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Abstract

We revisit the anaerobic digestion model with two steps in view of its global sta-
bilization. We show that when a bi-stability occurs, it can be possible to globally
stabilize the dynamics toward an unique positive equilibrium by increasing the re-
moval rate. We give sufficient conditions on the growth functions of the model for
this situation to appear. This illustrates that for multi-steps reactions, increasing
the residence time is not necessarily the only way to stabilize the dynamics.

Key words: Anaerobic digestion model, chemostat model, multi-stability,
stabilization.

1 Introduction

In most of continuous cultures, it is well known that increasing the removal
rate (or equivalently reducing the residence time inside the reactors) can desta-
bilize the dynamics, in the sense that it enlarges the attraction basin of the
wash-out equilibrium. This can be easily shown on the classical mathematical
model of the chemostat, with or without inhibition on the microbial growth
(see [5]). For growth inhibited by the substrate, bi-stability systematically oc-
curs for large values of the input concentration of substrate. This feature has
practical impacts on positive equilibrium (when it exists) because it cannot
be globally stable, and the dynamics can conduct the system to the wash-out

∗ Corresponding author.
Email addresses: jerome.harmand@inrae.fr (J. Harmand),

alain.rapaport@inrae.fr (A. Rapaport), denis.dochain@uclouvain.be
(D. Dochain).

21 April 2020



of the biomass, when the state belongs to the attraction basin of the washout
equilibrium. Ways to guarantee a global stability is either to fix a lower removal
rate, which is penalizing for the performance of the process, or to control the
removal rate with a feedback loop, which temporarily diminishes the removal
rate when the state is far from the positive steady state [1, 7, 8, 14]. In any
case, the removal has to be reduced at a certain stage.

Here we consider a more complex reaction scheme in two steps, as met for
instance in anaerobic digestion processes, and show that there exist situations
presenting a bi-stability for which increasing (and not decreasing) the removal
rate conducts the system to a globally asymptotically stable steady state, in
opposition to the stabilizing practices recalled above.

In the paper, we denote by R+ the set of non-negative numbers and by R+,?

the set of positive numbers.

Let us consider the mathematical model proposed and validated in [4], given
by the following equations.

ẋ1 = µ1(s1)x1 − αDx1

ṡ1 = −µ1(s1)x1 +D(sin1 − s1)

ẋ2 = µ2(s2)x2 − αDx2

ṡ2 = −µ2(s2)x2 + µ1(s1)x1 +D(sin2 − s2)

(1)

where the parameter D denotes the removal rate. The first reaction involves a
microbial species of concentration x1 which grows on a substrate of concentra-
tion s1 with a monotonic specific rate µ1. The incoming flow fed the culture
with substrate of concentration sin1 . The second reaction involves a second
microbial species of concentration x2 which grows on another substrate of
concentration s2, with a specific growth rate denotes µ2. This reaction is also
fed by the first one which produces the second substrate. In addition, the
incoming flow rate may contain (or not) substrate of concentration sin2 . The
parameter α ∈ (0, 1) reflects the fact that the effective removal rate of the
biomass is impacted by a retention inside the tank, differently to the abiotic
resource. Here, the yield coefficients of the transformations of substrate si into
biomass xi (i = 1, 2), and of the production of substrate for the second re-
action by the first one, have been all kept equal to 1 (this is always possible
without any loss of generality, by a right choice of the concentrations units).

It is often reported in the literature that the second reaction is inhibited by
large values of s2, which amounts to consider the following hypotheses.

Assumption 1 The functions µ1, µ2 belong to C1(R+,R+) and fulfill the
following properties.
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(i) µ1 is increasing on R+ with µ1(0) = 0.

(i) There exists ŝ2 > such that µ2 is increasing on [0, ŝ2) and decreasing on
(ŝ2,+∞), with µ2(0) = 0 and µ2(+∞) = 0.

