R. Bachvarova, V. De-leon, A. Johnson, G. Kaplan, and B. V. Paynton, Changes in total RNA, polyadenylated RNA, and actin mRNA during meiotic maturation of mouse oocytes, Dev. Biol, vol.108, pp.325-331, 1985.

I. Gilbert, S. Scantland, E. Sylvestre, C. Gravel, I. Laflamme et al., The dynamics of gene products fluctuation during bovine pre-hatching development, Mol. Reprod. Dev, vol.76, pp.762-772, 2009.

A. M. Kocabas, J. Crosby, P. J. Ross, H. H. Otu, Z. Beyhan et al., The transcriptome of human oocytes, Proc. Natl. Acad. Sci, vol.103, pp.14027-14032, 2006.

A. S. Lequarre, J. M. Traverso, J. Marchandise, and I. Donnay, Poly(A) RNA Is Reduced by Half During Bovine Oocyte Maturation but Increases when Meiotic Arrest Is Maintained with CDK Inhibitors1, Biol. Reprod, vol.71, pp.425-431, 2004.

B. Olsza?ska and A. Borgul, Maternal RNA content in oocytes of several mammalian and avian species, J. Exp. Zool, vol.265, pp.317-320, 1993.

P. J. Olds, S. Stern, and J. D. Biggers, Chemical estimates of the RNA and DNA contents of the early mouse embryo, J. Exp. Zool, vol.186, pp.39-45, 1973.

J. W. Moore and F. Ramon, On numerical integration of the Hodgkin and Huxley equations for a membrane action potential, J. Theor. Biol, vol.45, pp.249-273, 1974.

A. Stahl, C. Mirre, M. Hartung, and B. Knibiehler, Localization, structure and activity of ribosomal genes in the oocyte nucleolus during meiotic prophase

, Reprod. Nutr. Dev, vol.20, pp.469-483, 1980.

T. Fair, P. Hyttel, T. Greve, and M. Boland, Nucleus structure and transcriptional activity in relation to oocyte diameter in cattle, Mol. Reprod. Dev, vol.43, pp.503-512, 1996.

T. Fair, S. C. Hulshof, P. Hyttel, T. Greve, and M. Boland, Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles, Mol. Reprod. Dev, vol.46, pp.208-215, 1997.

B. Bjerregaard and P. Maddox-hyttel, Regulation of ribosomal RNA gene expression in porcine oocytes, Anim. Reprod. Sci, pp.605-616, 2004.

A. M. Luciano, F. Franciosi, C. Dieci, and V. Lodde, Changes in large-scale chromatin structure and function during oogenesis: A journey in company with follicular cells, Anim. Reprod. Sci, vol.149, pp.3-10, 2014.

C. Bouniol-baly, L. Hamraoui, J. Guibert, N. Beaujean, M. S. Szöllösi et al., Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes, Biol. Reprod, vol.60, pp.580-587, 1999.

L. Pan, S. Zhu, M. Zhang, M. Sun, J. Lin et al., A new classification of the germinal vesicle chromatin configurations in pig oocytes ?, Biol. Reprod, vol.99, pp.1149-1158, 2018.

V. Lodde, S. Modina, C. Galbusera, F. Franciosi, and A. M. Luciano, Large-scale chromatin remodeling in germinal vesicle bovine oocytes: Interplay with gap junction functionality and developmental competence, Mol. Reprod. Dev, vol.74, pp.740-749, 2007.

H. Wang, H. Sui, Y. Liu, D. Miao, J. Lu et al., Dynamic changes of germinal vesicle chromatin configuration and transcriptional activity during maturation of rabbit follicles, Fertility and Sterility, vol.91, pp.1589-1594, 2009.

K. Reynaud, C. V. De-lesegno, M. Chebrout, S. Thoumire, and S. Chastant-maillard, Follicle population, cumulus mucification, and oocyte chromatin configuration during the periovulatory period in the female dog, Theriogenology, vol.72, pp.1002-1018, 2009.

H. S. Lee, X. J. Yin, Y. X. Jin, N. H. Kim, S. G. Cho et al., Germinal vesicle chromatin configuration and meiotic competence is related to the oocyte source in canine, Anim. Reprod. Sci, vol.103, pp.336-347, 2008.

J. E. Anderson, R. L. Matteri, L. R. Abeydeera, B. N. Day, and R. S. Prather, Degradation of maternal cdc25c during the maternal to zygotic transition is dependent upon embryonic transcription, Mol. Reprod. Dev, vol.60, pp.181-188, 2001.

P. Braude, V. Bolton, and S. Moore, Human gene expression first occurs between the four-and eight-cell stages of preimplantation development, Nature, vol.332, pp.459-461, 1988.

P. Svoboda, Mammalian zygotic genome activation, Semin. Cell Dev. Biol, vol.84, pp.118-126, 2018.

I. M. Crosby, F. Gandolfi, and R. M. Moor, Control of protein synthesis during early cleavage of sheep embryos, J. Reprod. Fertil, vol.82, pp.769-775, 1988.

C. Manes, The participation of the embryonic genome during early cleavage in the rabbit, Dev. Biol, vol.32, pp.453-459, 1973.

X. Dai, J. Jiang, Q. Sha, Y. Jiang, X. Ou et al., A combinatorial code for mRNA 3 -UTR-mediated translational control in the mouse oocyte, Nucl. Ac. Res, vol.47, pp.328-340, 2019.

E. Esencan, A. Kallen, M. Zhang, and E. Seli, Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB), Biol. Reprod, vol.100, pp.1147-1157, 2019.

C. L. Winata and V. Korzh, The translational regulation of maternal mRNAs in time and space, FEBS Lett, vol.592, pp.3007-3023, 2018.

M. Kang and S. Han, Post-transcriptional and post-translational regulation during mouse oocyte maturation, BMB Reports, vol.44, pp.147-157, 2011.

M. Gohin, E. Fournier, I. Dufort, and M. Sirard, Discovery, identification and sequence analysis of RNAs selected for very short or long poly A tail in immature bovine oocytes, Mol. Hum. Reprod, vol.20, pp.127-138, 2014.

