P. Brambilla, A. Cipriani, M. Hotopf, and C. Barbui, Side-effect profile of fluoxetine in comparison with other SSRIs, tricyclic and newer antidepressants: a meta-analysis of clinical trial data, Pharmacopsychiatry, vol.38, issue.2, pp.69-77, 2005.

B. H. Guze and M. Gitlin, New antidepressants and the treatment of depression, J Fam Pract, vol.38, issue.1, pp.49-57, 1994.

D. T. Wong, F. P. Bymaster, and E. A. Engleman, Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication, Life Sci, vol.57, issue.5, pp.411-452, 1995.

F. Deak, B. Lasztoczi, P. Pacher, G. L. Petheo, K. Valeria et al., Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells, Neuropharmacology, vol.39, issue.6, pp.1029-1065, 2000.

Y. Y. Dong, A. C. Pike, A. Mackenzie, C. Mcclenaghan, P. Aryal et al., K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac, Science, vol.347, issue.6227, p.6034649, 2015.

E. Nahon, A. Israelson, S. Abu-hamad, and S. B. Varda, Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death, FEBS Lett, vol.579, issue.22, pp.5105-5115, 2005.

J. J. Pancrazio, G. L. Kamatchi, A. K. Roscoe, and C. Lynch, Inhibition of neuronal Na+ channels by antidepressant drugs, J Pharmacol Exp Ther, vol.284, issue.1, pp.208-222, 1998.

O. Theriault, H. Poulin, J. M. Beaulieu, and M. Chahine, Differential modulation of Nav1.7 and Nav1.8 channels by antidepressant drugs, Eur J Pharmacol, vol.764, pp.395-403, 2015.

E. Charles, M. Hammadi, P. Kischel, V. Delcroix, N. Demaurex et al., The antidepressant fluoxetine induces necrosis by energy depletion and mitochondrial calcium overload, Oncotarget, vol.8, issue.2, p.5356874, 2017.

D. Carling, V. A. Zammit, and D. G. Hardie, A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis, FEBS Lett, vol.223, issue.2, pp.217-239, 1987.

J. Kim, G. Yang, Y. Kim, J. Kim, and J. Ha, AMPK activators: mechanisms of action and physiological activities, Exp Mol Med, vol.48, p.4855276, 2016.

B. Viollet, S. Horman, J. Leclerc, L. Lantier, M. Foretz et al., AMPK inhibition in health and disease, Crit Rev Biochem Mol Biol, vol.45, issue.4, p.3132561, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00489848

T. M. Nguyen, Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions, Front Cell Dev Biol, vol.5, p.25, 2017.

K. Svechnikov, C. Spatafora, I. Svechnikova, C. Tringali, and O. Soder, Effects of resveratrol analogs on steroidogenesis and mitochondrial function in rat Leydig cells in vitro, J Appl Toxicol, vol.29, issue.8, pp.673-80, 2009.

L. Tosca, C. Chabrolle, S. Uzbekova, and J. Dupont, Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5' monophosphate-activated protein kinase (AMPK), Biol Reprod, vol.76, issue.3, pp.368-78, 2007.

L. Tosca, P. Froment, P. Solnais, P. Ferre, F. Foufelle et al., Adenosine 5'-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells, Endocrinology, vol.146, issue.10, pp.4500-4513, 2005.

M. Ascoli, F. Fanelli, and D. L. Segaloff, The lutropin/choriogonadotropin receptor, a 2002 perspective, Endocr Rev, vol.23, issue.2, pp.141-74, 2002.

M. L. Dufau, A. J. Baukal, and K. J. Catt, Hormone-induced guanyl nucleotide binding and activation of adenylate cyclase in the Leydig cell, Proc Natl Acad Sci U S A, vol.77, issue.10, p.350166, 1980.

A. J. Shaywitz and M. E. Greenberg, CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals, Annu Rev Biochem, vol.68, pp.821-61, 1999.

D. M. Stocco, StAR protein and the regulation of steroid hormone biosynthesis, Annu Rev Physiol, vol.63, pp.193-213, 2001.

D. H. Maurice, D. Palmer, D. G. Tilley, H. A. Dunkerley, S. J. Netherton et al., Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system, Mol Pharmacol, vol.64, issue.3, pp.533-579, 2003.