The model (1) has a cascade structure: the first reaction is independent of the
second one and the (x1, s1) sub-system follows the classical (mono-specific)
chemostat model. However, the (x2, s2) sub-system is more complex to study
as it receives substrate from the first reaction and µ2 is non-monotonic. This
model and some of its variants has been already well studied in the literature
[3, 4, 11], depending on the operating parameters (sin1 , s

in
2 , D). In particular,

it has been shown that the dynamics may exhibit a multiple-stability, and
the complete operating diagram has been established in [12]. The purpose of
the present work is to complement those studies, investigating how to adapt
the value of the removal rate D to ensure a global stability of the dynamics.
For sake of completeness, we first recall in the next section the set of possible
asymptotic behaviors of the model.

2 Stability analysis

Let us first denote, for convenience,

µm1 := sup{µ1(s1) ; s1 ∈ R+)} , µm2 := sup{µ2(s2) ; s2 ∈ R+)} = µ2(ŝ2)

(where µm1 could be equal to +∞).

We define the break-even concentration λ1 associated to the first reaction as
the function

λ1(D) := µ−1
1 (αD), αD < µm1 . (2)

Then, we define the following quantity

sin2 (D) := sin2 +

 sin1 − λ1(D) , αD < µ1(sin1 )

0 , αD ≥ µ1(sin1 )
(3)

that is playing an important role in the analysis of the equilibria, as an ”ef-
fective” input concentration for the second reaction.

We define also the break-even concentrations λ−2 , λ+
2 associated to the second

reaction as functions such that

[λ−2 (D), λ+
2 (D)] := {s ∈ R+ ; µ2(s) ≥ αD}, αD ≤ µm2 . (4)
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One has the following result about equilibria of system (1) and their stability.

Proposition 1 The asymptotic behavior of the solutions of system (1) with
initial condition in (R+∗ × R+)2 is given by one of the following cases.

(1) When αD > max(µ1(sin1 ), µm2 ), any solution converges to the ”double
wash-out” steady-state E0,0 := (0, sin1 , 0, s

in
1 ).

(2) When max(µ1(sin1 ), µ2(sin2 )) ≤ αD ≤ µm2 , the solution converges either to
E0,0 or to the equilibrium E0,? := (0, sin1 , (s

in
2 −λ−2 (D))/α, λ−2 (D)), except

for initial conditions on a set of null measure

(3) When µ1(sin1 ) < αD ≤ µm2 and sin2 ≤ λ+
2 (D), any solution converges to

E0,?.

(4) When µ1(sin1 ) > αD > µ2(s2) for any s2 < sin2 (D), any solution converges
to E?,0 := ((sin1 − λ1(D))/α, λ1(D), 0, sin2 (D)).

(5) When αD < µ1(sin1 ), αD ≤ µm2 and sin2 (D)) > λ+
2 (D), the solution

converges either to E?,0 or to the positive equilibrium E?,? := ((sin1 −
λ1(D))/α, λ1(D), (sin2 (D) − λ−2 (D))/α, λ−2 (D)), except for initial condi-
tions on a set of null measure.

(6) When αD < µ1(sin1 ), αD ≤ µm2 and λ−2 (D) < sin2 (D) ≤ λ+
2 (D), any

solution converges to E?,?.

This result has already been proved in [3, 4, 11], and we recall quickly here
the arguments of the proof based on the study of the single chemostat model,
for which the classical results are recalled in the appendix.

PROOF. Let us first note that one has ẋ1 = 0 when x1 = 0, and ẋ2 = 0 when
x2 = 0. By uniqueness of the solutions of the system of differential equations
(1), we deduce that the solutions verify x1(t) > 0, x2(t) > 0 for any t > 0.
At s1 = 0, one has ṡ1 = Dsin1 > 0 and ṡ2 > Dsin2 > 0, which shows that the
hyperplanes s1 = 0, s2 = 0 are repulsive. We deduce that the solutions verify
s1(t) > 0, s2(t) > 0 for any t > 0.

Consider the variables z1 = x1 + s1 and z2 = s1 +x2 + s2. From equations (1),
one obtains

ż1 ≤ D(sin1 − αz1), ż2 ≤ D(sin1 + sin2 − αz2)

from which one deduces that z1 and z2 are bounded. This shows that the
non-negative solutions of (1) are bounded.

The (x1, s1) dynamics is independent of the variables x2, s2 and follows the
the classical chemostat model with monotonic growth function, whose steady
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state analysis is recalled in the Appendix (Proposition 4). Two cases are dis-
tinguished:

• case A: αD ≥ µ1(sin1 ): any solution of the (x1, s1) sub-system converges to
the wash-out state E0

1 := (0, sin1 ).