J. M. Reyes, J. L. Chitwood, and P. J. Ross, RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation, Mol. Reprod. Dev, vol.82, pp.103-114, 2015.

J. M. Reyes and P. J. Ross, Cytoplasmic polyadenylation in mammalian oocyte maturation: Oocyte cytoplasmic polyadenylation, WIREs RNA, vol.7, pp.71-89, 2016.

K. Tremblay, C. Vigneault, S. Mcgraw, and M. Sirard, Expression of Cyclin B1 Messenger RNA Isoforms and Initiation of Cytoplasmic Polyadenylation in the Bovine Oocyte1, Biol. Reprod, vol.72, pp.1037-1044, 2005.

Y. Nishimura, K. Kano, and K. Naito, Porcine CPEB1 is involved in Cyclin B translation and meiotic resumption in porcine oocytes: PIG CPEB WORKS ON MEIOTIC RESUMPTION, Anim. Sci. J, vol.81, pp.444-452, 2010.

B. Prochazkova, P. Komrskova, and M. Kubelka, CPEB2 Is Necessary for Proper Porcine Meiotic Maturation and Embryonic Development, Int. J. Mol.Sci, vol.19, p.3138, 2018.

X. Wang and N. G. Cooper, Comparative in Silico Analyses of Cpeb1-4 with Functional Predictions, Bioinform. Biol. Insights, vol.4, 2010.

S. Uzbekova, Y. Arlot-bonnemains, J. Dupont, R. Dalbiès-tran, P. Papillier et al., Spatio-temporal expression patterns of aurora kinases a, B, and C and cytoplasmic polyadenylation-element-binding protein in bovine oocytes during meiotic maturation, Biol. Reprod, vol.78, pp.218-233, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00278748

W. J. Racki and J. D. Richter, CPEB controls oocyte growth and follicle development in the mouse, Development, vol.133, pp.4527-4537, 2006.

J. Tay and J. D. Richter, Germ Cell Differentiation and Synaptonemal Complex Formation Are Disrupted in CPEB Knockout Mice, Dev. Cell, vol.1, pp.201-213, 2001.

S. Elis, A. Desmarchais, E. Cardona, S. Fouchecourt, R. Dalbies-tran et al., Genes Involved in Drosophila melanogaster Ovarian Function Are Highly Conserved Throughout Evolution, Genome Biol. Evol, vol.10, pp.2629-2642, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01991460

L. Drouilhet, A. Paillisson, M. Bontoux, E. Jeanpierre, S. Mazerbourg et al., Use of combined in silico expression data and phylogenetic analysis to identify new oocyte genes encoding RNA binding proteins in the mouse, Mol. Reprod. Dev, vol.75, pp.1691-1700, 2008.

M. Peyny, P. Jarrier-gaillard, L. Boulanger, N. Daniel, S. Lavillatte et al., Investigating the role of BCAR4 in ovarian physiology and female fertility by genome editing in rabbit
URL : https://hal.archives-ouvertes.fr/hal-02549941

Z. F. Wang, T. C. Ingledue, Z. Dominski, R. Sanchez, and W. F. Marzluff, Two Xenopus proteins that bind the 3' end of histone mRNA: Implications for translational control of histone synthesis during oogenesis, Mol. Cell. Biol, vol.19, pp.835-845, 1999.

S. Pennetier, S. Uzbekova, C. Guyader-joly, P. Humblot, P. Mermillod et al., Genes Preferentially Expressed in Bovine Oocytes Revealed by Subtractive and Suppressive Hybridization1, Biol. Reprod, vol.73, pp.713-720, 2005.

A. Thelie, G. Pascal, L. Angulo, C. Perreau, P. Papillier et al., An oocyte-preferential histone mRNA stem-loop-binding protein like is expressed in several mammalian species, Mol. Reprod. Dev, vol.79, pp.380-391, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01129625

G. Goudet, S. Mugnier, I. Callebaut, and P. Monget, Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates, Biol. Reprod, vol.78, pp.796-806, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275792

C. Meslin, S. Mugnier, I. Callebaut, M. Laurin, G. Pascal et al., Evolution of genes involved in gamete interaction: Evidence for positive selection, duplications and losses in vertebrates, PLoS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01136282

J. J. Eppig, Oocyte control of ovarian follicular development and function in mammals, Reproduction, vol.122, pp.829-838, 2001.

C. J. Guigon and S. Magre, Contribution of Germ Cells to the Differentiation and Maturation of the Ovary: Insights from Models of Germ Cell Depletion, Biol. Reprod, vol.74, pp.450-458, 2006.

R. B. Gilchrist, M. Lane, and J. G. Thompson, Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality, Hum. Reprod. Update, vol.14, pp.159-177, 2008.

G. M. Kidder and B. C. Vanderhyden, Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can, J. Physiol. Pharmacol, vol.88, pp.399-413, 2010.

D. Monniaux, Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models, Theriogenology, vol.86, pp.41-53, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01529484

M. A. El-fouly, B. Cook, M. Nekola, and A. V. Nalbandov, Role of the ovum in follicular luteinization, Endocrinology, vol.87, pp.286-293, 1970.

C. J. Guigon, N. Coudouel, S. Mazaud-guittot, M. G. Forest, and S. Magre, Follicular Cells Acquire Sertoli Cell Characteristics after Oocyte Loss. Endocrinology, vol.146, pp.2992-3004, 2005.

S. Vandormael-pournin, C. J. Guigon, M. Ishaq, N. Coudouel, P. Avé et al., Oocyte-specific inactivation of Omcg1 leads to DNA damage and c-Abl/TAp63-dependent oocyte death associated with dramatic remodeling of ovarian somatic cells, Cell Death Differ, vol.22, pp.108-117, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02075466

B. C. Vanderhyden, E. E. Telfer, and J. J. Eppig, Mouse Oocytes Promote Proliferation of Granulosa Cells from Preantral and Antral Follicles in Vitro1, Biol. Reprod, vol.46, pp.1196-1204, 1992.

