

Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services

Rolando Cerda, Jacques Avelino, Celia A. Harvey, Christian Gary, Philippe Tixier, Clementine Allinne

▶ To cite this version:

Rolando Cerda, Jacques Avelino, Celia A. Harvey, Christian Gary, Philippe Tixier, et al.. Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop Protection, 2020, 134, pp.105149. 10.1016/j.cropro.2020.105149. hal-02539732

HAL Id: hal-02539732 https://hal.inrae.fr/hal-02539732

Submitted on 15 Apr 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services

Rolando Cerda, Jacques Avelino, Celia A. Harvey, Christian Gary, Philippe Tixier, Clémentine Allinne

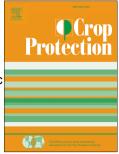
PII: S0261-2194(20)30082-X

DOI: https://doi.org/10.1016/j.cropro.2020.105149

Reference: JCRP 105149

To appear in: Crop Protection

Received Date: 11 October 2019


Revised Date: 10 March 2020

Accepted Date: 13 March 2020

Please cite this article as: Cerda, R., Avelino, J., Harvey, C.A., Gary, C., Tixier, P., Allinne, Clé., Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services, *Crop Protection* (2020), doi: https://doi.org/10.1016/j.cropro.2020.105149.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Credit autor statement

Rolando Cerda: conceptualization, methodology, formal analysis, investigation, data curation, writing - original draft writing - review & editing

Jacques Avelino: conceptualization, methodology, investigation, writing - review & editing, supervision

Celia A. Harvey: resources, writing - review & editing, visualization

Christian Gary: resources, conceptualization, writing - review & editing

Philippe Tixier: formal analysis, investigation, data curation

Clémentine Allinne: conceptualization, methodology, formal analysis, investigation, writing - review & editing, supervision

.s, investigation, t

Coffee agroforestry systems capable of reducing disease-induced yield and economic losses

while providing multiple ecosystem services

Rolando Cerda^{*a}, Jacques Avelino^{a,b,c}, Celia A. Harvey^d, Christian Gary^e, Philippe Tixier^f, & Clémentine Allinne^{a,g}

^aCATIE, Program of Agriculture, Livestock and Agroforestry,7170 Turrialba, Costa Rica;

- ^bCIRAD, UR Bioagresseurs, 34398, Montpellier, France;
- ^cIICA, AP 55, 2200 Coronado, San José, Costa Rica;
- rerproc ^dConservation International, 2011 Crystal Drive Suite 500, Arlington, VA, USA;
- ^eINRA, UMR System, 34060 Montpellier, France;
- ^fCIRAD, UPR GECO, 34398 Montpellier, France;
- ^gCIRAD, UMR System, 34060 Montpellier, France;
- *Corresponding author: rcerda@catie.ac.cr

24 Abstract

25 Crop losses caused by pests and diseases decrease the incomes and threaten the livelihoods of thousands 26 of families worldwide. A good example of the magnitude of these impacts are the massive crop losses 27 experienced by coffee farmers in Central America due to coffee leaf rust. Coffee farmers need agroecosystems that are capable of regulating the negative impacts of pests and diseases while providing 28 29 other ecosystem services on which their households and society depend. In this study, we aimed to identify 30 the most promising coffee agroforestry systems for regulating diseases and ensuring the provision of other 31 ecosystem services. During two years, in a research network of 61 coffee plots under a wide variety of shade 32 and management conditions in Turrialba, Costa Rica, we quantified primary and secondary coffee losses 33 (yield and economic losses) and indicators of three other ecosystem services: provisioning of agroforestry 34 products (bananas, plantains, other fruits, and timber), maintenance of soil fertility and carbon sequestration. 35 We then performed an analysis of the relationships between losses and ecosystem service indicators. Based 36 on the results of relationships and on three criteria, we identified the coffee agroforestry systems that had the 37 lowest losses due to diseases and that provided desirable levels of agroforestry products, soil fertility and 38 carbon sequestration. We found multiple significant relationships between losses and ecosystem services 39 (including both tradeoffs and synergies) which allowed us to derive recommendations for better management 40 strategies to reduce yield losses. We identified six coffee agroforestry systems (CAFs) as the most promising 41 ones for reducing losses while simultaneously providing other ecosystem services. One of these CAFs was a 42 simple agroforestry system (dominated by service trees), three were medium diversified CAFs and two were 43 highly diversified CAFs (systems including service trees, timber trees, fruit trees and musaceas). The six 44 CAFS differed in their cropping practices and farmer profitability objectives. The six CAFs offer several 45 options for the design of new coffee plantations or for the transformation of existing plantations. Several of 46 this promising CAFs use little fungicides, which is an indicator that the reduction of chemical inputs could be 47 possible. Our results suggest that the regulation of diseases and associated losses in agroforestry systems 48 should be based on, and take advantage of, the positive effects of plant biodiversity, adequate shade cover, 49 good soil fertility, and minimal use of fungicides.

50 Key words: Design; Primary losses; Secondary losses; Soil fertility; Carbon sequestration; Trade-offs

51 **1.** Introduction

Regulation of pests and diseases is an important ecosystem service worldwide. Pests and diseases cause severe crop losses, threatening agricultural production and reducing the food security and incomes of farmers (Oerke et al., 1994; Oerke, 2006). In the countries of Central America in 2011–2012, an outbreak of coffee leaf rust, due to the pathogen *Hemileia vastatrix*, along with suboptimal cropping practices, caused significant yield losses leading to an average yield reduction of 20% in the following years. Since then, coffee production in the region has continued to be low (Cerda et al., 2017b).

58 Injury profiles, i.e. a given combination of injury levels caused by a range of diseases and pests (Savary et 59 al., 2006), can differ dramatically according to crop systems in terms of encountered injuries and the levels 60 they reach. A specific crop system can help regulate some diseases but promote others. In coffee systems, 61 for instance, it is known that full-sun crops are more prone to coffee berry disease (Colletotrichum kahawae); 62 branch dieback, a syndrome exacerbated by Colletrotrichum fungi; brown eye spot (Cercospora coffeicola), 63 and Phoma leaf blight (Phoma costarricensis). In contrast, shaded coffee systems are deemed prone to 64 coffee leaf rust (Hemileia vastatrix), American leaf spot disease (Mycena citricolor), coffee wilt disease 65 (Fusarium xylarioides) and thread blight (Corticium koleroga) (Avelino et al., 2011; Avelino et al., 2018). 66 Quantifying the overall pest and disease regulation service within coffee systems is therefore difficult; 67 however, valuing this service can be achieved through crop loss assessments (Avelino et al., 2011; Cerda et 68 al., 2017a; Avelino et al., 2018). Crop systems that help reduce crop losses due to pests and diseases are 69 those that will be of interest to farmers, even if some pests and diseases are present.

Crop losses due to pests and diseases include losses in quantity and/or quality of the crop product (Oerke, 2006), normally resulting in economic losses (Nutter et al., 1993). Both primary and secondary crop losses should be considered. Primary crop losses are those caused in the specific year when pest and disease injuries occur, while secondary crop losses are those resulting from negative impacts of these pests and diseases in subsequent years (Zadoks and Schein, 1979; Avelino et al., 2015). For instance, foliar diseases in coffee cause defoliation and death of branches that will no longer bear fruits, leading to secondary losses.

76 A recent study on coffee has shown that the secondary yield losses (38%) can be higher and therefore more 77 important than primary yield losses (26%) caused by foliar pests and diseases (Cerda et al., 2017b). Since 78 coffee has a biennial production rhythm characterized by a repetitive cycle of high production one year and 79 low production the following year (DaMatta et al., 2007), the interaction between the biennial behavior of 80 production and pests and diseases impacts on coffee yield can lead to strong economic fluctuation and 81 instability for coffee farmers. The main coffee diseases to consider in Latin America and the Caribbean are 82 coffee leaf rust (H. vastatrix), American leaf spot (Mycena citricolor), brown eye spot (Cercospora coffeicola) 83 and anthracnose (Colletotrichum gloeosporioides); ultimately branch dieback must be considered, which is itself aggravated by a complex of opportunistic fungi. 84

Given such a problematic scenario, combating coffee diseases is a priority for governments and private sectors in the Latin American and Caribbean region. There is a need to better understand how different management practices and the agroecosystem structure influence crop losses. Coffee is produced under a wide variety of different conditions with different levels of management intensity. There are coffee plantations in monocultures (full sun) and shaded coffee plantations which range from simple to highly complex agroforestry systems (Toledo and Moguel, 2012).

91 An important and major challenge is to design coffee agroforestry systems capable of regulating pests and diseases and reducing resulting losses while, at the same time, maintaining other ecosystem services 92 93 necessary for farmers and for society as a whole. For instance, for farmers and their families, the provision of 94 diversified products such as fruits, timber, firewood and others from coffee agroforestry systems is important for household income and food security (Rice, 2008). The maintenance of soil fertility (a regulation service) is 95 96 of interest to farmers, given that their production depends in great part on soil quality (Müller et al., 2015). For 97 the society in general, carbon sequestration is a key regulation service, as it contributes to the mitigation of 98 climate change (MEA, 2005). All of these services can be provided individually or simultaneously by coffee 99 systems, depending on the type of agroforestry system and its management.

100 It is also important to understand the relationships among different ecosystem services, since management
 101 decisions that improve the delivery of a particular service can affect other services (Cheatham et al., 2009;
 102 Mora et al., 2016). To increase beneficial or synergetic relationships, trade-offs between ecosystem services

103 must be minimized and synergies promoted (Iverson et al., 2014; Rapidel et al., 2015). In the case of multiple 104 cropping, such as agroforestry systems, knowledge of the trade-offs and synergies among ecosystem 105 services is important for improving the management of the biodiversity. This knowledge is a necessary step 106 towards the ecological intensification of agriculture, i.e. an agricultural intensification to increase yields with 107 improved ecosystem services and reduced negative externalities (Kremen and Miles, 2012; Geertsema et al., 108 2016). It is also important to estimate the monetary values of ecosystem services and use this information in 109 the assessment of relationships, because this can shed light on the magnitude of trade-offs or synergies (Peh 110 et al., 2016). Several recent studies have already demonstrated the usefulness of assessing relationships among ecosystem services to guide farm management decisions. For instance, trade-off analysis in 111 agroforestry systems (with coffee and cocoa especially) have yielded strategic recommendations to improve 112 the design and management of different types of such systems (Wade et al., 2010; Meylan et al., 2013; 113 114 Somarriba et al., 2013; Cerda et al., 2017a).