• case B: αD < µ1(sin1 ): any solution of the (x1, s1) sub-system with x1(0) > 0
converges to the positive state E?

1 := ((sin1 − λ1(D))/α, λ1(D)).

Then, the cascade structure of the dynamics (1), along with the boundedness
of its solutions and the asymptotic behavior of the (x1, s1) sub-system allows
to proceed with the stability analysis of the system on the reduced dynamics
of the (x2, s2) subsystem:

 ẋ2 = µ2(s2)x2 − αDx2

ṡ2 = −µ2(s2)x2 + µ1(seq1 )xeq1 +D(sin2 − s2)
(5)

where (xeq1 , s
eq
1 ) is the steady state of the (x1, s1) sub-system (i.e. E0

1 or E?
1

when it exists, according to Proposition 4).

In case A, the subsystem (5) is the classical chemostat model with non-
monotonic growth, whose steady state analysis is recalled in Proposition 5
(see Appendix). Three cases are then possible depending on the value of αD
with respect to µm2 and µ2(sin2 ), which are exactly the cases (1), (2), (3) given
of the Proposition statement.

In case B, notice that one has µ1(seq1 )xeq1 = D(sin1 − λ1(D)) which allows to
rewrite the reduced (x2, s2) dynamics as

 ẋ2 = µ2(s2)x2 − αDx2

ṡ2 = −µ2(s2)x2 +D(sin2 (D)− s2)
(6)

where sin2 (D) is defined in (3). This is again the classical chemostat model but
with non-monotonic growth and the effective input concentration sin2 (D), for
which the steady state analysis given in Proposition 5 of the Appendix applies.
This gives straightforwardly the cases (4), (5), (6) of the statement. 2

In practice, only case (6) is desirable because it guarantees that in any situ-
ation the wash-out of both species is avoided. Usually, the removal rate D is
the operating parameter that can be easily manipulated. In the next section,
we study how to change the value of D to be in case (6) when the original
operating conditions are not in this case.
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3 Wash-out avoidance

In this section, we consider situations for which the attraction basin of equi-
libria with wash-out of biomass 1 or 2 or both is non empty. According to
Proposition 1, this happens in cases (1) to (5). We study now how to play
only with the value of the removal rate D to move to case (6).

Consider the domains

D5 := {(sin1 , sin2 , D) ∈ R3
+ ; αD < µ1(sin1 ), αD ≤ µm2 , s

in
2 (D) > λ+

2 (D)}

D6 := {(sin1 , sin2 , D) ∈ R3
+ ; αD < µ1(sin1 ), αD ≤ µm2 , λ

−
2 (D) < sin2 (D) ≤ λ+

2 (D)}

which are the sets of operating parameters (sin1 , s
in
2 , D) that correspond to

cases (5) and (6) of Proposition 1.

Consider the interval
I := (0,min(µm1 , µ

m
2 )/α)

and introduce the functions defined on I:

ν−(D) := λ1(D) + λ−2 (D), ν+(D) := λ1(D) + λ+
2 (D), D ∈ I

(that are such that ν− < ν+ on I), which allow to describe the domains D5,
D6 as follows, using the expression (3) of sin2 (D) when αD < µ1(sin1 ).

D5 = {(sin1 , sin2 , D) ∈ R2
+ × [0, µm2 /α] ; αD < µ1(sin1 ); ν+(D) < sin1 + sin2 }

D6 = {(sin1 , sin2 , D) ∈ R2
+ × [0, µm2 /α] ; αD < µ1(sin1 ); ν−(D) < sin1 + sin2 ≤ ν+(D)}

Note from expressions (2) and (4) that the functions λ1 and λ−2 are increas-
ing, while λ+

2 is decreasing. The function ν− is thus increasing. One has also
ν−(0) = 0 and ν−(D)→ +∞ when D → min(µm1 , µ

m
2 )/α. One can then define

the inverse function
η−(s) := (ν−)−1(s), s > 0

The function ν+ is not necessarily monotonic but one has ν+(D)→ +∞ when
D → 0+. Denote

sm := min
D∈Ī

ν+(D)

and one can define the function

η+(s) := max{D ∈ I ; ν+(D) ≤ s}, s > sm.