G. M. Lanuza, M. L. Fischman, and J. L. Barañao, Growth Promoting Activity of Oocytes on Granulosa Cells Is Decreased upon Meiotic Maturation, Dev. Biol, vol.197, pp.129-139, 1998.

R. Li, R. J. Norman, D. T. Armstrong, and R. B. Gilchrist, Oocyte-Secreted Factor(s) Determine Functional Differences Between Bovine Mural Granulosa Cells and Cumulus Cells1, Biol. Reprod, vol.63, pp.839-845, 2000.

J. J. Eppig, K. Wigglesworth, and F. L. Pendola, The mammalian oocyte orchestrates the rate of ovarian follicular development, Proc. Natl. Acad. Sci, vol.99, pp.2890-2894, 2002.

S. A. Stubbs, J. Stark, S. M. Dilworth, S. Franks, and K. Hardy, Abnormal Preantral Folliculogenesis in Polycystic Ovaries Is Associated with Increased Granulosa Cell Division, J. Clin. Endocr. Metab, vol.92, pp.4418-4426, 2007.

J. J. Eppig, K. Wigglesworth, F. Pendola, and Y. Hirao, Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells, Biol. Reprod, vol.56, pp.976-984, 1997.

B. C. Vanderhyden, J. N. Cohen, and P. Morley, Mouse oocytes regulate granulosa cell steroidogenesis, Endocrinology, vol.133, pp.423-426, 1993.

S. Coskun, M. Uzumcu, Y. C. Lin, C. I. Friedman, and B. M. Alak, Regulation of Cumulus Cell Steroidogenesis by the Porcine Oocyte and Preliminary Characterization of Oocyte-Produced Factor(s), Biol. Reprod, vol.53, pp.670-675, 1995.

B. C. Vanderhyden and A. M. Tonary, Differential Regulation of Progesterone and Estradiol Production by Mouse Cumulus and Mural Granulosa Cells by a Factor(s) Secreted by the Oocyte, Biol. Reprod, vol.53, pp.1243-1250, 1995.

B. C. Vanderhyden and E. A. Macdonald, Mouse Oocytes Regulate Granulosa Cell Steroidogenesis Throughout Follicular Development, Biol. Reprod, vol.59, pp.1296-1301, 1998.

R. Buccione, B. C. Vanderhyden, P. J. Caron, and J. J. Eppig, FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte, Dev. Biol, vol.138, pp.16-25, 1990.

A. Salustri, Paracrine actions of oocytes in the mouse pre-ovulatory follicle, Int. J. Dev. Biol, vol.44, pp.591-597, 2000.

M. Zhang, Y. Su, K. Sugiura, G. Xia, and J. J. Eppig, Granulosa Cell Ligand NPPC and Its Receptor NPR2 Maintain Meiotic Arrest in Mouse Oocytes, Science, vol.330, pp.366-369, 2010.

S. Makabe, T. Naguro, and T. Stallone, Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans, Microsc. Res. Tech, vol.69, pp.436-449, 2006.

S. El-hayek, Q. Yang, L. Abbassi, G. Fitzharris, and H. J. Clarke, Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication, Curr. Biol, vol.28, pp.1124-1131, 2018.

R. P. Norris, W. J. Ratzan, M. Freudzon, L. M. Mehlmann, J. Krall et al., Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte, vol.136, pp.1869-1878, 2009.

S. Vaccari, J. L. Weeks, M. Hsieh, F. S. Menniti, and M. Conti, Cyclic GMP Signaling Is Involved in the Luteinizing Hormone-Dependent Meiotic Maturation of Mouse Oocytes1, Biol. Reprod, vol.81, pp.595-604, 2009.

S. Chastant-maillard, C. Viaris-de-lesegno, M. Chebrout, S. Thoumire, T. Meylheuc et al., The canine oocyte: Uncommon features of in vivo and in vitro maturation, Reprod. Fertil. Dev, vol.23, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000238

C. V. De-lesegno, K. Reynaud, C. Pechoux, S. Thoumire, and S. Chastant-maillard, Ultrastructure of canine oocytes during in vivo maturation, Mol. Reprod. Dev, vol.75, pp.115-125, 2008.

N. Songsasen, I. Yu, M. Gomez, and S. P. Leibo, Effects of meiosis-inhibiting agents and equine chorionic gonadotropin on nuclear maturation of canine oocytes, Mol. Reprod. Dev, vol.65, pp.435-445, 2003.

J. Dong, D. F. Albertini, K. Nishimori, T. R. Kumar, N. Lu et al., Growth differentiation factor-9 is required during early ovarian folliculogenesis, Nature, vol.383, pp.531-535, 1996.

S. M. Galloway, K. P. Mcnatty, L. M. Cambridge, M. P. Laitinen, J. L. Juengel et al., Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner, Nat. Genet, vol.25, pp.279-283, 2000.

S. Shimasaki, R. K. Moore, F. Otsuka, and G. F. Erickson, The bone morphogenetic protein system in mammalian reproduction, Endocr. Rev, vol.25, pp.72-101, 2004.

J. L. Juengel and K. P. Mcnatty, The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development, Hum. Reprod. Update, vol.11, pp.143-160, 2005.

A. C. Mcpherron and S. J. Lee, GDF-3 and GDF-9: Two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines, J. Biol. Chem, vol.268, pp.3444-3449, 1993.

J. L. Dube, P. Wang, J. Elvin, K. M. Lyons, A. J. Celeste et al., The Bone Morphogenetic Protein, vol.15

, Gene Is X-Linked and Expressed in Oocytes, Mol. Endocrinol, vol.12, pp.1809-1817, 1998.

M. Laitinen, K. Vuojolainen, R. Jaatinen, I. Ketola, J. Aaltonen et al., A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis, Mech. Dev, vol.78, pp.135-140, 1998.