115 With this research, we aimed to identify the most promising coffee agroforestry systems (CAFs) that can 116 serve as production models for farmers. Here we define 'promising' CAFs as those capable of reducing yield 117 and economic losses due to diseases while also providing other ecosystem services. We studied a wide 118 variety of coffee agroecosystems with different cropping practices, contrasting types of shade canopies and 119 different altitudinal locations. Our specific objectives were to (1) quantify the delivery of provisioning services 120 (coffee yield, agroforestry products, cash flow, value of domestic consumption) in different CAFs; (2) quantify 121 indicators of regulation services (coffee yield losses and economic losses, incidence of diseases) plus 122 indicators of maintenance of soil fertility and carbon sequestration in the aboveground biomass; and (3) 123 analyze the relationships among those ecosystem services in order to identify the most promising CAFs. 124 From these promising CAFs, we also aimed to derive technical recommendations to prevent losses from 125 diseases. The indicators of ecosystem services chosen in this study are relevant for characterizing the basic 126 needs of farmers' families, the natural resources in agroforestry systems and the environment in general 127 (Rice, 2011; Somarriba et al., 2013; Cerda et al., 2014; Pinoargote et al., 2016).

128

130 2. Materials and methods

131 **2.1** Data collection and calculation of indicators of ecosystem services

132 2.1.1 Location and coffee plot network

133 To characterize the delivery of multiple ecosystem services in coffee agroforestry plots, we collected data for 134 two years (2014-2015) in 61 coffee plots in a research network established in Turrialba, Costa Rica. Turrialba is characterized as a premontane wet forest life zone (with mean annual rainfall = 2781 mm and a 135 136 mean annual temperature = 22.2°C; 10 year averages), where coffee is grown from 600 to 1400 meters above sea level (m.a.s.l.). To sample the diverse set of conditions under which coffee is grown, we selected 137 coffee plots that varied in terms of their management practices (e.g. fertilizers, weeding, pests and disease 138 139 control, etc.), shade types (ranging from coffee systems in full sun to CAFs with high plant biodiversity) and in different altitudes from 600 to 1200 m.a.s.l. All coffee plots were owned by smallholder farmers and had the 140 coffee variety Caturra as the dominant variety on the farm; this variety is also the most common in the region. 141

142 2.1.2 Measurements in coffee plants

143 In each coffee plot, we marked a subplot composed of eight coffee rows with 15 plants each and selected 144 eight coffee plants (one per row). In these plants, we measured the number of fruiting nodes (yield 145 component) and the number of dead productive branches (yield-reducing factor) as predictors of yield and 146 yield losses (Cerda et al., 2017b). In the same plants, we measured the presence of foliar diseases in the 147 leaves of three lateral branches (one branch in the lower part of the coffee plant, another in the middle and a 148 third in the upper part) five times during the year, and then we calculated the standardized area under the 149 disease progress curve (sAUDPC) for each disease. We also took measurements of the dieback level in all 150 plants of the subplot. Dieback was considered as a result of negative effects of both biotic and abiotic factors. 151 Additional details on the coffee plant measurements can be found in Table 1.

152

154 2.1.3 Characterization of shade canopy

In order to characterize the structure of the shade canopy, we marked a circular area of 1000 m² in the center 155 of each subplot for the identification and measurements of plants and trees. We measured the species 156 richness, tree abundance and trunk diameters (at breast height = 1.30 m; for trunks with diameter >5 cm) of 157 each tree and classified shade plants into different types: timber trees, fruit trees, service trees and musacea 158 159 plants (bananas and plantains). We defined 'service trees' as leguminous trees that provide leaf litter 160 biomass to the soil and/or fix nitrogen; these trees can also provide fodder to feed livestock. Four times per 161 year we measured the shade cover with a spherical densitometer in the four corners and in the center of the 162 subplot and obtained yearly averages. We used this data to group coffee plots in three main types of coffee 163 agroecosystems: coffee in full sun (CFS), coffee agroforestry systems with low plant diversification (CLD) and 164 coffee agroforestry systems with high plant diversification (CHD).

165 2.1.4 Farmer surveys

We interviewed the farmers to collect data on management and agroforestry production, which we used to calculate indicators of provisioning services such as cash flow and value of domestic consumption. We applied semi-structured interviews to obtain the necessary data on cropping practices and production costs differentiated by inputs and labor (family labor and hired labor); yields of agroforestry products other than coffee (bananas, plantains, other fruits, timber); quantity of agroforestry products for domestic consumption and quantity of agroforestry products sold; and local cost of hired labor and of agroforestry products.

172 2.1.5 Calculation of indicators of ecosystem services

We used our field data to calculate indicators of four ecosystem services: regulation of diseases, provisioning of agroforestry products, maintenance of soil fertility and carbon sequestration. Table 1 lists the ecosystem service indicators, along with the main methods used to obtain them. In addition to being relevant for farmers, these indicators meet useful criteria in the study of ecosystem services, such as possible to quantify, sensitive to changes in the system management, respond to change in a predictable manner and reflect the features of the system (Dale and Polasky, 2007). Models and equations to estimate yields and yield losses

and economic losses are shown in Table 2; their indicators of prediction quality are presented insupplementary materials.

181 2.2 Analytical methods

2.2.1 Characterization of the relationships between indicators of losses and indicators of ecosystem services

184 To analyze the relationships between losses (yield and economic losses) and indicators of ecosystem 185 services, we carried out bivariate linear regressions between losses and indicators of presence of diseases (reflected by the sAUDPC) and between indicators of losses and indicators of the other ecosystem services 186 studied (Table 1). The regressor variables were the indicators of presence of diseases, provisioning of 187 agroforestry products, maintenance of soil fertility and carbon sequestration listed in Table 1. The dependent 188 189 variables were the indicators of yield losses: primary yield losses (%) and their economic primary losses (USD ha⁻¹) and secondary yield losses (%) and their economic secondary losses (USD ha⁻¹). A total of 48 190 191 regressions were performed and represented graphically. Since both yield losses and economic losses 192 should be reduced, the relationship is interpreted as a synergy if the relationship between a loss and a given 193 indicator of ecosystem service is negative (Fig. 1B): the increase of this given indicator is related to a 194 reduction of the loss (i.e. greater yield). Conversely, if the relationship is positive, then this relationship is 195 interpreted as a trade-off (Fig. 1C) because the improvement of this given ecosystem service is related to the 196 increase of loss (i.e. lower yield).

197 **2.2.2** Identification and characterization of the most promising coffee agroecosystems

In each graphical representation of the 48 regressions, a 'desirable area' was determined as part of the procedure to identify the most promising CAFs. The desirable area was defined as the area containing points, i.e. coffee plots, delimited by 'desirable levels' of the two indicators of ecosystem services analyzed in each regression (Fig. 1). The delimitation of the desirable areas followed three steps: (1) the outlier points of indicators of yield and economic losses were removed from the analysis to avoid bias from uncommon observations; (2) medians for all indicators of ecosystem services were calculated; and (3) each desirable area was delimitated based on the data of the medians, which were considered as boundary values in this

205 study. In the case of regressions between losses and indicators of provisioning services, maintenance of soil 206 fertility and carbon sequestration, the graphical representation was divided into four quadrants according to 207 the medians in each axis and only one quadrant represented the desirable area. In the case of regressions 208 between losses and indicators of diseases, the graphical representation was divided into only two zones 209 according to the median in the axis of losses (because it was considered that low yield loss, even with high 210 levels of a disease, is an acceptable situation). Thus, only one zone represented the desirable area (Fig. 1). 211 This approach of identifying plots that attain desired values of pairs of ecosystem services was proposed as 212 an important part of designing agroecosystems (Rapidel et al., 2015) and has already been applied in a previous study on ecosystem services provided by coffee systems (Cerda et al., 2017a). 213

214 The most promising CAFs (specific coffee plots) for providing multiple ecosystem services were those that 215 met three criteria. First, the plots had to have lower values of secondary yield losses and secondary 216 economic losses than the median of the dataset, given that secondary losses were the most important 217 (higher than primary losses). This means that promising plots had to be at least within the 50% of the plots 218 with lower secondary losses. Second, the coffee plots could not present negative values of cash flow in either 219 of the two studied years, because cash flow reflects the gain or loss of money in cash taking into account the 220 sales of agroforestry products and the costs of production invested (Table 1). Promising coffee plots, 221 therefore, should never produce a loss of cash for the farmer. Third, and finally, the coffee plots had to be 222 located in at least 32 desirable areas of the 48 regressions (two thirds-67-of the desirable areas). We 223 chose this cutoff in order to identify a reasonable number of most promising coffee plots that can be 224 considered as successful production models from which we can learn. A lower cutoff (e.g. 50%) would have 225 resulted in too many apparently promising plots, and a higher cutoff (e.g. 80%) would have resulted in only 226 one promising plot. We considered that the coffee plots fulfilling all three criteria were the most promising 227 coffee agroecosystems for the regulation of diseases (reduced crop losses), the provisioning of products for 228 farming families and the maintenance of soil fertility and sequestration of carbon. Finally, for each of the most 229 promising CAFs identified, we described its characteristics of structure and composition of the shade canopy, 230 cropping practices, production costs and the indicators of ecosystem services it provides.

232

233 **3.** Results

We found 21 significant relationships (p<0.05) between yield losses and economic losses and ecosystem service indicators (out of total 48 regressions). We identified six promising CAFs that hold the greatest potential to provide multiple ecosystem services simultaneously. We first present figures of relationships among different ecosystem service provisions. In each figure, the types of coffee agroecosystems can be differentiated, and the six most promising CAFs are identified. We then describe their characteristics in detail.

239 3.1 Relationship between diseases and losses

The percentages of coffee leaf rust and dieback were positively related to yield losses and economic losses, which indicates that these phytosanitary problems are the most dangerous for the crop. According to the determination coefficient (R²), primary yield and economic losses were more related to dieback, and secondary yield and economic losses were more related to coffee leaf rust. The percentage of brown eye spot were low in general and no related losses were highlighted (not significant), which means that this disease was not as important as the other two in our context (Fig. 2).

An important finding was that despite several coffee plots having high levels of disease (up to 70% of coffee leaf rust and up to 60% of dieback index), they were still located in the desirable areas with low yield losses and economic losses; most of them were agroforestry systems of CLD and CHD types. This is an important insight that there are systems capable of avoiding high losses despite a high presence of pathogens. The six most promising CAFs were among them (Fig. 2).