Note that ν− < ν+ on I implies that one has η−(s) > η+(s) for any s > sm.

Our main result is the following.
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Proposition 2 Consider a triplet (sin1 , s
in
2 , D) with sin1 > 0, sin2 ≥ 0 and

D > 0, that do not belong to D6.

(i) For D ∈ (0, D) sufficiently small, (sin1 , s
in
2 , D) belongs to D6.

(ii) If (sin1 , s
in
2 , D) belongs to D5 with the condition

α η+(sin1 + sin2 ) < µ1(sin1 ) (7)

fulfilled, then any D ∈ (η+(sin1 +sin2 ),min(µ1(sin1 )/α, η−(sin1 +sin2 )) is such
that D > D and (sin1 , s

in
2 , D) belongs to D6.

PROOF. Fix sin1 > 0 and sin2 ≥ 0.

Note first that ν−(0) = 0 and ν+(0+) = +∞ imply that one has ν−(D) <
sin1 + sin2 ≤ ν+(D) for D > 0 small enough. Therefore, for any D > 0, there
exists D ∈ (0, D) such that (sin1 , s

in
2 , d) ∈ D6 for any d ≤ D. This shows (i).

Let us now study if it possible to have (sin1 , s
in
2 , D) ∈ D6 with D > D when

D > 0 is such that (sin1 , s
in
2 , D) /∈ D6.

According to Proposition 1, in cases (1), (2) or (3), one has αD ≥ µ1(sin1 ) and
D has then to be reduced to fulfill the condition αD < µ1(sin1 ) required in
case (6).

In case (4), either one has αD > µm2 , and D has to be reduced to fulfill the
condition αD ≤ µm2 of case (6), or one has sin2 (D) ≤ λ−2 (D). This latter situa-
tion amounts to write sin1 + sin2 ≤ ν−(D) and as the function ν− is increasing,
D has again to be reduced to obtain the condition sin1 + sin2 > ν−(D) of case
(6).

In case (5), one has sin1 + sin2 > ν+(D) which implies D < η+(sin1 + sin2 )
by definition of η+. If α η+(sin1 + sin2 ) < µ1(sin1 ), then any D̄ in the interval
(η+(sin1 + sin2 ), µ1(sin1 )/α) verifies sin1 + sin2 ≤ ν+(D̄). If moreover one has D̄ <
η−(sin1 + sin2 ) (recall that η+ < η−), one guarantees the inequality sin1 + sin2 <
η−(D̄). This proves the point (ii). 2

The surprising fact, when compared to the usual chemostat model, is that
increasing the removal rate D can bring stability in certain situations given in
(ii). Indeed, increasing the removal rate amounts to reduce the residence time,
which is usually a factor of instability. Here, the key point for such a phe-
nomenon to occur relies on the possible non monotonicity of the function ν+,
which implies that the function η+ is non identically equal to min(µm1 , µ

m
2 )/α.

Let us show that the conditions of case (ii) of Proposition 2 can be really met.
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Proposition 3 Assume one has µm2 ≥ µm1 . Let

Dm := max{D ∈ I ; ν+(D) = sm}.

(i) Any triplet (sin1 , s
in
2 , D) such that sin1 + sin2 > sm and D > Dm with

ν+(D) < sin1 + sin2 belongs to D5 and verifies the inequality (7), provided
that sin2 is sufficiently small.

(ii) Any triplet (sin1 , 0, D) that belongs to D5 satisfies the inequality (7).

PROOF.

Notice first that when µm2 ≥ µm1 , µm1 is necessarily finite and one has I =
(0, µm1 /α).

Take any s > sm and denote D̃ = η+(s). For any D > Dm in I such that
ν+(D) < s, one has

λ1(D) < s− λ+
2 (D).