W. X. Liao, R. K. Moore, F. Otsuka, and S. Shimasaki, Effect of Intracellular Interactions on the Processing and Secretion of Bone Morphogenetic Protein-15 (BMP-15) and Growth and Differentiation Factor-9: IMPLICATION OF THE ABERRANT OVARIAN PHENOTYPE OF BMP-15 MUTANT SHEEP, J. Biol. Chem, vol.278, pp.3713-3719, 2003.

S. A. Mcgrath, A. F. Esquela, and S. J. Lee, Oocyte-specific expression of growth/differentiation factor-9, Mol. Endocrinol, vol.9, pp.131-136, 1995.

J. Aaltonen, M. P. Laitinen, K. Vuojolainen, R. Jaatinen, N. Horelli-kuitunen et al., GDF-9) and Its Novel Homolog GDF-9B Are Expressed in Oocytes during Early Folliculogenesis 1, Human Growth Differentiation Factor, vol.9, pp.2744-2750, 1999.

K. J. Bodensteiner, C. M. Clay, C. L. Moeller, and H. R. Sawyer, Molecular Cloning of the Ovine Growth/Differentiation Factor-9 Gene and Expression of Growth/Differentiation Factor-9 in Ovine and Bovine Ovaries1, Biol. Reprod, vol.60, pp.381-386, 1999.

R. Jaatinen, M. P. Laitinen, K. Vuojolainen, J. Aaltonen, H. Louhio et al., Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B, Mol. Cell. Endocrinol, vol.156, pp.189-193, 1999.

J. A. Elvin, C. Yan, and M. M. Matzuk, Oocyte-expressed TGF-beta superfamily members in female fertility, Mol. Cell. Endocrinol, vol.159, pp.1-5, 2000.

F. Otsuka, Z. Yao, T. Lee, S. Yamamoto, G. F. Erickson et al., Bone Morphogenetic Protein-15: Identification of target cells and biological functions, J. Biol. Chem, vol.275, pp.39523-39528, 2000.

F. Paradis, S. Novak, G. K. Murdoch, M. K. Dyck, W. T. Dixon et al., Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig, Reproduction, vol.138, pp.115-129, 2009.

X. Guéripel, V. Brun, and A. Gougeon, Oocyte Bone Morphogenetic Protein 15, but not Growth Differentiation Factor 9, Is Increased During Gonadotropin-Induced Follicular Development in the Immature Mouse and Is Associated with Cumulus Oophorus Expansion1, Biol. Reprod, vol.75, pp.836-843, 2006.

R. Prochazka, L. Nemcova, E. Nagyova, and J. Kanka, Expression of Growth Differentiation Factor 9 Messenger RNA in Porcine Growing and Preovulatory Ovarian Follicles1, Biol. Reprod, vol.71, pp.1290-1295, 2004.

J. R. Silva, R. Van-den-hurk, H. T. Van-tol, B. A. Roelen, and J. R. Figueiredo, Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats, Mol. Reprod. Dev, vol.70, pp.11-19, 2005.

S. Assou, T. Anahory, V. Pantesco, T. Le-carrour, F. Pellestor et al., The human cumulus-oocyte complex gene-expression profile, Hum. Reprod, vol.21, pp.1705-1719, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00130809

M. Hosoe, K. Kaneyama, K. Ushizawa, K. Hayashi, and T. Takahashi, Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries, Reprod. Biol. Endocrinol, vol.9, 2011.

T. Fernandez, J. Palomino, V. H. Parraguez, O. A. Peralta, and M. De-los-reyes, Differential expression of GDF-9 and BMP-15 during follicular development in canine ovaries evaluated by flow cytometry, Anim. Reprod. Sci, vol.167, pp.59-67, 2016.

J. Palomino and M. De-los-reyes, Temporal expression of GDF-9 and BMP-15 mRNAs in canine ovarian follicles, Theriogenology, vol.86, pp.1541-1549, 2016.

J. Peng, Q. Li, K. Wigglesworth, A. Rangarajan, C. Kattamuri et al., Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions, Proc. Natl. Acad. Sci, vol.110, 2013.

D. G. Mottershead, S. Sugimura, S. L. Al-musawi, J. Li, D. Richani et al., Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-? Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality, J. Biol. Chem, vol.290, pp.24007-24020, 2015.

U. A. Vitt, M. Hayashi, C. Klein, and A. J. Hsueh, Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles, Biol. Reprod, vol.62, pp.370-377, 2000.

T. E. Hickey, D. L. Marrocco, F. Amato, L. J. Ritter, R. J. Norman et al., Androgens Augment the Mitogenic Effects of Oocyte-Secreted Factors and Growth Differentiation Factor 9 on Porcine Granulosa Cells1, Biol. Reprod, vol.73, pp.825-832, 2005.

L. J. Spicer, P. Y. Aad, D. Allen, S. Mazerbourg, and A. J. Hsueh, Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells, J. Endocrinol, vol.189, pp.329-339, 2006.

S. Fabre, A. Pierre, P. Mulsant, L. Bodin, E. Di-pasquale et al., Regulation of ovulation rate in mammals: Contribution of sheep genetic models, Reprod. Biol. Endocrinol, 1920.

H. Chang, J. Cheng, C. Klausen, and P. C. Leung, BMP15 Suppresses Progesterone Production by Down-Regulating StAR via ALK3 in Human Granulosa Cells, Mol. Endocrinol, vol.27, pp.2093-2104, 2013.

M. A. Fenwick, J. M. Mora, Y. T. Mansour, C. Baithun, S. Franks et al., Investigations of TGF-? Signaling in Preantral Follicles of Female Mice Reveal Differential Roles for Bone Morphogenetic Protein 15, Endocrinology, vol.154, pp.3423-3436, 2013.

C. J. Mcintosh, S. Lun, S. Lawrence, A. H. Western, K. P. Mcnatty et al., The proregion of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9, Biol. Reprod, vol.79, pp.889-896, 2008.

Y. Su, K. Sugiura, Q. Li, K. Wigglesworth, M. M. Matzuk et al., Mouse Oocytes Enable LH-Induced Maturation of the Cumulus-Oocyte Complex via Promoting EGF Receptor-Dependent Signaling, Mol. Endocrinol, vol.24, pp.1230-1239, 2010.

