O'neill, J. A. Nadeau, X. S. Zhang, A. Q. Bui, and A. H. Halevy, Interorgan regulation of ethylene biosynthetic genes by pollination, Plant Cell, vol.5, pp.419-432, 1993.

J. Wu, Y. Qin, and J. Zhao, Pollen tube growth is affected by exogenous hormones and correlated with hormone changes in styles in Torenia fournieri L, Plant Growth Regul, vol.55, pp.137-148, 2008.

R. Aloni, E. Aloni, M. Langhans, and C. I. Ullrich, Role of auxin in regulating Arabidopsis flower development, Planta, vol.223, pp.315-328, 2006.

D. Chen and J. Zhao, Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum, Physiol. Plant, vol.134, pp.202-215, 2008.

H. Wang, H. M. Wu, and A. Y. Cheung, Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue, Plant J, vol.9, pp.715-727, 1996.

J. Wu, Y. Lin, X. Zhang, D. Pang, and J. Zhao, IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri, J. Exp. Bot, vol.59, pp.2529-2543, 2008.

H. Pertl, Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+ ATPase during pollen grain germination and tube growth, Planta, vol.213, pp.132-141, 2001.

L. Kovaleva and E. Zakharova, Hormonal status of the pollen-pistil system at the progamic phase of fertilization after compatible and incompatible pollination in Petunia hybrida L, Sex. Plant Reprod, vol.16, pp.191-196, 2003.

H. Jia, Ethylene promotes pollen tube growth by affecting actin filament organization via the cGMP-dependent pathway in Arabidopsis thaliana, Protoplasma, vol.255, pp.273-284, 2018.

I. Llop-tous, C. S. Barry, and D. Grierson, Regulation of ethylene biosynthesis in response to pollination in tomato flowers, Plant Physiol, vol.123, pp.971-978, 2000.

X. Tang and W. R. Woodson, Temporal and spatial expression of 1-aminocyclopropane-1-carboxylate oxidase mRNA following pollination of immature and mature Petunia flowers, Plant Physiol, vol.112, pp.503-511, 1996.

R. Mól, M. Filek, I. Machackova, and E. Matthys-rochon, Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize, Plant Cell Physiol, vol.45, pp.1396-1405, 2004.

D. D. Figueiredo, R. A. Batista, P. J. Roszak, and C. Köhler, Auxin production couples endosperm development to fertilization, Nat. Plants, vol.1, p.15184, 2015.

F. Berger, Y. Hamamura, M. Ingouff, and T. Higashiyama, Double fertilization -caught in the act, Trends Plant Sci, vol.13, pp.437-443, 2008.

D. Maruyama, Rapid elimination of the persistent synergid through a cell fusion mechanism, Cell, vol.161, pp.907-918, 2015.

R. Völz, J. Heydlauff, D. Ripper, L. Lyncker, and R. Groß-hardt, Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block, Dev. Cell, vol.25, pp.310-316, 2013.

C. Zhang, Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction, Plant J, vol.96, pp.176-187, 2018.

J. Bernardi, Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize, Plant Physiol, vol.160, pp.1318-1328, 2012.

F. Varoquaux, R. Blanvillain, M. Delseny, and P. Gallois, Less is better: new approaches for seedless fruit production, Trends Biotechnol, vol.18, pp.233-242, 2000.

V. Sjut and F. Bangerth, Induced parthenocarpy-a way of changing the levels of endogenous hormones in tomato fruits, Lycopersicon esculentum Mill.) 1. Extractable hormones, vol.1, pp.243-251, 1982.

G. L. Rotino, E. Perri, M. Zottini, H. Sommer, and A. Spena, Genetic engineering of parthenocarpic plants, Nat. Biotechnol, vol.15, pp.1398-1401, 1997.

Z. Yin, The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber, Cell. Mol. Biol. Lett, vol.11, pp.279-290, 2006.

M. Goetz, A. Vivian-smith, S. D. Johnson, and A. M. Koltunow, AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis, Plant Cell, vol.18, pp.1873-1886, 2006.

L. Du, SmARF8, a transcription factor involved in parthenocarpy in eggplant, Mol. Genet. Genomics, vol.291, pp.93-105, 2016.

M. Goetz, Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato, Plant Physiol, vol.145, pp.351-366, 2007.

Y. Shinozaki, Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism, Plant J, vol.83, pp.237-251, 2015.

C. Martínez, Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.), BMC Plant Biol, vol.13, p.139, 2013.

R. Kumar, A. Khurana, and A. K. Sharma, Role of plant hormones and their interplay in development and ripening of fleshy fruits, J. Exp. Bot, vol.65, pp.4561-4575, 2014.

C. Luschnig, R. A. Gaxiola, P. Grisafi, and G. R. Fink, EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana, Genes Dev, vol.12, pp.2175-2187, 1998.

G. K. Muday, A. Rahman, and B. M. Binder, Auxin and ethylene: collaborators or competitors?, Trends Plant Sci, vol.17, pp.181-195, 2012.

X. Cai, Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation, Nat. Commun, vol.5, p.5833, 2014.

J. Mao, Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression, PLoS Genet, vol.12, p.1005760, 2016.

M. Liu, The tomato Ethylene Response Factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27, New Phytol, vol.219, pp.631-640, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626490

L. Robles, A. Stepanova, and J. Alonso, Molecular mechanisms of ethylene-auxin interaction, Mol. Plant, vol.6, pp.1734-1737, 2013.