As D < D̃ and λ+
2 is decreasing, one has also

λ1(D) < s− λ+
2 (D̃). (8)

Consider now any sin2 < min(s, λ+
2 (D̃)) and take sin1 = s− sin2 . For this choice

of sin1 and sin2 , inequality (8) gives

λ1(D) < sin1

(along with ν+(D) < sin1 + sin2 ). As the interval I is equal to (0, µm1 /α) and
the function µ1 is increasing, having λ1(D) < sin1 is equivalent to have αD <
µ1(sin1 ). This shows that the triplet (sin1 , s

in
2 , D) belongs to D5 (notice that one

has necessarily αD < µm2 as µm1 ≤ µm2 ).

For D = D̃, one has ν+(D̃) = s. In the same manner, one obtains λ1(D̃) < sin1
for the former choice of sin1 and sin2 , or equivalently αD̃ < µ1(sin1 ). This shows
that the inequality

αη+(sin1 + sin2 ) < µ1(sin1 )

is necessarily fulfilled.

For the particular case sin2 = 0, note that ν+(D) < sin1 implies λ1(D) < sin1
which, in turns, implies αD < µ1(sin1 ). From the definition of ν+, this shows
that the inequality αη+(sin1 ) < µ1(sin1 ) is verified. 2

8



4 Numerical illustrations

Typical instances of functions that fulfill Assumption 1 are given by the Monod
expression for the first reaction

µ1(s1) =
µm1 s1

K1 + s1

. (9)

and the Haldane one for the second

µ2(s2) =
µ̄2s2

K2 + s2 +
s22
Ki

(10)

for which one has
ŝ2 =

√
K2Ki.

Then, the break even concentrations defined in Section 2 have the expressions

λ1(D) =
αDK1

µm1 − αD
, αD < µm1

for the Monod function (9), and for the Haldane function (10)

λ±2 (D) =
µ̄2 − αD ±

√
(µ̄2 − αD)2 − 4(αD)2K2

Ki

2αD
Ki

, αD ≤ µm2

Figure 1 gives the values of the parameters chosen for the numerical compu-
tation, along with the graphs of the corresponding functions µ1, µ2. For these

µm1 K1 µ̄2 K2 Ki α

0.6 0.4 1.1 1 7 0.7

(a) Parameters values. (b) Graphs of µ1 and µ2.

Fig. 1.

values, one has ŝ2 ' 2.646 and µm2 ' 0.626. So, we are in the case µm2 > µm1
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of Proposition 3.

Figure 2 gives the graphs of the associated break-even concentrations λ1, λ±2
and the functions ν±.

Fig. 2. Graphs of the functions λ±i (left) and ν± = λ1 + λ±2 (right).

Remind that λ1 and λ−2 are increasing while λ+
2 is decreasing. The function ν+

is always above ν− (which is increasing) and ν+ tends to +∞ on the boundary
of the interval I = (0, µm1 /α) when µm1 ≤ µm2 .

As it is not always easy to grasp domains in R3, we fix values of sin2 and depict
the cross-sections of the domains D5, D6 in the (sin1 , D) plane. For a fixed
value of sin2 , these cross-sections are

C5(sin2 ) := {(sin1 , D) ∈ R+ × I , αD < µ1(sin1 ); ν+(D) < sin1 + sin2 }

C6(sin2 ) := {((sin1 , D) ∈ R+ × I , αD < µ1(s1)in); ν−(D) < sin1 + sin2 ≤ ν+(D)}

It can be simply interpreted in terms of intersections of epigraphs or hy-
pographs of the functions λ1, ν+ − sin2 and ν− − sin2 in the (D, sin1 ) symmetric
plane:

C5(sin2 ) := {sin1 > λ1(D)} ∪ {sin1 > ν+(D)− sin2 }

C6(sin2 ) := {sin1 > λ1(D)} ∪ {sin1 ≤ ν+(D)− sin2 } ∪ {sin1 > ν−(D)− sin2 }

Accordingly to Proposition 2, the complementary of C5(sin2 ) ∪ C6(sin2 ) in the
domain {(sin1 , D) ∈ R+ × I ; αD < µ1(sin1 )} corresponds to case (4) and the
complementary {(sin1 , D) ∈ R2

+ ; αD ≥ µ1(sin1 )s} is covered by cases (1), (2)
and (3).
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On Figure 3, one can see that for sin2 = 0, C5 and C6 cover almost but not
all the domain {αD < µ1(sin1 )} (which is below the red curve), and that it
is always possible to reach the domain C6 (in green) from C5 (in pink) by
increasing D (for fixed sin1 ), in accordance with Proposition 3. The red curve,
which is the graph of the function µ1/α, is above the domain C5.