K. Sugiura, Y. Su, Q. Li, K. Wigglesworth, M. M. Matzuk et al., Estrogen Promotes the Development of Mouse Cumulus Cells in Coordination with Oocyte-Derived GDF9 and BMP15, Mol. Endocrinol, vol.24, pp.2303-2314, 2010.

K. Wigglesworth, K. Lee, M. J. O'brien, J. Peng, M. M. Matzuk et al., Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes, Proc. Natl. Acad. Sci, vol.110, pp.3723-3729, 2013.

M. De-los-reyes, C. Rojas, V. H. Parraguez, and J. Palomino, Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes, Theriogenology, vol.80, pp.587-596, 2013.

P. Garcia, K. Aspee, G. Ramirez, P. Dettleff, J. Palomino et al., Influence of growth differentiation factor 9 and bone morphogenetic protein 15 on in vitro maturation of canine oocytes, Reprod. Dom. Anim, vol.54, pp.373-380, 2019.

D. Pasquale, E. Beck-peccoz, P. Persani, and L. , Hypergonadotropic Ovarian Failure Associated with an Inherited Mutation of Human Bone Morphogenetic Protein-15 (BMP15) Gene, Am. J. Hum. Genet, vol.75, pp.106-111, 2004.

D. Pasquale, E. Rossetti, R. Marozzi, A. Bodega, B. Borgato et al., Identification of New Variants of Human BMP15 Gene in a Large Cohort of Women with Premature Ovarian Failure, J. Clin. Endocr. Metab, vol.91, pp.1976-1979, 2006.

H. Dixit, L. K. Rao, V. Padmalatha, M. Kanakavalli, M. Deenadayal et al., Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure, vol.12, pp.749-754, 2005.

H. Dixit, L. K. Rao, V. V. Padmalatha, M. Kanakavalli, M. Deenadayal et al., Missense mutations in the BMP15 gene are associated with ovarian failure, Hum. Genet, vol.119, pp.408-415, 2006.

P. Laissue, S. Christin-maitre, P. Touraine, F. Kuttenn, O. Ritvos et al., Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure, Eur. J. Endocrinol, vol.154, pp.739-744, 2006.

E. Kovanci, J. Rohozinski, J. Simpson, M. Heard, C. Bishop et al., Growth differentiating factor-9 mutations may be associated with premature ovarian failure, Fertil. Steril, vol.87, pp.143-146, 2007.

H. Zhao, Y. Qin, E. Kovanci, J. L. Simpson, Z. Chen et al., Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure, Fertil. Steril, vol.88, pp.1474-1476, 2007.

B. Wang, Q. Wen, F. Ni, S. Zhou, J. Wang et al., Analyses of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) mutation in Chinese women with premature ovarian failure: Letters to the Editor, Clin. Endocrinol, vol.72, pp.135-136, 2010.

T. Wang, Z. Ke, Y. Song, L. Chen, X. Chen et al., Identification of a mutation in GDF9 as a novel cause of diminished ovarian reserve in young women, Hum. Reprod, vol.28, pp.2473-2481, 2013.

L. Persani, R. Rossetti, E. Di-pasquale, C. Cacciatore, and S. Fabre, The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders, Hum. Reprod. Update, vol.20, pp.869-883, 2014.

C. M. Simpson, D. M. Robertson, S. L. Al-musawi, D. A. Heath, K. P. Mcnatty et al., Aberrant GDF9 Expression and Activation Are Associated with Common Human Ovarian Disorders, J. Clin. Endocr. Metab, vol.99, pp.615-624, 2014.

R. B. Gilchrist, Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation, J. Cell Sci, vol.119, pp.3811-3821, 2006.

F. Otsuka and S. Shimasaki, A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: Its role in regulating granulosa cell mitosis, Proc. Natl. Acad. Sci, vol.99, pp.8060-8065, 2002.

M. J. Carabatsos, J. Elvin, M. M. Matzuk, and D. F. Albertini, Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice, Dev. Biol, vol.204, pp.373-384, 1998.

C. Liu, J. Peng, M. M. Matzuk, and H. H. Yao, Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells, Nat. Commun, vol.6, 2015.

J. A. Elvin, C. Yan, P. Wang, K. Nishimori, and M. M. Matzuk, Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary, Mol. Endocrinol, vol.13, pp.1018-1034, 1999.

L. Gui and I. M. Joyce, RNA Interference Evidence That Growth Differentiation Factor-9 Mediates Oocyte Regulation of Cumulus Expansion in Mice1, Biol. Reprod, vol.72, pp.195-199, 2005.

C. Yan, P. Wang, J. Demayo, F. J. Demayo, J. A. Elvin et al., Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function, Mol. Endocrinol, vol.15, pp.854-866, 2001.

S. Varani, J. A. Elvin, C. Yan, J. Demayo, F. J. Demayo et al., Knockout of Pentraxin 3, a Downstream Target of Growth Differentiation Factor-9, Causes Female Subfertility. Mol. Endocrinol, vol.16, pp.1154-1167, 2002.

J. G. Hreinsson, J. E. Scott, C. Rasmussen, M. L. Swahn, A. J. Hsueh et al., Growth Differentiation Factor-9 Promotes the Growth, Development, and Survival of Human Ovarian Follicles in Organ Culture, J. Clin. Endocr. Metab, vol.87, pp.316-321, 2002.

F. L. Teixeira-filho, E. C. Baracat, T. H. Lee, C. S. Suh, M. Matsui et al., Aberrant Expression of Growth Differentiation Factor-9 in Oocytes of Women with Polycystic Ovary Syndrome, J. Clin. Endocr. Metab, vol.87, pp.1337-1344, 2002.

F. Otsuka, R. K. Moore, and S. Shimasaki, Biological Function and Cellular Mechanism of Bone Morphogenetic Protein-6 in the Ovary, J. Biol. Chem, vol.276, pp.32889-32895, 2001.