P. Tartarin, E. Guibert, A. Toure, C. Ouiste, J. Leclerc et al., Inactivation of AMPKalpha1 induces asthenozoospermia and alters spermatozoa morphology, Endocrinology, vol.153, issue.7, pp.3468-81, 2012.

H. S. Abdou, F. Bergeron, and J. J. Tremblay, A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis, Mol Cell Biol, vol.34, issue.23, p.4248749, 2014.

D. Klett, P. Meslin, L. Relav, T. M. Nguyen, J. Mariot et al., Low reversibility of intracellular cAMP accumulation in mouse Leydig tumor cells (MLTC-1) stimulated by human Luteinizing Hormone (hLH) and Chorionic Gonadotropin (hCG), Mol Cell Endocrinol, vol.434, pp.144-53, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01529482

R. V. Rebois, Establishment of gonadotropin-responsive murine leydig tumor cell line, J Cell Biol, vol.94, issue.1, pp.70-76, 1982.

T. D. Nguyen, L. Filliatreau, D. Klett, and Y. Combarnous, Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells, Gen Comp Endocrinol, vol.261, pp.23-30, 2018.

J. H. Liu, Z. F. Wu, J. Sun, L. Jiang, S. Jiang et al., Role of AC-cAMP-PKA Cascade in Antidepressant Action of Electroacupuncture Treatment in Rats. Evid Based Complement Alternat Med, vol.2012, p.3369237, 2012.

C. Curti, F. E. Mingatto, A. C. Polizello, L. O. Galastri, S. A. Uyemura et al., Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity, Mol Cell Biochem, vol.199, issue.1-2, pp.103-112, 1999.

D. Gincel, H. Zaid, and V. Shoshan-barmatz, Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function, Biochem J, vol.358, p.1222042, 2001.

T. Rostovtseva and M. Colombini, VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function, Biophys J, vol.72, issue.5, p.1184392, 1997.

T. Hodge and M. Colombini, Regulation of metabolite flux through voltage-gating of VDAC channels, J Membr Biol, vol.157, issue.3, pp.271-280, 1997.

V. Shoshan-barmatz and D. Gincel, The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death, Cell Biochem Biophys, vol.39, issue.3, pp.279-92, 2003.

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, J Clin Invest, vol.108, issue.8, p.209533, 2001.

M. R. Owen, E. Doran, and A. P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem J, vol.348, pp.607-621, 2000.

S. A. Hawley, F. A. Ross, C. Chevtzoff, K. A. Green, A. Evans et al., Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab, vol.11, issue.6, p.2935965, 2010.

H. C. Howlett and C. J. Bailey, A risk-benefit assessment of metformin in type 2 diabetes mellitus, Drug Saf, vol.20, issue.6, pp.489-503, 1999.

M. J. Sanders, Z. S. Ali, B. D. Hegarty, R. Heath, M. A. Snowden et al., Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family, J Biol Chem, vol.282, issue.45, pp.32539-32587, 2007.

B. Cool, B. Zinker, W. Chiou, L. Kifle, N. Cao et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metab, vol.3, issue.6, pp.403-419, 2006.

O. Goransson, A. Mcbride, S. A. Hawley, F. A. Ross, N. Shpiro et al., Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase, J Biol Chem, vol.282, issue.45, p.2156105, 2007.

V. Walker, J. M. Robb, J. L. Cruz, A. M. Malhi, A. et al., AMP-activated protein kinase (AMPK) activator A-769662 increases intracellular calcium and ATP release from astrocytes in an AMPK-independent manner, Diabetes Obes Metab, vol.19, issue.7, pp.997-1005, 2017.

D. A. Freeman and M. Ascoli, Desensitization to gonadotropins in cultured Leydig tumor cells involves loss of gonadotropin receptors and decreased capacity for steroidogenesis, Proc Natl Acad Sci, vol.78, issue.10, p.349028, 1981.

P. G. Quinn, L. J. Dombrausky, Y. D. Chen, and A. H. Payne, Serum lipoproteins increase testosterone production in hCG-desensitized Leydig cells, Endocrinology, vol.109, issue.5, pp.1790-1792, 1981.