3.2 Relationships between indicators of losses and indicators of ecosystem services

We found five significant relationships of yield losses and economic losses with indicators of provisioning services, three with indicators of maintenance of soil fertility and five with indicators of carbon sequestration, yet, the R^2 in most of those relationships were equal or lower than 0.10 (Figs. 2, 3, 4 and 5). Such very low

R²s do not indicate clear relationships. Therefore, in the following paragraphs we focus on interpreting only relationships with R^2 s higher than 0.10.

257 Most of the coffee plots in the desirable areas with low losses and indicators of provisioning services were agroforestry systems (CLD and CHD). Among them, the systems with high diversification (CHD) were those 258 capable of contributing the most to domestic consumption of agroforestry products, while the systems with 259 260 low diversification (CLD) contributed the most to both coffee yields and cash flow in both years of evaluation. 261 Very few systems at full sun (CFS) were identified as capable of maintaining low losses and at the same time 262 providing good cash flows. All six most promising CAFs were in desirable areas between low secondary 263 losses and desirable provisioning indicators, but not all of them were in desirable areas with low primary 264 losses (Fig. 3).

We found few significant relationships between losses and indicators of maintenance of soil fertility. Only the relationships between soil K and secondary losses registered $R^2>0.10$ and were positive (Fig. 4), but in such figures we noted that only the high K data of two coffee plots could be leading to the positive relationships; therefore, it is not possible to conclude that high K soil contents (specially in CHD) would lead to the increase of losses in general.

We found more CAFs (CLD, CHD) than coffee at full sun (CFS) registering low yield losses, low economic losses and good indicators of soil fertility (desirable areas in Fig. 4). This was more evident in the desirable areas with soil acidity and soil K, which reflects the importance of trees and other plants maintaining healthy soils. The six most promising CAFs were in desirable areas between losses and soil acidity, but not all of them in desirable areas between losses and soil K and soil C (Fig. 4).

We found a significantly positive relationship between secondary economic losses and carbon in timber trees, with an $R^2 = 0.16$. We also found a similar tendency with carbon in fruit trees (Fig. 5). Although the R^2 s were low, such relationships provide an insight that there can be trade-offs associated with tree densities, because while the service of carbon sequestration is improved, increased tree densities can lead to the increase of yield losses and resulting economic losses.

We noted that none of the coffee plots with carbon in timber trees higher than 8 Mg ha⁻¹, and none of the coffee plots with carbon in fruit trees higher than 4 Mg ha⁻¹ registered low yield and economic losses (out of desirable areas, Fig. 5). It was interesting to find that coffee plots with carbon in service trees up to 27 Mg ha⁻¹ were still located in desirable areas with low secondary losses, which indicates that the presence of that type of tree does not cause trade-offs between services and can contribute to reducing losses (Fig. 5).

In general, less than the third part of the coffee agroecosystems (full sun systems and agroforestry systems) evaluated in this study where located in each of the desirable areas between losses and indicators of ecosystem services (Figs. 3, 4 and 5). Among them, two desirable areas were the most difficult to reach: low secondary yield losses in combination with high soil K content, and low secondary yield losses in combination with high carbon content in fruit trees and timber trees. Only less than 16% of coffee agroecosystems reached desirable levels of such combinations.

3.3 The most promising coffee agroforestry systems for providing multiple ecosystem services simultaneously

We identified six CAFs as the most promising ones for the simultaneous regulation of diseases (low yield 293 294 losses and low economic losses) and provision of other ecosystem services. Although they differed in their 295 agroforestry structure, agronomic management and indicators of ecosystem services, all six CAFS metthe 296 three criteria proposed (in section 2.2.2) to be the most promising systems: 1) low secondary losses, 2) 297 positive cash flow, and 3) located in at least 32 of the 48 possible desirable areas, deduced from the bivariate 298 relationships between indicators of ecosystem services. Our results suggest that the provision of important 299 benefits for farmers is not restricted to a given type of shade of the system but can be achieved by different 300 agroforestry systems depending on their particular management strategies.

We numbered the CAFs from 1 to 6 according to the complexity of their shade canopies: from the simplest (CAF1) to the most complex (CAF6). The six CAFs were notably different in the structure and composition of their shade canopies, their agronomic management and the ecosystem services they provide. The densities and basal areas per type of tree (service, fruit, timber trees and bananas), as well as the species richness and shade cover of the plot, also differed among the six CAFs (Table 3).

306 The agronomic management differed mostly in the number of fungicide and herbicide applications and in the 307 cost of hired labor and cost of inputs. In general, more practices and higher costs were applied in 2014 than 308 in 2015 (Table 4), because when farmers realize that a given year (2015) is going to produce low yields, they 309 prefer to reduce expenses. The management of shade trees was considered similar among the six CAFs, 310 because farmers in the study area usually prune service trees twice a year in (once a few weeks before the 311 beginning of the coffee harvest season and the other after the end of the harvest season). Farmers do not 312 apply silvicultural practices to fruit or timber trees; and management of bananas is sporadic (they just cut 313 diseased leaves when they are applying practices to coffee plants).

In Tables 3 and 4, we present summary data of the 61 coffee plots evaluated in this study (mean, standard deviation, minimum and maximum of all variables) to show the overall characteristics of coffee agroecosystems in the study area. It is possible to note that the most promising CAFs had lower densities of trees than many of the other coffee plots, which indicates that these promising CAFs avoid excessive densities (Table 3). However, the promising CAFs had similar frequencies of cropping practices as others, but lower production costs (Table 4).

Although all six CAFs presented good values of most of the indicators of ecosystem services, they were quite different in each indicator. In Table 5 we show the data of ecosystem services for each promising CAF and the summary data for all the 61 coffee plots. The six CAFs, although different among them, in general, were superior to other systems in terms of ecosystem service provision. For instance, yield losses and economic losses were lower than the means of all systems. Finally, in Table 6, we present a summary of the characteristics of the six CAFs related to their agroforestry structure, yield losses, yields and management strategies.

327 4. Discussion

328 4.1 Yield losses to identify crop systems tolerant to diseases

Primary and secondary yield losses were positively related to coffee leaf rust and dieback that leads to the death of productive branches, considered as the main yield-reducing factor (Cerda et al., 2017b). However, we highlight as an important finding that the coffee plots with the lower primary and secondary losses were not necessarily associated with lower disease levels. For instance, among the six most promising CAFs, the

333 percentage of coffee leaf rust ranged from 24% to 63%, but their primary yield losses did not surpass 6% and 334 their secondary yield losses did not surpass 18%, much lower than the other coffee agroecosystems. In other 335 words, some crop systems tolerate disease incidences better than others. Plant tolerance to pests and 336 diseases, i.e. the plant's ability to produce a good harvest even with high disease or pest intensities (Agrios, 337 2005), can be related to good nutrition and appropriate shade cover in agroforestry systems (Toniutti et al., 338 2017; Villarreyna et al., 2020).

339 Given that reduced yield losses can be considered as indicators for valuing the regulation of pests and 340 diseases as an ecosystem service (Avelino et al., 2011; Avelino et al., 2018), the six most promising CAFs 341 can be considered as crop systems that provide such a service. However, it is important to clarify that these 342 CAFs did not reduce yield losses only due to their natural capacity to tolerate diseases, thanks to their plant 343 biodiversity levels and good soil fertility, but such capacity was reinforced by the control of diseases. In all of 344 these promising systems, fungicides were applied with certain frequency. In this matter, it is also worth 345 mentioning that strict control of diseases based only on pesticide application or on the removal of trees of the 346 canopy to reduce excessive shade cover (such as in agroforestry systems) can be detrimental to the 347 provision of other ecosystem services (Cheatham et al., 2009). Therefore, for effective regulation of diseases 348 without trade-offs with other services, we believe that the control of phytopathogens must be combined with 349 the regulation that the system itself provides, i.e. through the use of plant diversification, adequate shade 350 cover and maintenance of soil fertility. A moderate shade cover (about 30%), for instance, helps avoid 351 excessive fruit loads that increase the susceptibility of coffee plants to diseases, and good soil fertility 352 enhanced by the organic matter provided by shade trees improves the ability of coffee plants to tolerate 353 pathogen attacks (Cerda et al., 2017a; Villarreyna et al., 2020). Thus, shade trees contribute to improve 354 coffee diseases management, reducing the dependence of farmers on chemical pesticides use for disease 355 control. When there is excessive shade cover, instead of removing shade trees, management of these shade 356 trees by pruning should therefore be encouraged.

357 4.2 Management and economic strategies to maintain the crop system sustainability

358 The six most promising CAFs were identified by their ability to provide various ecosystem services 359 simultaneously, which is important to enhancing ecological sustainability while being profitable. Each of the 14

360 CAFs has a specific agroforestry structure and different combination of cropping practices, showing that there 361 can be several and varied strategies that farmers can choose for the design of new plantations or for 362 transforming existing plantations. There appear to be two pathways for reducing yield losses to disease: 1) 363 applying fungicides to maintain high yields (as in CAF1 and CAF5), or 2) obtaining lower but acceptable 364 yields with limited use of fungicides (e.g., CAF 2, 3, 4 and 6) (Fig. 6). These latter systems indicate that the 365 reduction in fungicide use can be possible. An alternative to fungicides can be the use of biological products 366 with bacteria or fungi that are antagonists to pathogens. In addition, the use of fungicides for avoiding 367 epidemic growth must be planned based on the monitoring of diseases and the rainfall regime (Belan et al., 2015; Zambolim, 2016). Such actions can help reduce the use of chemical fungicides in quantity and 368 frequency and yet help to protect the system, instead of only applying pesticides as an urgent measure when 369 the epidemic has reached loss-inducing levels. The idea is to structure and manage coffee systems to 370 371 maximize their preventive strengths against pests and diseases (Lewis et al., 1997).

372 It is known that farmers do not apply radical changes to their systems when they want to make improvements 373 in structure or management; instead, they will apply incremental changes step by step according to the 374 availability of resources (Mussak and Laarman, 1989). Therefore, one way to encourage farmers to change 375 their coffee systems to more sustainable systems is to identify what type of coffee plantation they currently 376 have and provide technical advice on how to change this plantation into one of the 6 more promising CAFs, 377 depending on which one they are most interested in and their resources. Figure 6 shows potential 378 transformation pathways for each of the main types of coffee agroecosystems. For instance, monocultures in 379 full sun could be transformed into simple agroforestry systems coffee-service trees (CAF1); depending on the 380 initial level of diversification and on the management strategy, coffee systems with low diversification could 381 be transformed into CAF2, CAF3 or CAF 4; and coffee systems with high diversification could be transformed 382 into CAF5 or CAF6. Then, it is possible to incrementally change the level of shade diversification and so 383 improve ecosystem services while reducing pesticide use to increase sustainability of the crop system, as 384 indicated by the colored arrows in Figure 6. Since our study did not include organic farms, we do not have 385 promising systems without any chemical pesticide use; therefore, the design of a transition pathway toward 386 completely agroecological systems should be a future topic of study.