Y. Su, K. Sugiura, K. Wigglesworth, M. J. O'brien, J. P. Affourtit et al., Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells, Development, vol.135, pp.111-121, 2008.

E. S. Caixeta, M. L. Sutton-mcdowall, R. B. Gilchrist, J. G. Thompson, C. A. Price et al., Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes, Reproduction, vol.146, pp.27-35, 2013.

Q. Li, S. Rajanahally, M. A. Edson, and M. M. Matzuk, Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15, Mol. Hum. Reprod, vol.15, pp.779-788, 2009.

T. S. Hussein, J. G. Thompson, and R. B. Gilchrist, Oocyte-secreted factors enhance oocyte developmental competence, Dev. Biol, vol.296, pp.514-521, 2006.

K. Sugiura, Y. Su, F. J. Diaz, S. A. Pangas, S. Sharma et al., Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells, Development, vol.134, pp.2593-2603, 2007.

M. Hayashi, E. A. Mcgee, G. Min, C. Klein, U. M. Rose et al., GDF-9) Enhances Growth and Differentiation of Cultured Early Ovarian Follicles*. Endocrinology, vol.140, pp.1236-1244, 1999.

J. E. Gittens, K. J. Barr, B. C. Vanderhyden, and G. M. Kidder, Interplay between paracrine signaling and gap junctional communication in ovarian follicles, J. Cell Sci, vol.118, pp.113-122, 2005.

O. Yoshino, H. E. Mcmahon, S. Sharma, and S. Shimasaki, A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse, Proc. Natl. Acad. Sci, vol.103, pp.10678-10683, 2006.

G. H. Davis, J. C. Mcewan, P. F. Fennessy, K. G. Dodds, and K. P. Mcnatty, Infertility Due to Bilateral Ovarian Hypoplasia in Sheep Homozygous (FecX1 FecX1) for the Inverdale Prolificacy Gene Located on the X Chromosome, Biol. Reprod, vol.46, pp.636-640, 1992.

R. Braw-tal, K. P. Mcnatty, P. Smith, D. A. Heath, N. L. Hudson et al., Ovaries of ewes homozygous for the X-linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures, Biol. Reprod, vol.49, pp.895-907, 1993.

L. Bodin, E. Di-pasquale, S. Fabre, M. Bontoux, P. Monget et al., A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep, Endocrinology, vol.148, pp.393-400, 2007.

M. Santos, E. B. Cordts, C. Peluso, M. Dornas, F. H. Neto et al., Association of BMP15 and GDF9 variants to premature ovarian insufficiency, J. Assist. Reprod. Genet, vol.36, pp.2163-2169, 2019.

J. P. Hanrahan, S. M. Gregan, P. Mulsant, M. Mullen, G. H. Davis et al., Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries), Biol. Reprod, vol.70, pp.900-909, 2004.

L. Nicol, S. C. Bishop, R. Pong-wong, C. Bendixen, L. Holm et al., Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep, Reproduction, vol.138, pp.921-933, 2009.

B. D. Silva, E. A. Castro, C. J. Souza, S. R. Paiva, R. Sartori et al., A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep: New polymorphism in GDF9 and prolificacy, Anim. Genet, vol.42, pp.89-92, 2011.

A. Martinez-royo, J. J. Jurado, J. P. Smulders, J. I. Martí, J. L. Alabart et al., A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep: A deletion in the BMP15 gene, Anim. Genet, vol.39, pp.294-297, 2008.

L. V. Monteagudo, R. Ponz, M. T. Tejedor, A. Laviña, and I. Sierra, A 17bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed, Anim. Reprod. Sci, vol.110, pp.139-146, 2009.

R. K. Moore and S. Shimasaki, Molecular biology and physiological role of the oocyte factor, BMP-15, Mol. Cell. Endocrinol, vol.234, pp.67-73, 2005.

P. Mulsant, F. Lecerf, S. Fabre, L. Schibler, P. Monget et al., Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes, Proc. Natl. Acad. Sci, vol.98, pp.5104-5109, 2001.

C. J. Souza, C. Macdougall, C. Macdougall, B. K. Campbell, A. S. Mcneilly et al., The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene, J. Endocrinol, vol.169, pp.1-6, 2001.

T. Wilson, X. Y. Wu, J. L. Juengel, I. K. Ross, J. M. Lumsden et al., Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells, Biol. Reprod, vol.64, pp.1225-1235, 2001.

J. Demars, S. Fabre, J. Sarry, R. Rossetti, H. Gilbert et al., Genome-Wide Association Studies Identify Two Novel BMP15 Mutations Responsible for an Atypical Hyperprolificacy Phenotype in Sheep, PLoS Genet, vol.9, 2013.

J. L. Juengel, N. L. Hudson, D. A. Heath, P. Smith, K. L. Reader et al., Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep, Biol. Reprod, vol.67, pp.1777-1789, 2002.

J. L. Juengel, K. J. Bodensteiner, D. A. Heath, N. L. Hudson, C. L. Moeller et al., Physiology of GDF9 and BMP15 signalling molecules, Anim. Reprod. Sci, pp.447-460, 2004.

J. L. Juengel, N. L. Hudson, M. Berg, K. Hamel, P. Smith et al., Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle, Reproduction, vol.138, pp.107-114, 2009.

K. P. Mcnatty, N. L. Hudson, L. Whiting, K. L. Reader, S. Lun et al., The Effects of Immunizing Sheep with Different BMP15 or GDF9 Peptide Sequences on Ovarian Follicular Activity and Ovulation Rate1, Biol. Reprod, vol.76, pp.552-560, 2007.

P. V. Silva, S. E. Guimarães, J. D. Guimarães, C. S. Nascimento, P. S. Lopes et al., Follicular dynamics and gene expression in granulosa cells, corpora lutea and oocytes from gilts of breeds with low and high ovulation rates, Reprod. Fertil. Dev, vol.26, p.316, 2014.