Fig. 3. Cross-sections of the domains D5 and D6 for sin2 = 0. From any operating
point (sin1 , D) ∈ C5 it is possible to reach C6 by simply increasing D.

For sin2 = 2 or sin2 = 5, C5 and C6 cover all the domain {D < µ1(sin1 )/α} and
the graph of the red curve touches the boundary C5 (see Figure 4). However,
it still possible to reach C6 from C5 by increasing D only if sin1 is close enough
to the value sm − sin2 (remind that sm is the minimum of the function ν+).

Increasing the values of sin2 slides further the cross-section C5 to the left on
the (sin1 , D) plane and it is no longer possible to reach C6 from C5 by simply
increasing D (see Figure 5), exactly when the extreme point (sm − sin2 , Dm)
of C5 does no longer lie in the domain {αD < µ1(sin1 )} (i.e. when it is no
longer located below the red curve). Then, the only way to stabilize the system
playing only with the removal rate D is to decrease its value such that (sin1 , D)
is below the green curve (which is the graph of the function ν+ − sin2 ).
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Fig. 4. Cross-sections of the domains D5 and D6 for sin2 = 2 and sin2 = 5. From an
operating point (sin1 , D) ∈ C5 with sin1 not too far from sm − sin2 , it is possible to
reach C6 by simply increasing D.

Fig. 5. Cross-sections of the domains D5 and D6 for sin2 = 7 and sin2 = 9. From any
operating point (sin1 , D) ∈ C5 it it not possible to reach C6 by simply increasing D.

5 Conclusion

This study reveals the role played by the sum of the break-even concentrations,
as the function D 7→ λ1(D) + λ+

2 (D), in the counter-intuitive phenomenon of
increasing the removal rate to stabilize a two-steps bioprocess model. More
precisely, we show that when this function is non-monotonic on its domain,
this phenomenon occurs provided that the input concentration sin2 of substrate
of the second reaction is null of not too large. This result provides a new way to
stabilize such processes in certain situations, without increasing the residence
time, as it is often done which is penalizing in a industrial framework.
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Appendix

We recall here the classical results about the chemostat model ẋ = µ(s)x− αDx

ṡ = −µ(s)x+D(sin − s)
(11)

when µ is a monotonic or non-monotonic function.

Proposition 4 Assume that the function µ is increasing on (0, sin) and define
the break-even concentration λ(D) such that

µ(λ(D)) = αD, αD ∈ (0, µ(sin))

• When αD ≥ µ(sin), the system (11) has an unique equilibrium E0 := (0, sin)
(”wash-out”), which is moreover globally asymptotically stable on R2

+.
• When αD < µ(sin), the system (11) admits an unique positive equilibrium
E+ := ((sin − λ(D))/α, λ(D)) (in addition to the equilibrium E0), which is
moreover globally asymptotically stable on the domain R?

+ × R+.

Proposition 5 Assume that there exists ŝ ∈ (0, sin) such that the function µ
is increasing on (0, ŝ) and decreasing on (ŝ, sin). Define the break-even con-
centrations λ−(D), λ+(D) as follows

λ−(D) = min{s ∈ [0, ŝ] ; µ(s) ≥ αD}, αD ∈ [0, µ(ŝ)]

λ+(D) = max{s ∈ [ŝ, sin] ; µ(s) ≥ αD}, αD ∈ [µ(sin), µ(ŝ)]

• If αD > µ(ŝ), the system (11) has the unique equilibrium E0 := (0, sin),
which is globally asymptotically stable on R2

+.
• If αD < µ(sin), the system (11) admits an unique positive equilibrium E− :=

((sin−λ−(D))/α, λ−(D)) which is globally asymptotically stable on R?
+×R+.

• If αD ∈ [µ(sin), µ(s?)], the system (11) presents a bi-stability between E−

and E0. From any initial condition in R?
+ × R+ excepted on a set of null

measure, the solution converges asymptotically to E− or E0.
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