387 Another important strategy is to replace varieties susceptible to the main diseases with resistant varieties, as 388 is being promoted by development projects in the region. However, it is important to take into account several 389 considerations. The change of varieties implies moderate to high costs to farmers, thus, the process should 390 be gradual and could take several years, especially in the case of smallholder farmers. The resistance of 391 improved coffee varieties is being surpassed after several years due to the evolution of pathogens, so 392 farmers cannot rely on these new varieties to confer long-term resistance; instead, the integral management 393 of agroforestry systems (soil fertility, uniform shade cover, microclimate, plant diversity) will be always 394 necessary to prevent the development of diseases and resulting losses (Avelino and Anzueto, 2020).

395 4.3 Management recommendations derived from the characteristics of the most promising coffee 396 agroforestry systems

From the six most promising CAFs, we can identify specific characteristics of their shade canopies and management and use them as guides for reducing losses and providing ecosystem services. Based on the range of characteristics of the six CAFs (Tables 3 and 4), we derived six important recommendations for farmers who want to grow coffee in a sustainable manner and obtain other benefits, not only coffee yield.

401 a. Densities and management of service trees: service trees can be managed with densities up to 350 trees ha⁻¹ in simple agroforestry systems where the service tree is used as the main shade 402 species. In more diversified agroforestry systems, service trees could reach up to 200 trees ha⁻¹ when 403 404 the service tree species are wanted to be the most represented into the system. In diversified systems where bananas and other fruits or timber trees are more important for the farmer, service 405 trees should not surpass 30 trees ha⁻¹. It is important to note that in this study we are referring to 406 407 service trees of the family Fabaceae, mainly of the species Erythrina poeppigiana, which are easily pruned once or twice per year to maintain low shade cover with crowns of low height. If the user is 408 409 planning to manage different service trees, for instance Inga spp, which are not easily nor frequently 410 pruned, then the densities should be much lower because these trees tend to have wider and denser 411 crowns, and high densities can result in excessive shade.

b. Densities of musaceae plants: the density of museacaea plants can reach up to 300 plants ha⁻¹ in
 medium diversified agroforestry systems where the production of bananas or plantains is a priority for
 16

414 the farmer apart from coffee. For plantations with high densities of musaceae plants, there should be 415 very low density of shade trees (<40 shade trees ha⁻¹). In highly diversified agroforestry systems 416 where the objective is to cultivate fruit or timber trees, the density of musaceae plants should be 417 much lower (~30 plants ha⁻¹).

c. Densities and species of fruit trees: in diversified agroforestry systems, such as CAF 5 and CAF 6,
the density of fruit trees reached up to 80 trees ha⁻¹, but with small trees, most of them *cas (Psidium friedrichsthalium)* and *arazá (Eugenia stipitata)*, which were young trees (according to their basal areas) and had low shade cover. If the farmer wants to use other types of fruit trees, such as oranges or avocados, which have denser crowns, then we estimate that the density of such trees could be between 20 and 30 trees ha⁻¹, in order to avoid risk of excessive shade and competition with coffee plants for soil nutrients.

- d. Densities and management of timber trees: in diversified agroforestry systems, timber trees
 should not surpass 30 trees ha⁻¹ when they are tree species similar to *Cordia alliodora* or *Cedrela odorata*, as found in this study. One of the CAFs had 170 trees ha⁻¹ but these were young and small
 trees; the farmer will likely reduce the density of trees in future years. Low densities of timber trees
 can be managed in agroforestry systems and still sequester important amounts of carbon and
 produce timber, as long as the silvicultural management favors as much as possible thickness
 increment of the main trunk (Somarriba et al., 2013).
- e. Level of shade cover: the shade cover was variable among the most promising CAFs, but none of
 them surpassed 35%. This should be the maximum percentage of shade cover to manage in a
 climate such as that of Turrialba, where it is rainy most part of the year (mean annual rainfall = 2781
 mm).

f. Cropping practices: weed control (with herbicides and/or machete weeding) should be done as necessary: at least three controls per year would be ideal. The use of herbicides should be limited if possible, which could be achieved by the use of a uniform shade cover in the plantation. At least one application of fertilizers per year is needed: two would be better. Harvests should be every two weeks in an area such as Turrialba, where ripe fruits can be seen frequently during the six-month harvest season. The application of fungicides per year was variable among the most promising CAFs, from

442 one to six applications. In case of small farmers, we believe the ideal to be two applications per year 443 (as in several of the most promising CAFs). As mentioned, the quantity of fungicides used in the 444 system can be reduced based on disease monitoring, by applying fungicides as soon as the disease 445 reaches specific low incidence thresholds that help prevent the epidemic growth and further control 446 needs. This practice has the potential to reduce the frequency of applications and quantity of inputs. 447 More than four applications of fungicides can be justifiable when there is a strong risk of plant 448 defoliation and high yield losses, but this is not always feasible for small farmers due to the 449 investment needed. The use of fungicides should be the last resort.

450 **4.4 Lessons from the analysis of relationships between indicators of ecosystem services**

451 The analysis of the relationships between indicators of losses and indicators of other ecosystems services, and the determination of desirable areas (Figs. 2-5) were useful for identifying crop systems that maintained 452 453 high yields (i.e. low losses to diseases), were financially profitable and ecologically sustainable. Although the 454 R²s were low for most relationships, these relationships can still be considered as indicators of possible 455 trade-offs or synergies, as long as they are significant (p<0.05). Similar approaches, methods and findings 456 were used in an assessment of ecosystem services by a set of agroforestry systems with coffee, cocoa, 457 basic grains, pastures and home gardens (Cerda et al., 2019). In this study, the trade-offs found between ecosystem services become important warnings to avoid high yield losses and economic losses. For 458 459 instance, the trade-off of increasing carbon sequestration (in fruit and timber trees) that leads to increased 460 losses of coffee yields suggests that excessive presence of that type of tree should be avoided. In the case of 461 relationships that could reflect synergies, such as the one of increasing soil carbon and reducing losses, the 462 indication is that the increase of organic matter could help reduce losses, i.e. not necessarily by regulating diseases directly but by reducing their negative impact on yield (Avelino et al., 2006). 463

Some relationships, such as the ones between losses and domestic consumption, should be interpreted carefully. The positive relationship between the value of domestic consumption of agroforestry products and secondary losses of coffee could be seen as an undesirable relationship (trade-off); however, this can be seen as the farmers' strategy to face coffee losses by using the biodiversity—they increase the consumption of other products coming from the system when they realize that coffee yield is going to be low. Farmers use 18

agroforestry products (fruits, timber and others) to increase the self-consumption of on-farm products,
increase incomes and therefore reduce financial risk (Ramírez et al., 2001; Rice, 2011).

471 When no significant relationships were found, that means that a given ecosystem service can be increased without increasing yield losses and economic losses. Independent of the significance and type of 472 relationships (trade-offs or synergies), the identification of desirable areas in the regression graphics makes it 473 474 possible to identify which type of agroecosystems are achieving desirable levels of ecosystem services 475 (Rapidel et al., 2015). In addition, this approach was also useful for identifying which desirable combinations 476 of ecosystem services are the most difficult to achieve. For example, few coffee systems achieved desirable 477 combinations of low secondary losses with more soil K, and more carbon in timber and fruit trees. This 478 indicates that soil fertilization strategies and silvicultural tree design-management should be improved.

479 Suggestions for how to improve the structure of the agroforestry systems and their management must be in 480 line with farmer priorities. In this study, our proposed recommendations are primarily focused on improving 481 disease regulation and increasing coffee yields, given that the coffee in the region is in a severe crisis due to 482 the attack of coffee leaf rust and unfavorable socioeconomic and climate conditions; therefore, actions are 483 needed to reduce crop losses (Avelino et al., 2015). The other goals are to promote plant diversity in 484 agroforestry systems in order to provide other tangible products (fruits, timber), maintain soil fertility and 485 contribute to climate mitigation through carbon sequestration. In other regions, the most promising systems 486 should be identified or designed based on the priorities established according to the particular context and/or 487 the interests of the main stakeholders. However, it is always critical to give an important weight and focus to 488 disease regulation and control, given that the actions needed directly or indirectly affect the biodiversity and 489 provision of ecosystem services of the crop system (Cheatham et al., 2009).

The quantification of several indicators of ecosystem services and the identification of trade-offs or synergies between them can also be inputs for decision support systems or multi-criteria decision analysis for agroforestry systems at the farm or landscape scale In that kind of analysis, the key stakeholders (farmers, technicians, scientists, decision makers) can combine the quantitative and qualitative information about ecosystem services to rank them according to their priorities to achieve goals and generate possible

scenarios of trade-offs or synergies that can guide decision making processes (Domptail et al., 2013;
Saarikoski et al., 2015).

497 A caveat of our study is that the boundaries (medians) to demarcate the desirable areas for identifying the 498 most promising agroforestry systems used in this study are not generalizable for studies on coffee in other 499 areas. In this study, the boundaries are dependent both on the indicators of ecosystem services of the 500 sampled coffee plots and on the number of coffee plots. If similar studies were developed in other areas, their 501 boundaries should be the medians registered in that study. Alternatively, the boundaries could be established 502 according to the specific boundaries desired by the user (according to particular objectives of farmers or 503 researchers), as done in a previous study (Cerda et al., 2017a). To define boundaries for a given region, for 504 instance, the sampled plots should represent a huge variability of production situations and management 505 strategies within the studied region so that the medians obtained could be considered as "threshold 506 boundaries" for the region.

507 5. Conclusions

Identifying agroforestry systems that enhance the regulation of diseases while delivering good yields and other ecosystem services can help improve the sustainability of coffee farming by providing farmers and technicians with successful coffee production models. The six most promising CAFs identified in this study belonged to different types of agroforestry systems and management strategies. This is an important finding because such systems represent several options to follow (imitate) for the design of new coffee plantations or the transformation of existing plantations.