M. H. Kamalludin, A. Garcia-guerra, M. C. Wiltbank, and B. W. Kirkpatrick, Trio, a novel high fecundity allele: I. Transcriptome analysis of granulosa cells from carriers and noncarriers of a major gene for bovine ovulation rate ?, Biology of Reproduction, vol.98, pp.323-334, 2018.

G. W. Montgomery, Z. Z. Zhao, A. J. Marsh, R. Mayne, S. A. Treloar et al., A Deletion Mutation in GDF9 in Sisters with Spontaneous DZ Twins, Twin Res, vol.7, pp.548-555, 2004.

J. S. Palmer, Z. Z. Zhao, C. Hoekstra, N. K. Hayward, P. M. Webb et al., Novel Variants in Growth Differentiation Factor 9 in Mothers of Dizygotic Twins, J. Clin. Endocr. Metab, vol.91, pp.4713-4716, 2006.

F. J. Morón, F. De-castro, J. L. Royo, L. Montoro, E. Mira et al., Bone morphogenetic protein 15 (BMP15) alleles predict over-response to recombinant follicle stimulation hormone and iatrogenic ovarian hyperstimulation syndrome (OHSS), Pharmacogenet. Genom, vol.16, pp.485-495, 2006.

J. L. Crawford and K. P. Mcnatty, The ratio of growth differentiation factor 9: Bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates, Mol. Cell. Endocrinol, vol.348, pp.339-343, 2012.

E. R. Christoforou and J. L. Pitman, Intrafollicular growth differentiation factor 9: Bone morphogenetic 15 ratio determines litter size in mammals ?, Biol. Reprod, vol.100, pp.1333-1343, 2019.

R. Fontana and S. Torre, The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility, Nutrients, vol.8, 2016.

D. E. Broughton and K. H. Moley, Obesity and female infertility: Potential mediators of obesity's impact, Fertil. Steril, vol.107, pp.840-847, 2017.

T. El-toukhy and A. Osman, Macronutrient Intake, Fertility, and Pregnancy Outcome. In Nutrition, Fertility, and Human Reproductive Function, pp.51-68, 2015.

J. D. Brannian and K. A. Hansen, Leptin and Ovarian Folliculogenesis: Implications for Ovulation Induction and ART Outcomes, Seminars in Reproductive Medicine, vol.20, pp.103-112, 2002.

J. Nteeba, S. Ganesan, and A. F. Keating, Progressive Obesity Alters Ovarian Folliculogenesis with Impacts on Pro-Inflammatory and Steroidogenic Signaling in Female Mice1, Biol. Reprod, vol.91, pp.1002-1027, 2014.

X. Lin, H. Wang, D. Wu, K. Ullah, T. Yu et al., High Leptin Level Attenuates Embryo Development in Overweight/Obese Infertile Women by Inhibiting Proliferation and Promotes Apoptosis in Granule Cell, vol.49, pp.534-541, 2017.

J. Dupont, M. Reverchon, L. Cloix, P. Froment, and C. Ramé, Involvement of adipokines, AMPK, PI3K and the PPAR signaling pathways in ovarian follicle development and cancer, Int. J. Dev. Biol, vol.56, pp.959-967, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01129696

M. Reverchon, C. Ramé, M. Bertoldo, and J. Dupont, Adipokines and the Female Reproductive Tract, Int. J. Endocrinol, pp.1-10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129814

M. Vitti, G. Di-emidio, M. Di-carlo, G. Carta, A. Antonosante et al., Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility, PPAR Res, pp.1-12, 2016.

E. Collado-fernandez, H. M. Picton, and R. Dumollard, Metabolism throughout follicle and oocyte development in mammals, Int. J. Dev. Biol, vol.56, pp.799-808, 2012.

J. Bradley and K. Swann, Mitochondria and lipid metabolism in mammalian oocytes and early embryos, Int. J. Dev. Biol, vol.63, pp.93-103, 2019.

J. E. Chavarro, A. J. Gaskins, and A. C. Afeiche, Nutrition and Ovulatory Function. In Nutrition, Fertility, and Human Reproductive Function, 2015.

M. L. Sutton-mcdowall, R. B. Gilchrist, and J. G. Thompson, The pivotal role of glucose metabolism in determining oocyte developmental competence, Reproduction, vol.139, pp.685-695, 2010.

K. D. Sinclair, L. A. Lunn, W. Y. Kwong, K. Wonnacott, R. S. Linforth et al., Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development, Reprod. Biomed. Online, vol.16, pp.859-868, 2008.

J. Dupont, M. Reverchon, M. J. Bertoldo, and P. Froment, Nutritional signals and reproduction, Mol. Cell. Endocrinol, vol.382, pp.527-537, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129805

S. Auclair, R. Uzbekov, S. Elis, L. Sanchez, I. Kireev et al., Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes, Am. J. Physiol. Endocrinol. Metab, vol.304, pp.599-613, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01129721

A. Bonnet, B. Servin, P. Mulsant, and B. Mandon-pepin, Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth, PLoS ONE, vol.10, 2015.

M. Paczkowski, E. Silva, W. B. Schoolcraft, and R. L. Krisher, Comparative Importance of Fatty Acid Beta-Oxidation to Nuclear Maturation, Gene Expression, and Glucose Metabolism in Mouse, Bovine, and Porcine Cumulus Oocyte Complexes1, Biol. Reprod, vol.88, pp.1-11, 2013.

K. R. Dunning, M. R. Anastasi, V. J. Zhang, D. L. Russell, and R. L. Robker, Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists, PLoS ONE, vol.9, 2014.

L. Sanchez-lazo, D. Brisard, S. Elis, V. Maillard, R. Uzbekov et al., Fatty Acid Synthesis and Oxidation in Cumulus Cells Support Oocyte Maturation in Bovine, Mol. Endocr, vol.28, pp.1502-1521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129856

J. L. Leroy, T. Vanholder, B. Mateusen, A. Christophe, G. Opsomer et al., Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro, Reproduction, vol.130, pp.485-495, 2005.