This study allowed us to identify the most important relationships between indicators of yield losses and economic losses and the indicators of other ecosystem services, which gives insights into better management of coffee agroforestry systems. The regulation of diseases must concentrate on reducing coffee leaf rust and dieback, as they were the main diseases that increased losses. The integrated management of diseases should take advantage of combining the management of plant biodiversity, soil fertility and the use of low quantities of fungicides, applied when inoculum pressure is still low. Increasing carbon in timber and

fruit trees implied slight trade-offs with disease regulation, because such increments also increased losses,
indicating that densities of these types of trees, for caution, should be low.

In this study, the analysis focused mainly on yield losses and economic losses as indicators of the regulation of diseases and on their bivariate relationships with indicators of other ecosystem services. This means that for the identification of the most promising agroforestry systems, more weight was put on the service of regulation of diseases, a highly relevant service for farmers currently due to the coffee crises in the region. Despite this specificity, our study provides a useful methodological approach for other contexts (regions, crops), particularly in situations where other ecosystem services not assessed here, as hydric regulation, soil erosion regulation, or habitat for bird biodiversity, could be considered as relevant.

529 6. Acknowledgements

This research was supported by the CASCADE project Ecosystem-Based Adaptation for Smallholder Subsistence and Coffee Farming Communities in Central America, funded by the International Climate Initiative (ICI). The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) supports this initiative on the basis of a decision adopted by the German Bundestag. This research is also a product of a study grant implemented by the *Agence inter-établissements of recherche pour le développement* (AIRD) on behalf of the *Center de coopération* internationale en recherche agronomique pour le développement (CIRAD).

537 7. Literature

- 538 Agrios, G., 2005. Fitopatología. Limusa, México.
- Avelino, J., Allinne, C., Cerda, R., Willocquet, L., Savary, S., 2018. Multiple-Disease System in Coffee: From
- 540 Crop Loss Assessment to Sustainable Management. Annual Review of Phytopathology 56, 611-635.
- 541 Avelino, J., Anzueto, F., 2020. Coffee Rust Epidemics in Central America: Chronicle of a Resistance
- 542 Breakdown Following the Great Epidemics of 2012-13. In: Ristaino, J., Records, A. (Eds.), Emerging Plant 543 Disease and Global Food Security. APS Press. In Press.
- 544 Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, P., Anzueto, F.,
- 545 Hruska, A.J., Morales, C., 2015. The coffee rust crises in Colombia and Central America (2008–2013):
- 546 impacts, plausible causes and proposed solutions. Food Security 7, 303-321.
- 547 Avelino, J., Ten Hoopen, M., DeClerck, F., 2011. Ecological Mechanisms for Pest and Disease Control in
- 548 Coffee and Cacao Agroecosystems of the Neotropics. In: Rapidel, B., F, D., JF, L.C., J, B. (Eds.), Ecosystem
- 549 Services from Agriculture and Agroforestry Measurement and Payment. Earthscan, pp. 91-117.

- 550 Avelino, J., Zelaya, H., Merlo, A., Pineda, A., Ordoñez, M., Savary, S., 2006. The intensity of a coffee rust 551 epidemic is dependent on production situations. Ecological Modelling 197, 431-447.
- 552 Belan, L.L., de Jesus, W.C., de Souza, A.F., Zambolim, L., Tomaz, M.A., Alves, F.R., Ferrao, M.A.G., do Amaral,
- 553 J.F.T., 2015. Monitoring of leaf rust in conilon coffee clones to improve fungicide use. Australasian Plant 554 Pathology 44, 5-12.
- 555 Cerda, R., Allinne, C., Gary, C., Tixier, P., Harvey, C.A., Krolczyk, L., Mathiot, C., Clément, E., Aubertot, J.-N.,
- 556 Avelino, J., 2017a. Effects of shade, altitude and management on multiple ecosystem services in coffee 557 agroecosystems. European Journal of Agronomy 82, 308-319.
- 558 Cerda, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., Allinne, C., 2017b. Primary and Secondary Yield
- 559 Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee. PloS one 12, e0169133.
- 560 Cerda, R., Deheuvels, O., Calvache, D., Niehaus, L., Saenz, Y., Kent, J., Vilchez, S., Villota, A., Martinez, C.,
- 561 Somarriba, E., 2014. Contribution of cocoa agroforestry systems to family income and domestic
- 562 consumption: looking toward intensification. Agroforestry Systems 88, 957-981.
- 563 Cerda, R., Orozco-Aguilar, L., Sepúlveda, N., Ordoñez, J., Carreño-Rocabado, G., Amores, F., Caicedo, W.,
- 564 Oblitas, S., Somarriba, E., 2019. Tropical agroforestry and ecosystem services: trade-off analysis for better
- 565 design strategies. 467-509.
- 566 Cheatham, M.R., Rouse, M.N., Esker, P.D., Ignacio, S., Pradel, W., Raymundo, R., Sparks, A.H., Forbes, G.A.,
- 567 Gordon, T.R., Garrett, K.A., 2009. Beyond yield: plant disease in the context of ecosystem services. 568 Phytopathology 99, 1228-1236.
- 569 Dale, V.H., Polasky, S., 2007. Measures of the effects of agricultural practices on ecosystem services.
- 570 Ecological Economics 64, 286-296.
- 571 DaMatta, F.M., Ronch, C.P., Maestri, M., Barros, R.S., 2007. Ecophysiology of coffee growth and production. 572 Braz. J. Plant Physiol. 19, 485-510.
- 573 Domptail, S., Nuppenau, E.-A., Azebaze, N.M., Brown, L.D., Falk, T., Finckh, M., Zoch, L., Kowalski, B.,
- 574 Pröpper, M., Stellmes, M., Overmann, J., 2013. Using trade-offs and synergies in ecosystem services in 575 resource management.
- 576 Geertsema, W., Rossing, W.A.H., Landis, D.A., Bianchi, F.J.J.A., van Rijn, P.C.J., Schaminée, J.H.J., Tscharntke,
- 577 T., van der Werf, W., 2016. Actionable knowledge for ecological intensification of agriculture. Frontiers in 578 Ecology and the Environment 14, 209-216.
- 579 Iverson, A.L., Marín, L.E., Ennis, K.K., Gonthier, D.J., Connor-Barrie, B.T., Remfert, J.L., Cardinale, B.J.,
- 580 Perfecto, I., Wilson, J., 2014. REVIEW: Do polycultures promote win-wins or trade-offs in agricultural
- 581 ecosystem services? A meta-analysis. Journal of Applied Ecology 51, 1593-1602.
- 582 Kremen, C., Miles, A., 2012. Ecosystem Services in Biologically Diversified versus Conventional Farming
- 583 Systems: Benefits, Externalities, and Trade-Offs. Ecology and Society 17.
- 584 Lewis, W.J., van Lenteren, J.C., Phatak, S.C., Tumlinson, J.H., 1997. A total system approach to sustainable
- 585 pest management. . Proceedings of the National Academy of Sciences of the United States of America 94 586 12243-12248.
- 587 MEA, 2005. Ecosystems and Human Wellbeing:Synthesis. (Millennium Ecosystem Assessment). Island Press, 588 Washington, DC.
- 589 Meylan, L., Merot, A., Gary, C., Rapidel, B., 2013. Combining a typology and a conceptual model of cropping
- 590 system to explore the diversity of relationships between ecosystem services: The case of erosion control in
- 591 coffee-based agroforestry systems in Costa Rica. Agricultural Systems 118, 52-64.
- 592 Mora, F., Balvanera, P., García-Frapolli, E., Castillo, A., Trilleras, J.M., Cohen-Salgado, D., Salmerón, O., 2016.
- 593 Trade-offs between ecosystem services and alternative pathways toward sustainability in a tropical dry
- 594 forest region. Ecology and Society 21.
- 595 Müller, A., Sukhdev, P., Miller, D., Sharma, K., Hussain, S., 2015. TEEB for Agriculture & Food. Towards a
- 596 Global Study on the Economics of Eco-Agri-Food Systems. 19p.

- 597 Mussak, M., Laarman, J., 1989. Farmers' production of timber trees in cacao-coffee region of coastal
- 598 Ecuador. Agroforestry Systems 9, 155-170
- 599 Nutter, F.W., Teng, P.S., Royer, M.H., 1993. Terms and Concepts for Yield, Crop Loss, and Disease
- 600 Thresholds. Plant Disease 77, 211-216.
- 601 Oerke, E.C., 2006. Crop losses to pests. Journal of Agricultural Science 144, 31-43.
- Oerke, E.C., Dehne, H.W., Schonbeck, F., Weber, A., 1994. Crop Production and Crop Protection. Estimated
 losses in major food and cash crops. Elsevier, Amsterdan, The Netherlands.
- Peh, K.S.H., Thapa, I., Basnyat, M., Balmford, A., Bhattarai, G.P., Bradbury, R.B., Brown, C., Butchart, S.H.M.,
- 605 Dhakal, M., Gurung, H., Hughes, F.M.R., Mulligan, M., Pandeya, B., Stattersfield, A.J., Thomas, D.H.L.,
- 606 Walpole, M., Merriman, J.C., 2016. Synergies between biodiversity conservation and ecosystem service
- provision: Lessons on integrated ecosystem service valuation from a Himalayan protected area, Nepal.
 Ecosystem Services 22, 359-369.
- 609 Pinoargote, M., Cerda, R., Mercado, L., Aguilar, A., Barrios, M., Somarriba, E., 2016. Carbon stocks, net cash
- 610 flow and family benefits from four small coffee plantation types in Nicaragua. Forests, Trees and 611 Livelihoods, 1-16.
- 612 Ramírez, O., Somarriba, E., Ludewigs, T., Ferreira, P., 2001. Financial returns, stability and risk of cacao-
- 613 plantain-timber agroforestry systems in Central America. Agroforestry Systems 51, 141–154.
- 614 Rapidel, B., Ripoche, A., Allinne, C., Metay, A., Deheuvels, O., Lamanda, N., Blazy, J.-M., Valdés-Gómez, H.,
- 615 Gary, C., 2015. Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops.
- 616 Agronomy for Sustainable Development 35, 1373–1390.
- 617 Rice, R.A., 2008. Agricultural intensification within agroforestry: The case of coffee and wood products.
- 618 Agriculture, Ecosystems & Environment 128, 212-218.
- 619 Rice, R.A., 2011. Fruits from shade trees in coffee: how important are they? Agroforestry Systems 83, 41-49.
- Saarikoski, H., Barton, D., Mustajoki, J., Keune, H., Gomez-Baggethun, E., Langmayer, J., 2015. Multi-criteria
 decision analysis (MCDA) in ecosystem service valuation. p. 6.
- Savary, S., Teng, P.S., Willocquet, L., Nutter, F., 2006. Quantification and Modeling of Crop Losses: A Review
 of Purposes. Annu. Rev. Phytopathol. 44, 89-112.
- 624 Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., Alvarado, E.,
- Poveda, V., Astorga, C., Say, E., Deheuvels, O., 2013. Carbon stocks and cocoa yields in agroforestry systems
 of Central America. Agriculture, Ecosystems & Environment 173, 46-57.
- Toledo, V.M., Moguel, P., 2012. Coffee and Sustainability: The Multiple Values of Traditional Shaded Coffee.
 Journal of Sustainable Agriculture 36, 353-377.
- 629 Toniutti, L., Breitler, J., Etienne, H., Campa, C., Doulbeau, S., Urban, L., Lambot, C., Pinilla, J.C.H., Bertrand,
- 630 B., 2017. Influence of environmental conditions and genetic background of Arabica coffee (C. arabica L) on 631 leaf rust (Hemileia vastatrix) pathogenesis Front Plant Sci.
- 632 Villarreyna, R., Barrios, M., Vílchez, S., Cerda, R., Vignola, R., Avelino, J., 2020. Economic constraints as
- drivers of coffee rust epidemics in Nicaragua. Crop Protection 127, 104980.
- 634 Wade, A.S.I., Asase, A., Hadley, P., Mason, J., Ofori-Frimpong, K., Preece, D., Spring, N., Norris, K., 2010.
- 635 Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing
- 636 landscapes. Agriculture, Ecosystems & Environment 138, 324-334.
- Zadoks, J.C., Schein, R.D., 1979. Epidemiology and plant disease management. Oxford University Press Inc.,
 New York.
- 639 Zambolim, L., 2016. Current status and management of coffee leaf rust in Brazil. . Trop Plant Pathol 41, 1-8.

Table 1. Indicators of ecosystem services measured for two years (2014-2015) in 61 coffee plots inTurrialba, Costa Rica

Indicators of ES		Data sources/times of measurement			
Regulation of pests and	diseases				
sAUDPC of Coffee leaf rust (%) sAUDPC of Brown eye spot (%)	where AUDPC: area unc of a given disease at the measurement; n: total nu standardized AUDPC; N were measured	$AUDPC = \sum_{i=1}^{n-1} \frac{l_i + l_{i+1}}{2} \times (t_{i+1} - t_i) \qquad sAUDPC = \frac{AUDPC}{Nd}$ where AUDPC: area under the disease progress curve; l_i : incidence of a given disease at the <i>i</i> th measurement; t_i : time (in days) of the <i>i</i> th measurement; n: total number of measurements; sAUDPC: standardized AUDPC; Nd: total number of days in which the plants were measured Source: (Simko and Piepho, 2012)			
Maximum dieback index (%)	few defoliated branches; branches; 3: plants with with withered dry fruits; 4 almost dead plants. Diet below (where N: number dieback); and the maxim identified.	t was classified in a scale (1-4): 1: plant with 2: plants with several defoliated and dead a lot of defoliated and dead branches, and 4: plants with almost all dead branches, back index was calculated with the formula of plants registered in each scale of the displace of the scale of the displace of the scale of the scale of the displace of the scale of the scale of the scale of the displace of the scale of the scale of the scale of the scale of the scal	The same as above		
Primary and secondary yield losses (%) Primary and secondary economic losses (USD ha ⁻¹)	These indicators were executions. See the explain	stimated through several models and anations in Table 2			
Provisioning of agrofore	estry products				
Coffee yield (USD ha ⁻¹)	These indicators were es actual yields. See the ex	stimated through models and equations of planations in Table 2			
Cash flow (USD ha ⁻¹) Value DC (USD ha ⁻¹)	GI = AS x MP CF = GI – CC Value DC = ADC x MP	where: <i>GI</i> : gross income from sale of coffee and other agroforestry products; <i>AS</i> : amount of agroforestry products for sales; <i>MP</i> : local market price; <i>CF</i> : cash flow; <i>CC</i> : cash costs; <i>Value DC</i> : value of domestic consumption of agroforestry products; <i>ADC</i> : amount of agroforestry products for domestic consumption Sources: (Ambrose-Oji, 2003; Cerda et al., 2014)	Data on management practices of coffee plots, costs of labor and inputs, and agroforestry production (fruits, bananas, plantains, etc.) were obtained through interviews with the owners of the coffee plots		
Maintenance of soil ferti	lity*				
Acidity (mg kg ⁻¹) K (mg kg ⁻¹) Carbon (%)	trunk of eight coffee plan experimental subplot. The subsamples were m	at a depth of 0-40 cm were taken near the hts (at 50cm approximately) in each nixed to obtain a composite sample, and sent e chemical and texture analyses. Icheco, 1984).	The subsamples and composite samples were obtained during the peak of harvest in 2014.		
Carbon sequestration*	,	. ,			
Carbon (Mg ha ⁻¹) in: Fruit trees Timber trees Service trees	through allometric equat breast height (1.3 m fron	I trees in the shade canopy were estimated ions, which use the trunk diameters at n soil) as predictors. Detailed equations can 2017a. Then, biomasses were multiplied by the carbon content.	The trunk diameters were measured the coffee fruit formation (slightly dry period).		

Coffee leaf rust (*Hemileia vastarix* Berkeley and Broome); Brown eye spot (*Cercospora coffeicola* Berk and Curtis) *: these indicators were measured only in the year 2014, the year of high production according to the biennial cycle of coffee production. Source: adapted from (Cerda et al., 2017a)

Table 2. Models and equations used to estimate attainable yields, actual yields, and primary and secondary yield losses of coffee

Secondary yield losses of conee		
Explanations	Models and equations	Eq.
For the estimation of primary yield losses in 2014		
Model 1	$Y_{(14)} \sim NFN_{(14)} + DeadB_{(14)} + ShadeC_{(14)} + (1 Plot)$	
Based on the results of the Model 1, we obtained an equation to estimate the actual yield of 2014 $(Y_{(14)})$	$Y_{(14)} = I + a \times NFN_{(14)} + b \times DeadB_{(14)} + c \times ShadeC_{(14)}$	1
By setting the dead branches to "zero", we estimated the specific attainable yield of 2014 $(Ya_{(14)})$	$Ya_{(14)} = I + a \times NFN_{(14)} + c \times ShadeC_{(14)}$	2
We estimated the primary yield loss in weight as the difference between $Ya_{(14)}$ and $Y_{(14)}$	$PYL_{(14)} = Ya_{(14)} - Y_{(14)}$	3
We estimated the primary yield loss as a percentage of the specific attainable yield of 2014	$\% PYL_{(14)} = \frac{PYL_{(14)}}{Ya_{(14)}} \times 100$	4
For the estimation of secondary yield losses in 2015		
Model 2	$Y_{(15)} \sim NFN_{(15)} + DeadB_{(15)} + ShadeC_{(15)} + (1 Plot)$	
Based on the results of the Model 2, we obtained an equation to estimate the actual yield of 2015 $(Y_{(15)})$	$Y_{(15)} = I + a \times NFN_{(15)} + b \times DeadB_{(15)} + c \times ShadeC_{(15)}$	5
Model 3	$NFN_{(15)} \sim DeadB_{(14)} + ShadeC_{(14)} + (1 Plot)$	
Based on the results of the Model 3, we obtained an equation to estimate the actual fruiting nodes of 2015 $(NFN_{(15)})$	$NFN_{(15)} = I + a \times DeadB_{(14)} + b \times ShadeC_{(14)}$	6
By setting the dead branches to "zero", we estimated the fruiting nodes that would have been attainable $(NFNa_{(15)})$ without reducing factors of 2014	$NFNa_{(15)} = I + b \times ShadeC_{(14)}$	7
Then, we estimated the loss of fruiting nodes for 2015 $(NFNl_{(15)})$	$NFNl_{(15)} = NFNa_{(15)} - NFN_{(15)}$	8
Thereby, we considered that estimating a yield with this $NFNl_{(15)}$ using the equation (5), and setting dead branches to "zero" represented the secondary yield losses	$SYL_{(15)} = I + a \times NFNl_{(15)} + c \times ShadeC_{(15)}$	9
To estimate an attainable yield without negative impacts of 2014 and 2015 ($Ya_{(14-15)}$), we replaced equation 7 in equation (5) and then set as zero the dead branches of both years to assume that there were no reducing factors	$Ya_{(14-15)} = I + a \times NFNa_{(15)} + c \times ShadeC_{(15)}$	10
We calculated the secondary yield loss of 2015 $\% SYL_{(15)}$ as a percentage of the $Ya_{(14-15)}$	$\% SYL_{(15)} = \frac{SYL_{(15)}}{Ya_{(14-15)}} \times 100$	11
For the estimation of primary economic losses in 2014 and second	ondary economic losses in 2015	
Coffee actual yields and primary and secondary yield losses were e above, and then were calculated as kilograms per hectare using the calculated as following:		
Primary Economic loss (PEL) in 2014 was calculated with the price of coffee in that year (USD ha^{-1})	$PEL = PYL_{(14)} \times Price \ of \ coffee_{(14)}$	12
Secondary Economic loss (SEL) in 2015 was calculated with the price of coffee in that year (USD ha^{-1})	$SEL = SYL_{(15)} \times Price \ of \ coffee_{(15)}$	13
Y: actual coffee yield per plant; Ya: attainable yield per plant; NFN: productive branches per plant; ShadeC: mean annual shade cover;		he

productive branches per plant; ShadeC: mean annual shade cover; (14): represents the variables in the year 2014; (15): represents the variables in the year 2015; I: represents the intercepts in the equations; a, b and c represent the coefficients in the equations Yields were estimated in kg of fresh coffee cherries per hectare (using a factor 1/5.6, they can be transformed to green coffee) The price of coffee in 2014 was 0.48 USD per kg of ripe fresh coffee cherries; in 2015 it was 0.39 USD per kg of ripe fresh coffee cherries. These prices were the same for all coffee plots, given that the farmers sell the coffee to the same company "Compañía Santa Rosa de Turrialba". Indicators of prediction quality in supplementary materials.