K. L. Desmet, V. Van-hoeck, D. Gagné, E. Fournier, A. Thakur et al., Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: Integration of epigenetic and transcriptomic signatures in resultant blastocysts, BMC Genomics, vol.17, 1004.

V. Van-hoeck, J. L. Leroy, M. Arias-alvarez, D. Rizos, A. Gutierrez-adan et al., Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: Mechanistic insights, Reproduction, vol.145, pp.33-44, 2013.

J. Leroy, R. Sturmey, V. Van-hoeck, J. De-bie, P. Mckeegan et al., Dietary Fat Supplementation and the Consequences for Oocyte and Embryo Quality: Hype or Significant Benefit for Dairy Cow Reproduction?, Reprod. Dom. Anim, vol.49, pp.1002-1028, 2014.

W. F. Marei, J. De-bie, O. Mohey-elsaeed, E. Wydooghe, P. E. Bols et al., Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro ?, Biol. Reprod, vol.96, pp.1181-1196, 2017.

S. Elis, S. Freret, A. Desmarchais, V. Maillard, J. Cognié et al., Effect of a long chain n-3 PUFA-enriched diet on production and reproduction variables in Holstein dairy cows, Anim. Reprod. Sci, vol.164, pp.121-132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512139

S. Freret, M. Oseikria, D. L. Bourhis, A. Desmarchais, E. Briant et al., Effects of a n-3 polyunsaturated fatty acid-enriched diet on embryo production in dairy cows, Reproduction, vol.158, pp.71-83, 2019.

U. Moallem, Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle, J. Dairy Sci, vol.101, pp.8641-8661, 2018.

Y. Zeron, D. Sklan, and A. Arav, Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes, Mol. Reprod. Dev, vol.61, pp.271-278, 2002.

S. L. Wakefield, M. Lane, S. J. Schulz, M. L. Hebart, J. G. Thompson et al., Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse, Am. J. Physiol. Endocrinol. Metab, vol.294, pp.425-434, 2008.

M. Oseikria, S. Elis, V. Maillard, E. Corbin, and S. Uzbekova, N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle, Theriogenology, vol.85, pp.1625-1634, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409334

S. Elis, M. Oseikria, A. Vitorino-carvalho, P. S. Bertevello, E. Corbin et al., Docosahexaenoic acid mechanisms of action on the bovine oocyte-cumulus complex, J. Ovarian Res, vol.10, 2017.

V. Hoyos-marulanda, B. S. Alves, P. R. Rosa, A. D. Vieira, B. G. Gasperin et al., Effects of polyunsaturated fatty acids on the development of pig oocytes in vitro following parthenogenetic activation and on the lipid content of oocytes and embryos, Anim. Reprod. Sci, vol.205, pp.150-155, 2019.

P. Bertevello, A. Teixeira-gomes, A. Seyer, A. Vitorino-carvalho, V. Labas et al., Lipid Identification and Transcriptional Analysis of Controlling Enzymes in Bovine Ovarian Follicle, Int. J. Mol.Sci, vol.19, p.3261, 2018.

S. Uzbekova, S. Elis, A. Teixeira-gomes, A. Desmarchais, V. Maillard et al., Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries, Biology, vol.4, pp.216-236, 2015.

A. F. González-serrano, V. Pirro, C. R. Ferreira, P. Oliveri, L. S. Eberlin et al., Desorption Electrospray Ionization Mass Spectrometry Reveals Lipid Metabolism of Individual Oocytes and Embryos, PLoS ONE, vol.8, 2013.

K. Reader, J. Stanton, and J. Juengel, The Role of Oocyte Organelles in Determining Developmental Competence, Biology, vol.6, 2017.

H. Aardema, H. T. Van-tol, R. W. Wubbolts, J. F. Brouwers, B. M. Gadella et al., Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress, Biol. Reprod, vol.96, pp.982-992, 2017.

S. M. Downs, J. L. Mosey, and J. Klinger, Fatty acid oxidation and meiotic resumption in mouse oocytes, Mol. Reprod. Dev, vol.76, pp.844-853, 2009.

D. Valsangkar and S. M. Downs, A Requirement for Fatty Acid Oxidation in the Hormone-Induced Meiotic Maturation of Mouse Oocytes1, Biol. Reprod, vol.89, pp.1-9, 2013.

S. Elis, A. Desmarchais, V. Maillard, S. Uzbekova, P. Monget et al., Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells, Theriogenology, vol.83, pp.840-853, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01130503

K. R. Dunning and R. L. Robker, Promoting lipid utilization with l-carnitine to improve oocyte quality, Anim. Reprod. Sci, vol.134, pp.69-75, 2012.

K. R. Dunning, K. Cashman, D. L. Russell, J. G. Thompson, R. J. Norman et al., Beta-Oxidation Is Essential for Mouse Oocyte Developmental Competence and Early Embryo Development1, Biol. Reprod, vol.83, pp.909-918, 2010.

C. R. Ferreira, S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo et al., Single embryo and oocyte lipid fingerprinting by mass spectrometry, J. Lipid Res, vol.51, pp.1218-1227, 2010.

T. G. Mcevoy, G. D. Coull, P. J. Broadbent, J. S. Hutchinson, and B. K. Speake, Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida, J. Reprod. Fertil, vol.118, pp.163-170, 2000.

G. Genicot, J. L. Leroy, A. V. Soom, and I. Donnay, The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes, Theriogenology, vol.63, pp.1181-1194, 2005.

M. Lapa, C. Marques, S. Alves, M. Vasques, M. Baptista et al., Effect of trans-10 cis-12 conjugated linoleic acid on Bovine Oocyte Competence and Fatty Acid Composition: Effects of t10,c12 CLA on Bovine Oocytes, Reprod. Dom. Anim, vol.46, pp.904-910, 2011.

A. F. González-serrano, C. R. Ferreira, V. Pirro, A. Lucas-hahn, J. Heinzmann et al., Effects of long-term dietary supplementation with conjugated linoleic acid on bovine oocyte lipid profile, Reprod. Fertil. Dev, vol.28, pp.1326-1339, 2015.