Table 3. Characteristics of the structure, diversity and shade cover of the six most promising coffee agroforestry systems (CAF) for providing multiple ecosystem services

		CAF2	CAF3	CAF4	CAF5	CAF6	Mean ± SD*	Range* (min – max)
Color in Figs. 1-4	red	green	orange	blue	brown	purple		
Size of coffee plantation								
Plot area (ha)	0.22	0.40	0.37	0.22	1.40	1.40	0.9 ± 0.8	0.1 - 4
Densities of coffee plants								
Density of coffee plants (individuals ha ⁻¹)	5079	3358	3864	4341	4480	4652	4990 ± 1137	3328 - 8943
Distances between coffee rows (cm)	175	204	200	199	196	193	173 ± 25	100 - 234
Distances between coffee plants (cm)	113	146	129	116	114	111	121 ± 18	77 - 169
Densities in the shade canopy								
Density of fruit trees (individuals ha ⁻¹)	0	0	0	0	80	70	24 ± 44	0 - 270
Density of timber trees (individuals ha ⁻¹)	0	30	10	20	30	170	33 ± 55	0 - 280
Density of Musaceae plants (individuals ha ⁻¹)	10	60	260	300	20	20	216 ± 299	0 - 1410
Density of service trees (individuals ha ⁻¹)	340	280	20	30	180	120	188 ± 156	0 - 550
Total density in shade canopy (individuals ha ⁻¹)	350	370	290	350	310	380	461 ± 377	0 - 1650
Basal (BA) areas in the shade canopy								
BA of fruit trees (m ² ha ⁻¹)	0.00	0.00	0.00	0.00	0.87	0.60	0.4 ± 0.8	0 - 4-0
BA of timber trees (m ² ha ⁻¹)	0.00	5.53	0.29	0.71	1.11	2.67	1.5 ± 2.6	0 - 10.4
BA of Musaceae plants (m ² ha ⁻¹)	0.05	0.66	3.32	8.83	0.17	0.22	3.5 ± 5.0	0 - 17.3
BA of area of service trees (m ² ha ⁻¹)	6.52	6.43	0.12	5.16	1.27	0.61	5.6 ± 5.2	0 - 23.4
Total BA in shade canopy (m ² ha ⁻¹)	6.58	12.62	3.72	14.70	3.42	4.10	11.1 ± 8.1	0 - 28.3
Species richness in the shade canopy								
Species richness	2	4	6	5	8	7	4 ±3	0 - 13
Shannon diversity index	0.13	0.81	0.97	0.61	1.43	1.40	0.8 ± 0.6	0 - 1.9
Shade cover								
Shade cover in 2014 (%)	6	34	7	20	30	20	17 ± 15	0 - 54
Shade cover in 2015 (%)	7	29	8	10	23	16	17 ± 13	0 - 54

*Mean, Standard deviation (SD) and Range (minimum – maximum) of the data of the 61 coffee plots

Musaceae plants: include mainly bananas but also plantains; Service trees: include mainly poro trees (*Erythrina poeppigiana*); Fruit trees: include mainly oranges (*Citrus sinensis*) and mandarin lemons (*Citrus aurantifolia*), but also avocados (*Persea americana*), cas (*Psidium friedrichsthalium*), arazá (*Eugenia stipitata*) and peach palm (*Bactris gasipaes*); Timber trees: include mainly *Cordia alliodora* and *Cedrela odorata*

Table 4. Characteristics of cropping practices and management costs of the six most	
promising coffee agroforestry systems (CAF) for providing multiple ecosystem services	

Characteristics	CAF1	CAF2	CAF3	CAF4	CAF5	CAF6	Mean ± SD*	Range* (min – max)	
Color for being identified in Figs. 1-4	red	green	orange	blue	brown	purple			
Cropping practices in 2014									
Machete weeding (number yr ⁻¹)	2	0	3	1	1	1	1.3 ± 1.3	0 - 5	
Harvests of coffee (number yr ⁻¹)	12	10	8	12	13	13	10.6 ± 2.1	5 - 14	
Applications of fertilizers (number yr ⁻¹)	2	1	1	2	0	0	1.4 ± 0.8	0 - 3	
Applications of fungicides (number yr ⁻¹)	6	4	1	1	5	1	2.2 ± 1.9	0 - 7	
Applications of herbicides (number yr ⁻¹)	2	3	1	1	2	2	1.6 ± 1.2	0 - 4	
Pruning of coffee plants (number yr ⁻¹)	1	1	0	0	1	1	0.8 ± 0.4	0 - 1	
Cash costs in 2014									
Cost of hired labor (USD ha ⁻¹)	0	465	907	2512	226	226	646 ± 860	0 - 2919	
Cost of inputs (USD ha ⁻¹)	624	391	245	682	253	42	449 ± 245	0 - 1414	
Total cash cost (USD ha ⁻¹)	624	856	1152	3194	479	268	1094 ± 931	111 - 3645	
Cropping practices in 2015									
Machete weeding (number yr ⁻¹)	1	0	1	3	1	1	1.4 ± 1.4	0 - 5	
Harvests of coffee (number yr ⁻¹)	12	9	12	10	12	12	8.5 ± 3.4	0 - 13	
Applications of fertilizers (number yr ⁻¹)	1	1	2	1	0	0	1.1 ± 0.8	0 - 3	
Applications of fungicides (number yr ⁻¹)	6	4	1	1	6	2	2.2 ± 1.9	0 - 7	
Applications of herbicides (number yr ⁻¹)	2	2	1	0	2	2	1.5 ± 1.1	0 - 5	
Pruning of coffee plants (number yr ⁻¹)	1	1	1	1	1	1	0.9 ± 0.3	0 - 1	
Cash costs in 2015									
Cost of hired labor (USD ha ⁻¹)	0	418	0	0	121	121	190 ± 398	0 - 2182	
Cost of inputs (USD ha ⁻¹)	626	526	353	283	277	62	365 ± 251	0 - 1449	
Total cash cost (USD ha ⁻¹)	626	943	353	283	399	184	555 ± 536	0 - 2824	

*Mean, Standard deviation (SD) and Range (minimum – maximum) of the data of the 61 coffee plots.

Table 5. Indicators of ecosystem services of the most promising coffee agroforestry systems (CAF) to provide multiple ecosystem services

Indicators of ecosystem services	Boundar y value*	CAF1	CAF2	CAF3	CAF4	CAF5	CAF6	Mean ± SD**	Range**
	(median)								(min – max)
Color for being identified in Figs. 1-4		red	green	orange	blue	brown	purple		
Regulation of diseases in 2014									
Primary yield loss (%)	9	2	6	4	5	2	3	14 ± 13	0.5 - 66
Primary economic loss (USD ha ⁻¹)	291	90	66	76	120	79	55	460 ± 486	14 - 2326
sAUDPC Coffee leaf rust (%)	-	36	45	55	63	24	20	58 ± 15	11 - 81
sAUDPC Brown eye spot (%)	-	7	5	3	1	6	13	8 ± 4	0.8 - 27
Maximum index of dieback (%)	-	34	23	40	34	41	32	39 ± 11	3 - 63
Provisioning of agroforestry products in 2014									
Coffee yield (kg ha ⁻¹)	6174	11185	2257	3742	5137	7189	4241	6389 ± 3680	1223 - 18818
Cash Flow (USD ha ⁻¹)	1645	4673	213	620	2400	2926	1740	2081 ± 1853	-1435 - 8574
Value of domestic consumption (USD ha ⁻¹)	47	85	70	419	256	70	70	158 ± 272	0 - 1222
Regulation of diseases in 2015									
Secondary yield loss (%)	36	11	18	4	17	18	0	38 ± 26	0 - 100
Secondary economic loss (USD ha ⁻¹)	807	284	564	70	357	504	0	1082 ± 956	0 - 4499
sAUDPC Coffee leaf rust (%)	-	21	41	45	48	19	23	44 ± 13	19 - 75
sAUDPC Brow eye spot (%)	· O ·	15	14	5	9	14	16	15 ± 6	3 - 32
Maximum index of dieback (%)	-	40	43	49	50	31	46	43 ± 11	25 - 80
Provisioning of agroforestry products in 2015									
Coffee yield (kg ha ⁻¹)	712	6481	8892	4056	1926	6347	917	2262 ± 3354	0 - 15765
Cash Flow (USD ha ⁻¹)	-21	1657	2190	1076	396	1838	139	323 ± 1315	-2579 - 5040
Value of domestic consumption (USD ha ⁻¹)	8	413	68	37	331	68	68	157 ± 283	0 - 1342
Maintenance of soil fertility									
Potassium (mg ha ⁻¹)	42	25	43	90	82	20	21	68 ± 61	20 - 314
Carbon (%)	3	5	4	2	2	8	9	4 ± 3	2 - 13
Acidity (mg ha ⁻¹)	139	53	139	65	122	36	47	173 ± 128	9 - 555
Carbon sequestration									
Carbon in fruit trees (Mg ha ⁻¹)	0	0	0	0	0	2.0	1.3	1 ± 3	0 - 16
Carbon in timber trees (Mg ha ⁻¹)	0.3	0	7.8	0.4	0.9	1.5	3.4	2 ± 4	0 - 15
Carbon in service trees (Mg ha ⁻¹)	2.4	3.0	2.5	0.2	5.1	1.4	0.3	5 ± 6	0 - 32
Number of desirable areas (out of 48) in which the CAF were located		36	32	32	38	40	38		

*The boundary values used to determine desirable areas in this study (See Figs. 1-4) were the medians of ecosystem service indicators, which meant

that the desirable levels of ecosystem services indicators were those located at least within the 50% of the best levels.

**Mean, Standard deviation (SD) and Range (minimum – maximum) of the data of the 61 coffee plots.

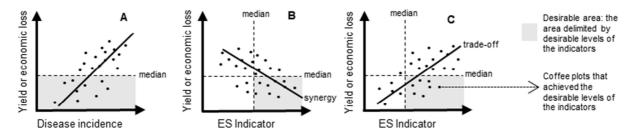

sAUDPC: standardized area under the disease progress curve

Table 6. Summary of the agroforestry structure, coffee yield losses due to diseases, yields, and

strategies of management	of the six most	promising coffee	agroforestry	systems (CAF)

CAF	Agroforestry structure	PYL (%)	SYL (%)	Coffee yields*	Disease management	Other cropping practices
CAF1	Simple coffee agroforestry system, basically a combination of coffee and service trees. Highest density of coffee plants	2	11	High yields with bienality	High chemical input	High chemical input and family labor
CAF2	Medium diversified coffee agroforestry system, coffee-service trees- musaceaes-timber trees, where service trees dominate the shade canopy and timber trees are big	6	18	High yields with bienality	High chemical input	High chemical input and hired labor
CAF3	Medium diversified coffee agroforestry systems, coffee-musaceaes-service trees-timber trees, where musaceas dominate in the shade canopy	4	4	Acceptable and stable yields	Low chemical input	Rational use of chemical input and family labor
CAF4	Medium diversified coffee agroforestry systems, coffee-musaceaes-service trees-timber trees, where musaceas dominate	5	17	Acceptable yields with bienality	Low chemical input	Rational use of chemical input and family labor
CAF5	Highly diversified coffee agroforestry systems, coffee-service trees-timber trees-fruit trees-musaceas, where service trees dominate	2	18	High and relatively stable yields	High chemical input	High chemical input and hired labor
CAF6	Highly diversified coffee agroforestry systems, coffee-service trees-timber trees-fruit trees-musaceas, where timber trees dominate	3	0	Acceptable yields with bienality	Low chemical input	Rational use of chemical input and hired labor

PYL: primary yield loss; SYL: secondary yield loss *We considered acceptable yields those around 4000 kg of fresh coffee cherries per hectare, and high or low yields those above or below that number, respectively

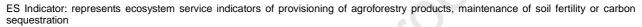
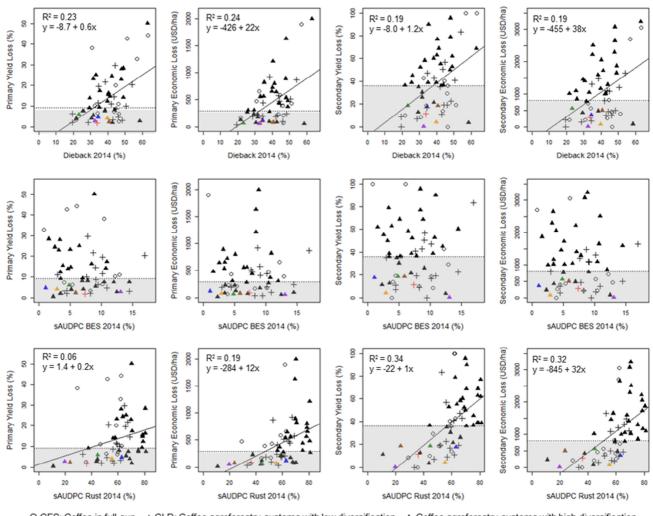
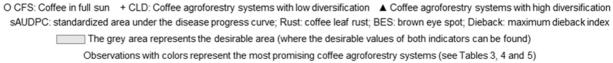
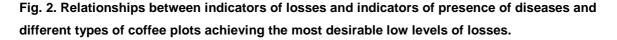
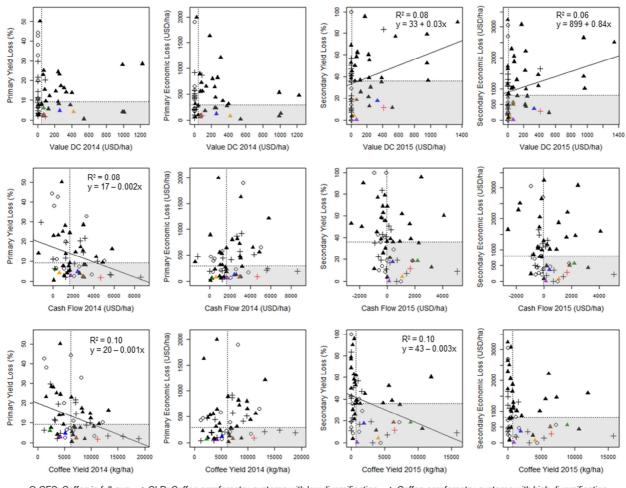
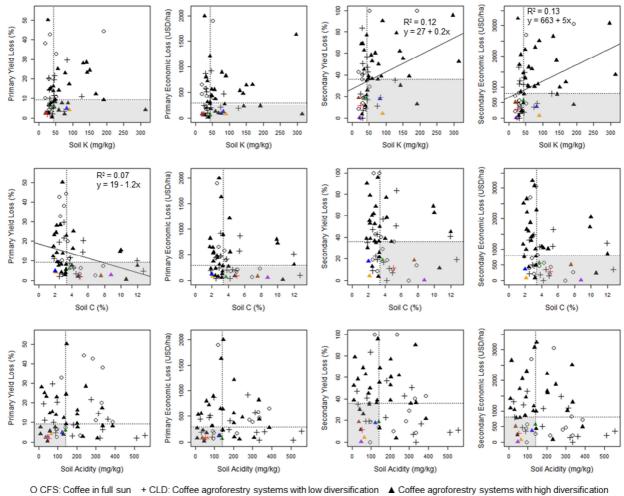






Fig. 1. Interpretation of the relationships between yield or economic losses and disease incidence, and indicators of ecosystem services (A: represents the loss due to diseases; B: represents synergy; C: represents trade-off) and the identification of 'desirable areas' in which coffee plots achieved desirable levels of ecosystem service provisions.



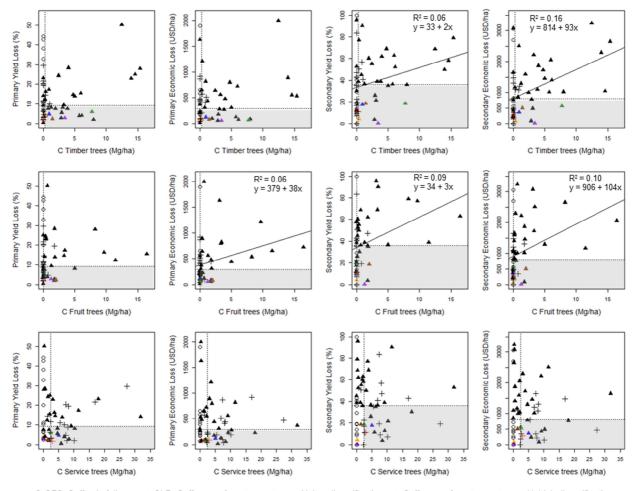

O CFS: Coffee in full sun + CLD: Coffee agroforestry systems with low diversification ▲ Coffee agroforestry systems with high diversification The grey area represents the desirable area (where the desirable values of both indicators can be found) Observations with colors represent the most promising coffee agroforestry systems (see Tables 3, 4 and 5)

Fig. 3. Relationships between indicators of losses and indicators of provisioning of agroforestry products and different types of coffee plots achieving the most desirable levels of ecosystem services.

Cores: Core agrotorestry systems with low diversitication ▲ Core agrotorestry systems with high diversitication The grey area represents the desirable area (where the desirable values of both indicators can be found) Observations with colors represent the most promising coffee agroforestry systems (see Tables 3, 4 and 5)

Fig. 4. Relationships between indicators of losses and indicators of maintenance of soil fertility and different types of coffee plots achieving the most desirable levels of ecosystem services.

O CFS: Coffee in full sun + CLD: Coffee agroforestry systems with low diversification ▲ Coffee agroforestry systems with high diversification The grey area represents the desirable area (where the desirable values of both indicators can be found) Observations with colors represent the most promising coffee agroforestry systems (see Tables 3, 4 and 5)

Fig. 5. Relationships between indicators of losses and indicators of carbon sequestration and different types of coffee plots achieving the most desirable levels of ecosystem services.

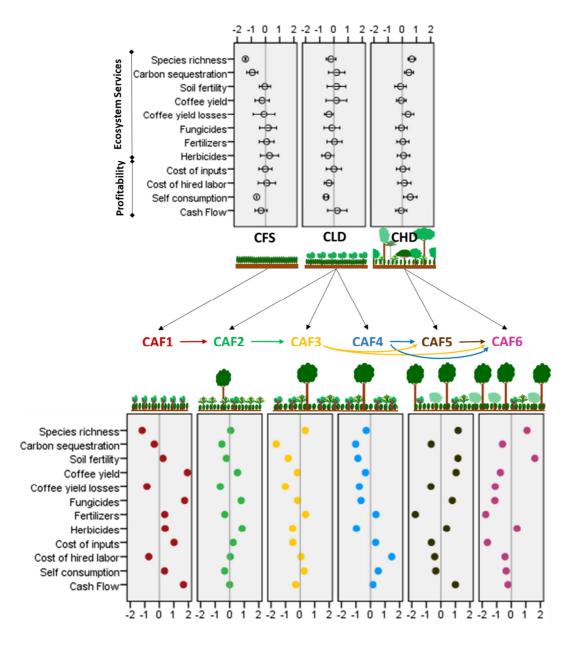


Fig. 6. Summary of ecosystem services and economic profitability provided by coffee in full sun (CFS), agroforestry systems with low diversification (CLD) and high diversification (CHD) and the proposed pathway toward the six most promising coffee agroforestry systems (CAF1 to CAF6). The possible transition pathway to go from actual coffee systems types (CFS, CLD, CHD) to the most promising CAFs are indicated by black arrows. Pathway to go from the low sustainable to the more sustainable cropping system (in terms of pesticide use) are indicated by colored arrows. The illustrative variables of ecosystem services provision: species richness, carbon sequestration, soil fertility, coffee yield, coffee yield losses, fungicides, fertilizers, herbicides; the illustrative variables of economic profitability: cost of inputs, cost of hired labor, self-consumption and cash flow, were calculated from the original variables. Respectively: species richness, carbon sequestration (Mg ha⁻¹), maintenance of soil fertility (%C), coffee yield (kg ha⁻¹), coffee yield losses (kg ha⁻¹), applications of fungicides (number yr⁻¹), applications of fertilizers (number yr⁻¹), applications of herbicides (number yr⁻¹), value of domestic consumption (USD ha⁻¹), cost of inputs (USD ha⁻¹), cost of hired labor (USD ha⁻¹), cash Flow (USD ha⁻¹). These variables were cumulated over two years, then centered to the average and standard deviation of the 61 plots. Error bar represents 95% of the confidence interval.

Highlights

We quantified primary and secondary yield losses due to diseases in coffee agroecosystems

We also quantified indicators of ecosystem services: provisioning of agroforestry products, soil fertility and carbon sequestration

We identified six most promising coffee agroforestry systems (CAFs) for reducing losses while providing other ecosystem services

The six CAFs are promising production models for the design or re-design of coffee agroecosystems

Disease regulation in CAFs can be enhanced by the appropriate combination of plant biodiversity, shade cover, soil fertility and cropping practices

Journal Preve

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk