
HAL Id: hal-02549707
https://hal.inrae.fr/hal-02549707v1

Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Digital Circuit Design for Biological and Silicon
Computers

Matthias Függer, Manish Kushwaha, Thomas Nowak

To cite this version:
Matthias Függer, Manish Kushwaha, Thomas Nowak. Digital Circuit Design for Biological and Silicon
Computers. Advances in Synthetic Biology, Springer Singapore, pp.153-171, 2020, �10.1007/978-981-
15-0081-7_9�. �hal-02549707�

https://hal.inrae.fr/hal-02549707v1
https://hal.archives-ouvertes.fr

Digital Circuit Design for Biological and Silicon
Computers

Matthias Függer, Manish Kushwaha, and Thomas Nowak∗

1 Introduction

Evolving for the past 4 billion years [3], life on Earth today is highly diverse with an
estimated 8.7 million species [21]. Despite this enormous diversity, one key charac-
teristic that differentiates all living cells from non-living matter is their property of
response to stimuli [14]. Living cells receive information from their environment,
process that information, and then effect a response. Therefore, in the simplest “in-
formation processing” sense of computing [30], cells can be seen as tiny computing
machines. This notion has sustained itself through Monod to today as the successes
of molecular and cell biology have continued to reveal insights into the mechanistic
bases of cellular functioning [18, 23]. Conversely, the similarities in information
flow between living systems and computing devices have also led to the design and
construction of synthetic biological circuits inspired from electronic circuitry [29].

In this chapter, we explore the similarities and differences between computation
by biological and silicon computers. We first describe the nature of information in
the two system types. Next, we outline how the information flow can be represented
as chemical reaction networks or communicating hardware processes. Finally, we
define the kind of computational problems and the circuits that can be used to
implement their solutions.

Matthias Függer
CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay, Inria, e-mail: mfuegger@lsv.fr

Manish Kushwaha
Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, e-mail:
manish.kushwaha@inra.fr

Thomas Nowak
Université Paris-Sud, CNRS, e-mail: thomas.nowak@lri.fr
∗ All authors contributed equally. Names are listed in alphabetical order.

1

2 Matthias Függer, Manish Kushwaha, and Thomas Nowak

1.1 Analog versus digital computation

Most information in the physical world is analog in nature, varying between low and
high values on a continuous scale [27]. This is true not just of biologically relevant
signals like metabolite concentration, heat, light, pH, and osmotic pressure, but
also of electrical signals that run through human-made electronic circuits. Current
and voltage in electronic circuits can vary across their different parts depending on
other circuit properties like material (doping profiles) and geometry [1]. For both
biological and electronic circuits special processing of analog signals can be used to
generate their digital abstractions [33], using analog components that favor a binary
all-or-nothing behavior. Many such circuits have been implemented over the past
two decades inside living cells [20].

Before being applied to biological circuitry, however, this special treatment of
analog signals was exploited for building digital computer architectures [1]. The
main reason for the success of the digital abstraction in computer circuit designs is
its tolerance to noise. By introducing a threshold voltage that separates two voltage
zones corresponding to the binary digits 0 and 1, some noise in the signal can be
tolerated as long as it does not force the signal outside of the correct zone. In contrast,
it is impossible to build an analog adder circuit that outputs the exact sum of two
voltages and that tolerates any substantial amount of noise. The digital abstraction
also significantly simplifies the specifications of circuit interfaces and thus the re-
usability of components. Additionally, it enables the use of techniques and results
from Boolean logic to further speed up and simplify the design process and the
development of design automation tools.

1.2 Natural biological computation

Natural biological systems process several continuous signals in their extra- and
intracellular environments to make decisions [33]. Bacterial cells sense gradients of
chemical signals to modulate their movements to swim towards chemo-attractants
and away from chemo-repellants [31]. Similarly, they make auxotrophic decisions
on upregulating and downregulating different parts of their metabolism depending
on the available nutrients [19]. Some bacteria use environmental cues to switch
between different life cycle stages [25]. In developmental pathways, cells of mul-
ticellular organisms make differentiation decisions based on gradients of mRNA
molecules across their body length [32]. In summary, information processing in
natural biological systems seems to use hybrid approaches that combine aspects
of analog and digital circuitry. While the analog parts of the circuitry process and
output continuous signals, digital parts are used for decision-making between dis-
crete options [4], often for steps that require substantial downstream commitment.
This hybrid architecture appears to be much more powerful and has been applied
in bio-inspired design of computational methods, for example in neural computing

Digital Circuit Design for Biological and Silicon Computers 3

where perceptrons use analog logic to generate weighted sums and subsequently a
digital activation function to reach a classification decision [26].

1.3 Synthetic biological computation

In contrast to natural systems that have optimized analog-digital hybrid architectures
over evolutionary time scales, rational design of synthetic biological circuits in the
past two decades has focused mainly on building digital logic circuitry due to its
relative ease of implementation [33]. This has involved building one or more levels
of NOT, AND, OR, NAND, and NOR gates in single cells or across multicellular
consortia. Implementation has been done at different layers of biological information
processing: the gene expression layer of transcription and translation, the metabolic
layer of enzymatic reactions, and the signal transduction layer of small molecules
and their sensors [24, 11, 13]. Applications of these circuits have ranged from de-
tection of pollutants and diagnostic biomarkers, to smart therapeutics and metabolic
engineering [12]. Despite the extensive work in biological circuit design, the process
remains quite ad hoc with many manual steps needed for prototyping and testing.
However, new tools for computer-aided design are beginning to show promise for
the future of design automation [24].

2 Representation

This section discusses two different symbolic representations of circuits, one from
microbiology (chemical reaction networks) and one from electrical circuits (CHP).
Symbolic representations, even when similar at a superficial level, can have a pro-
found impact not only for the computer tools that manipulate these representations
but also for the ease of understanding and expression for the end user. The persistent
community discussions to identify the “best” programming language bears witness
to the immense value of symbolic representation. The importance of precise and
workable representations is well-understood in the synthetic biology community.
Consequently, a number of (visual) representational standards are already being
tested [10, 17].

2.1 Chemical Reaction Networks: A Language for Biochemical
Reactions

A chemical reaction network specifies a set of reactions involving a set of molecules.
Each reaction defines which molecules, and in which quantities, it takes as its input
and which molecules, and in which quantities, it produces as its output. Additionally,

4 Matthias Függer, Manish Kushwaha, and Thomas Nowak

each reaction has a rate, which determines how often the reaction occurs in a given
time interval.

For instance, the reaction A+ B
α
−→ C + D + E takes one unit of A, one unit of B,

and produces one unit each of C, D, and E at the rate α. The frequency at which the
reaction happens is determined not only by the rate α, but also by the concentrations
of A and B. Denoting the concentrations of A and B by [A] and [B], respectively, the
propensity of the above reaction is equal to α · [A] · [B].

Different operational interpretations of chemical reaction networks exist. The
two most common ones are the ordinary differential equation (ODE) model and the
stochastic model. In the ordinary differential equation model, each molecule has
a real-valued continuous concentration whose derivative is equal to the sum of the
propensities of reactions that produce themolecule minus the sum of the propensities
of reactions that consume it. In the stochastic model, concentrations of molecules
are measured as integer-valued counts (normalized to volume), and a reaction’s next
occurrence time is randomly chosen according to an exponential random variable
with parameter equal to the reaction’s propensity [8]. The deterministic ODE model
can be interpreted as the mean field solution of the stochastic model, that is, it
approximates the behavior of the expected value. Figure 3 (right) shows ODE and
stochastic traces with two different molecule numbers: the higher the number of
involved molecules the less likely it becomes for the stochastic traces to differ
greatly from the expected ODE trace.

2.2 CHP: A Language for Digital Circuit Design

Hardware description languages like Verilog and VHDL provide means to specify
the behavior of a circuit not only as a structural composition of basic gates, but also
by abstract semantics as they are known from programming languages for software
(comprising constructs like loops, conditional execution, etc.). As such, Verilog and
VHDL have evolved as standards for design entry and exchange format for circuits
in silico, but recently also for microbiological combinational circuits [24].

Throughout this chapter, we will make use of a semantically simpler hardware
description language that has recently gained attention, the CHP (communicating
hardware processes) language. Its use in a comparative article like this is motivated
by two facts: (a) the language emphasizes a circuit’s nature as a collection of simple
but highly concurrently operating components and (b) we will argue in Section 4 that
it is closely related to, although being an abstraction of, the reaction based notation
used for the design and modeling of microbiological pathways.

CHP programs. Introduced by Martin in 1989 [16], CHP is a language that adapts
the concept of communicating sequential processes [9], originally developed for
sequential software modules that are executed in parallel and communicate with
each other, for hardware processes. In this notation a circuit component is one of
the following terms that indicates (i) a variable assignment x := x ′ with x being a
variable and x ′ being its assigned value (0 or 1, or any Boolean formula which may

Digital Circuit Design for Biological and Silicon Computers 5

include variables), (ii) a guard [G], where G is a Boolean expression that evaluates
to 0 or 1, (iii) a sequential composition a; b of terms a and b such that b starts only
after a is complete, (iv) a parallel composition a | | b of terms a and b such that a
and b run concurrently, or (v) a repeat execution ∗[[a]] of term a. Other brackets are
used in straightforward way to group terms2. Besides its CHP term, a circuit has an
initial value (0 or 1) for all its variables.

Behavior of CHP programs. We will describe the behavior of such a circuit with
the use of a simple example with initial values A = B = 0 and CHP term

∗[[[A = 0]; (A := 1 | | B := 1)]]

It specifies a circuit that waits until guard A = 0 becomes true and then, in parallel,
sets the value of variables A and B to 1 (typically with a certain delay). Immediately
after that, it repeats and waits until A = 0. Since initially A = 0, both A and B will
indeed be set to 1.

Translation to gates. While the above CHP term might look sufficiently simple to
directly derive a gate-level implementation from it, more complex terms may not be
that easily derivable. CHP terms are thus iteratively translated into terms of specific
structure: a list of production rules. A production rule is a term ∗[[[G]; x := x ′]], also
denoted as G → x := x ′ for simplicity, that can be read as: when G becomes true
assign x ′ to x, where x ′ is either the constant 0 or the constant 1. All production rules
are executed in parallel. The behavior, in accordance with the semantics of CHP, is
as follows: whenever a guard is true its assignment is executed (with a certain delay).
CHP notation can be distinguished from chemical reaction network notation by a
rate that is indicated above the arrow when describing a chemical reaction.

For example, the circuit with initial values A = B = 1 and C = D = E = 0 with
production rules

A ∧ B→ C := 1 (1)
¬(A ∧ B) → C := 0 (2)

C ∨ D→ E := 1 (3)
¬(C ∨ D) → E := 0 (4)

is now easily seen to be equivalent to the following gate-level implementation (initial
values are indicated)

C = 0
E = 0

D = 0

A = 1
B = 1

where the first two production rules are the AND gate and the latter two the OR gate.
Note that initially rule (1) is executed since A∧ B = 1∧1 = 1, resulting in an update

2 In favor of a more concise presentation we present a simplified form of CHP in this chapter. For
a full description we refer the reader to Martin’s original paper [16].

6 Matthias Függer, Manish Kushwaha, and Thomas Nowak

of C to 1 after some delay. Then rule (3) is executed, resulting in an update of E to
1.

While in circuits for in silico implementation it is forbidden to have two pro-
duction rules whose guards are both true at the same time and that set a variable to
different values, such rules are plausible inmicrobiological settings (see Section 4.2).
Depending on the intended semantics such conflicts can be resolved by defining a
hierarchy among rules or by resolving conflicts by taking into consideration the time
since the guard is activated (or deactivated) and a strength of the rule.

3 Computational Problems

From a formal point of view, computational problems can be distinguished into
single-shot problems and those problems that require reactive behavior.

Single-shot problems have classically been the main focus of research in computer
science. A problem of this class is stated as a function that maps elements of an input
space to elements of an output space according to some specification. Classically,
elements of the input and output spaces are finite words of the Boolean alphabet
{0, 1}. For example, the problem to compute the logical OR satisfies the specification
OR(x1, . . . , xn) = x1 ∨ · · · ∨ xn. In computer science, solutions to such problems are
classically searched for in terms of Turing machines and Boolean circuits, briefly
described below.

Turing machines capture an abstract notion of computing architectures where
computation is driven by a single processing unit thatmanipulates strings, one symbol
at a time, starting from the input string and finishing at the desired output string. It
therein assumes that functions like reliable non-volatile storage of (arbitrarily long)
strings and reliable reading and manipulation of a string at a certain position are
provided by the concrete architecture, an assumption that is valid for most in silico
architectures but not yet for synthetic biological ones.

In Boolean circuits computation is driven by Boolean gates, which all operate in
parallel, simply transforming binary input signals to output signals andwhich a priori
lack any storage elements. These solutions are closer to the microbiological systems
that we are discussing here. While searches for solutions in classical computer
science are restricted to so called combinational Boolean circuits (cf. Section 3.1.1)
that are stateless, we will consider both stateful and stateless Boolean circuits for
their practical relevance in real world implementations.

Importantly, for single-shot problems, it is implicitly assumed that a Boolean cir-
cuit that represents a history-less solution can be repeatedly evaluated with changing
inputs and its result does not depend on that of a former evaluation.

Reactive systems, by contrast, are systems whose behavior can depend on past
inputs. A reactive system continuously receives inputs and produces corresponding
outputs that may depend on its history. Given a behavior of the environment which
provides the controller’s inputs and reacts to its outputs, reactive systems’ goal is

Digital Circuit Design for Biological and Silicon Computers 7

to provide appropriate outputs such that the combined system, together with the
environment, satisfies a given specification.

Analogously to the example of the single-shot OR problem, one may consider the
problem of designing a controller that operates in discrete time steps 1, 2, 3, . . . : In
each time step, it receives an input bit from the environment and has to produce an
output that is the OR operation over all input bits received thus far. Such a device
could be useful in settings where a controller has to raise an alarm signal once it
senses a trigger condition as its input.

3.1 Implementations

Reactive problems inherently require implementations that store an internal state
while single-shot problems do not. There may, however, be good reasons for using
solutions that use internal state for single-shot problems, e.g., smaller or more
efficient implementations: think of the single-shot OR problem with thousands of
inputs, or at design time a priori unknown number of inputs. One would probably
favor a small stateful solution that iteratively solves the problem, remembering
intermediate results, over a stateless solution that has to grow with the number of
inputs as it cannot store intermediate results from a computation.

3.1.1 Implementations without internal state

A combinational Boolean circuit is a circuit that consists only of stateless gates, like
AND, OR and NOT, and that has no feedback loops: signals strictly propagate from
the input to the output. Thus, if a Boolean input is applied to a combinational circuit,
its outputs will settle at binary values solely determined by the input values and not
by the order in which they are applied, or previously applied input values. It is thus
considered stateless.

For the previously discussed single-shot problem to compute the OR of n bit
strings, a natural solution as a combinational Boolean circuit is a tree of OR gates;
see Fig. 1.

o

i1
i2

i3
i4

Fig. 1 Combinational circuit that solves the OR problem for 4 input bits i1, i2, i3, i4.

8 Matthias Függer, Manish Kushwaha, and Thomas Nowak

3.1.2 Implementations with internal state

A deterministic state machine is a set of states S, one of which is the initial state s0,
an input alphabet I, an output alphabet O, a transition function δ : S × I → S, and
an output function o : S → O. The behavior of this abstract machine in the presence
of an input stream i1, i2, i3, . . . is as follows: starting from the initial state s0 where
it produces output o(s0), the machine transitions to state s1 = δ(s0, i1) producing
output o(s1). Next, it transitions to state s2 = δ(s1, i2) producing output o(s2), and so
on.

Figure 2 depicts a state machine that solves both the single-shot OR problem and
the reactive OR problem. Its input and output alphabet is I = O = {0, 1}, its set of
states is S = {S0, S1} with initial state S0, its transition function is

δ(S0, i) =

{
S0 if i = 0
S1 if i = 1

and δ(S1, i) =

{
S1 if i = 0
S1 if i = 1

and its output function is o(S0) = 0 and o(S1) = 1.

S0start S1

1

0 0, 1 example execution:

in:
state:

out o:

S0

0

0
S0

0

0
S0

0

1
S1

1

1
S1

1

0
S1

1

. . .

. . .

. . .

Fig. 2 State machine that solves the OR problem. Transitions are depicted as arrows labeled with
inputs. Outputs of the states are o(S0) = 0 and o(S1) = 1. An example execution is shown in blue.

4 Circuits

The combinational circuits and state machines discussed in Section 3.1 are agnostic
to specific target technologies or target machines. In the current section we will
discuss more concrete implementations targeted for low-level implementation in
silico, that is, in VLSI circuits, and in synthetic biological circuits.

4.1 Wires

Conceptually, wires or channels provide means to geometrically route information,
to provide separation between different signals, and to translate an input species into
an output species. Media and transported species vary greatly: while wires (inter-
connect) in circuits are made out of metal or polysilicon, insulated from each other,

Digital Circuit Design for Biological and Silicon Computers 9

and transport charge (in some cases on-chip fibers transport photons), the situation
is far more diverse in microbiological circuits where signals can be metabolites,
small molecules, peptides, phages, DNA or RNA. For all such wires orthogonality
of signals, error rates, transport delay, etc., are important questions that need to be
addressed.

From a computational point of view, a wire is the simplest computation: a gate
that computes the identity, typically with a certain delay. Therefore, in terms of
production rules, the specification of a wire can be expressed as:

I → O := 1 and ¬I → O := 0 (5)

When the input is 1 the output becomes 1, and when the input is 0 the output
becomes 0.

4.1.1 Electrical Wires

The simplest non-trivial model for an electrical wire is an RC element. It consists
of a resistor and a capacitor in series. This allows the modeling of not only the
non-zero resistance of real wires, but also the various loading effects that any real
circuit element invariably displays.

Denoting by R the resistance of the resistor and by C the capacitance of the
capacitor, the output voltage O of the RC element reacting to an input voltage I is
given by the ordinary differential equation

dO
dt
=

I
RC
−

O
RC

For example, when starting from an initial voltage of 0 V (= ground, logical 0), the
time behavior of an RC wire reacting to a positive input pulse of voltage VDD (=
power supply, logical 1) can be calculated as

O(t) = VDD ·
(
1 − e−t/τ

)
where τ = R · C is the RC constant. Figure 3 (left) depicts this function.

t

O(t)

VDD

1
RC

t

[O](t)

α
β [I]

1
β

Fig. 3 Behavior of electrical (left) and microbiological (right) wires reacting to a constant input
signal. The microbiological signal is shown for three settings: stochastic models with I = 10 (dotted
green) and I = 100 (dashed red), and the ordinary differential equation model (solid blue).

10 Matthias Függer, Manish Kushwaha, and Thomas Nowak

When combining a wire with a Boolean gate, the RC constant of the physical
wire is dominated by loading effects inside the gate. In fact, on the scale of gates the
RC constant of a physical wire is negligible. In this setting, the derivations from this
section are more appropriately applied to an identity gate, i.e., a single-input gate
whose output is equal to its input.

4.1.2 Microbiological Wires

A very simple implementation of a microbiological wire, or identity gate, can be
constructed by having the input molecule I be an activator for the gene encoding
output moleculeO. Likewise considerations, however, hold for other microbiological
wires. After adding a decay reaction, which is necessary for the stability of themodel,
the simple microbiological wire can be described by the two reactions

I + S
γ
−→ I +O and O

β
−→ ∅ (6)

where β and γ are some rate constants and S is a substrate assumed to be present
in abundance (i.e., its concentration remains constant). By applying mass-action
kinetics to the system of reactions (6), we get the following ordinary differential
equation for the time behavior of the concentration of the output molecule O:

d[O]
dt
= α[I] − β[O]

where α = γ · [S]. An immediate consequence of this equation is that the output is
in a steady state only if the input is constant and [O] = α

β · [I].
The concentration of output molecules O over time, when given a constant con-

centration of input molecules I, is equal to

[O](t) =
α

β
· [I] ·

(
1 − e−βt

)
(7)

when starting at an initial output concentration of zero. Figure 3 (right) depicts this
function.

Expressed in the CHP language, the reactions (6) can be interpreted as the fol-
lowing two production rules:

I → O := 1 and O → O := 0

Note that this CHP formulation is different from (5). In fact, modern electrical
implementations directly3 implement (5) by using complementary stacks (explained
in Section 4.2.1), while classical microbiological implementations rely on decay
reactions which can lead to a simpler set-up. However, this distinction is not a
peculiarity of microbiological settings. In principle, one could also use single-stack

3 To be precise, an identity gate is usually implemented by two successive inverters.

Digital Circuit Design for Biological and Silicon Computers 11

implementations in electrical circuits and complementary-stack implementations in
microbiological circuits.

4.2 Gates

A single output gate is described by two production rules, one that specifies when
its output is set to 1, and another that specifies when it is set to 0:

Pup → O := 1 and Pdown → O := 0 (8)

Typically Pup and Pdown are required to be mutually exclusive, so that the gate
never forces its output to 0 and 1 at the same time. If further Pup and Pdown are
negations of each other, that is exactly one of them holds, then the gate is stateless.
Otherwise, it is stateful. An example stateless gate is the OR gate with Pup = A ∨ B
and Pdown = ¬(A ∨ B). An example of a stateful gate is the RS-latch, a storage
element that can be set with S = 1 and reset with R = 1, with Pup = S ∧ ¬R and
Pdown = ¬S∧ R. Note that, if R = S = 0, then the RS-latch holds its previous output;
hence, it is stateful.

4.2.1 CMOS Gate Implementations

Once the circuit has been rewritten in the form of production rules, a standard com-
plementary metal–oxide–semiconductor (CMOS) implementation using transistors
is readily obtainable. Consider the two rules in (8) and assume that they represent
a stateless gate. For an efficient CMOS implementation, we also require that Pup
consists only of negated variables and their combination via AND and OR, e.g.,
¬A ∧ ¬B. Likewise, Pdown must consist only of positive variables and their combi-
nation via AND and OR, e.g., A∨ B. Then, rule Pup → O := 1 is implemented by a
stack of p-type transistors (one transistor per negated variable) that are responsible to
pull the gate’s output toVDD (= logical 1) in case Pup is true. Rule Pdown → O := 0 is
implemented by a stack of n-type transistors (one transistor per positive variable) that
pull the gate’s output towards the ground (= logical 0) if Pdown is true. Figure 4 shows
a CMOS implementation for an inverter, i.e., a gate with Pup = ¬A and Pdown = A.
The p-stack (green) is the above transistor that connects VDD with O if A = 0. The
n-stack (magenta) is the bottom transistor that connects ground with O if A = 1.

Figure 5 shows the two cases for input A: If A = 0, the p-stack connects and the
n-stack is open. Thus the load at O is charged and pulled up to VDD (= logical 1) via
the connecting p-stack. Conversely, if A = 1, the n-stack connects and the p-stack is
open, thus discharging the load at O through the n-stack to ground (= logical 0).

12 Matthias Függer, Manish Kushwaha, and Thomas Nowak

ground (= logical 0)

VDD (= logical 1)

A O

load
(e.g., next gate)

p-stack

n-stack

production rules:

¬A→ O := 1

A→ O := 0

Fig. 4 CMOS implementation of an inverter (left) driving the next gate (right) represented by a
capacitive load. Note that the capacitive load is a model for the inertia of the next circuit and is not
deliberately built into the circuit.

VDD

A O

¬A→ O := 1

VDD

A O

A→ O := 0

Fig. 5 Case A = 0: the load at output O is charged (left). Case A = 1: the load at output O is
discharged (right).

4.2.2 Microbiological Gate Implementations

Figure 5 shows that the inverter gate does not use charge from input A to charge the
output O (so as not to reduce the input charge). Instead, the charge comes from an
independent and undepletable source, the power supply VDD.

This concept of decoupling input and output is also observed in naturally occurring
reactions and synthetic biological designs. While in the enzymatic reaction

A + E
 AE → E +O

the input molecule A is consumed to create output molecule O via enzyme E , i.e.,
there is no decoupling, in a reaction like

A + E
 AE → AE +O

S

Digital Circuit Design for Biological and Silicon Computers 13

with a sufficiently available source molecule S, playing the role of VDD, provides
decoupling analogous to the CMOS inverter. It resembles the charging via the p-
stack in Fig. 5 (left) in that it is enabled if A is present and disabled if A is absent,
analogously but negated to its silicon counterpart. In terms of production rules, we
may express its behavior as A→ O := 1. Typically, the resetting of O is not actively
driven, but effected implicitly by the decay of O. Generalizations of this scheme to
two input species have, e.g., been used to build AND gates [28, Fig. 1D–F]. Inputs
are two complementary parts of the phage T7 RNA polymerase, E is a promoter,
and S is the pool of nucleotides to transcribe into O.

By contrast, the scheme

E → E +O

S

E A

↔A

is decoupled and negating, analogous to the p-stack. In terms of production rules, we
may write ¬A→ O := 1. Again, resetting of O typically is by decay of O. Figure 6
shows the reactions of an inverter with “charging” (in green) and “discharging” (in
magenta) reactions corresponding to Fig. 5. Generalizations of this to two input
species have been used to implement NOR gates [2, Fig. 2c]. It works by repressing
expression of O via the CRISPR/dCas9 machinery. Inputs are guide RNAs, E is a
promoter, and S is the pool of nucleotides and dCas9.

E→ E +O

S

EA
↔

A

→

∅

¬A→ O := 1

O → O := 0 E → E +O

S

EA

↔A →

∅

O → O := 0

Fig. 6 Case A = 0: output molecule O is produced (left). Case A = 1: output molecule O is
decayed if present (right). Molecules with high concentrations are printed in bold.

4.3 Stateful Circuits

In this section, we turn our attention to non-combinational circuits, i.e., circuits
that contain some internal state. We do this by discussing implementations of the
RS-latch with CMOS circuits and microbiological circuits.

The capacity to store bits, as is possible with the RS-latch, is prototypical for
stateful circuits. In fact, the latch is used as a component in the so-called flip-flop
circuits that are widely used to store states in CMOS circuits. For example, the
reactive OR problem from Section 3.1.2 can be implemented with an RS-latch.

14 Matthias Függer, Manish Kushwaha, and Thomas Nowak

4.3.1 CMOS Circuits

Most CMOS circuits possess some internal state. The RS-latch in CMOS circuits
is most commonly implemented with two NOR gates, as shown in Fig. 7. The

R
Q

S
Q̄

¬(R ∨ Q̄) → Q := 1
R ∨ Q̄ → Q := 0

Fig. 7 Implementation of RS-latch with two NOR gates. The gate driving Q is shown in blue and
its production rules are stated.

implementation’s main idea is to translate the RS-latch representation in the CHP
language

∗[[[S = 1 ∧ R = 0]; Q := 1]] | | ∗[[[S = 0 ∧ R = 1]; Q := 0]]

syntactically into the production rules

(S ∧ ¬R) → Q := 1 and (¬S ∧ R) → Q := 0

and then to introduce the variable Q̄ = ¬Q that allows rewriting the production rules
into:

¬(S ∨Q) → Q̄ := 1 and (S ∨Q) → Q̄ := 0
¬(R ∨ Q̄) → Q := 1 and (R ∨ Q̄) → Q := 0

Given this CHP representation, the possible implementation with two NOR gates is
clearly visible.

4.3.2 Microbiological Circuits

In synthetic biology, circuits with internal state are less common than in CMOS
circuits. While there is a considerable number of microbiological circuits without an
internal state [24], one of the first microbiological circuits with an internal state was
the bacterial toggle switch [7]. Recently, theoretical microbiological asynchronous
circuit designs with internal states have appeared [22]. Figure 8 (left) shows the
implementation of the toggle switch as a genetic circuit. Interestingly, due to dif-
ferent implementation constraints and the implementation’s single-stacked nature,
the implementation of the toggle switch does not decompose into two NOR gates,

Digital Circuit Design for Biological and Silicon Computers 15

as is the case for the CMOS implementation. We provided the corresponding CHP
production rules in Fig. 8 (right).

P1Q P2 Q̄

R S
S

Q

R
Q̄

S ∨ ¬Q̄ → Q := 1
Q → Q := 0

Fig. 8 Toggle switch design from [7]. The components driving Q are shown in blue (left). Cor-
responding production rules and gate-level description (right). By shifting the input negation to
the output observe that signal ¬Q̄ in the microbiological circuit corresponds to Q in the circuit in
Fig. 7 and ¬Q to Q̄. Since Q = ¬Q̄ during normal operation (R and S are not issued at the same
time), the CMOS and the microbiological circuit behave equivalently.

4.4 Challenges

In previous sub-sections we discussed an idealized view on CMOS and microbio-
logical circuits. In the following, we point to the limitations of such a view: circuit
components may fail, both at production and mission time, and apparently simple
operations like setting an output to 1 are, in fact, continuous processes with a range
of implications.

4.4.1 CMOS Circuit Implementations

The typical production faults that may cause a permanent unintended behavior of
the circuit are open and bridge faults at the transistor level [5]. In an open fault
a connection is interrupted, while in a bridge fault two points are connected via
an unintended (low) resistance. Possible reasons are friction, electrical wear-out,
impurities during fabrication, etc., and the effects are typically permanent once they
occur. Open and bridge faults within a gate may have different effects on the gate
output that depend on the gate, the resistance of the bridge, etc. For simplicity,
typically two types of behaviors are assumed, which the circuit is tested for: in a
stuck-at-0 or stuck-at-1 fault the gate output is simply stuck to the logical value of
0 or 1. An example for a stuck-at-1 fault is a low resistance bridge from O to VDD
in Fig. 4. The second common manifestation at gate-level is the delay-fault where
logical gate behavior is as expected, but with pronounced delays under certain inputs.

By contrast, a transient fault is a temporary misbehavior of the circuit. In this
class falls sudden deposition of charge caused by an ionizing particle hit. Effects are

16 Matthias Függer, Manish Kushwaha, and Thomas Nowak

short pulses created within the logic and bit-flips within the memory [6]. Related
to transient faults is signal noise, e.g., induced by environmental fluctuations (e.g.,
temperature) and voltage drops in the power line due to simultaneous switching
activity of numerous gates in a circuit. Such noise is an issue in aggressively timed
or low-power CMOS circuits.

Unrelated to the above phenomena is metastability that may occur in a circuit in
the absence of any external faults. Consider a circuit that has an internal state whose
value can be set to at least two different values, say 0 and 1, e.g., an RS-latch. If
there are two scenarios, one where the environment can drive the circuit into state
0 and one where it can drive it into state 1, and the scenarios can be continuously
transformed into each other, then there also exists a scenario in which the state is
in-between where it resides for an arbitrarily long period [15], the metastable state.
This is problematic as a circuit in this state may produce in-between voltage outputs
that are neither logical 0 nor logical 1. These can corrupt downstream gates that
expect clear voltage inputs.

4.4.2 Microbiological Circuit Implementations

Several of the aforementioned faults have corresponding faults in synthetic biologi-
cal implementations. Brophy and Voigt [2] provided a survey of common permanent
faults that have been observed in synthetic biology designs using the example of an
ANDgate and an oscillator. A central source of the faults describedweremismatched
components (e.g., dynamic range and offset mismatches) that essentially lead to a
loss of the digital abstraction. In the AND gate the faults led to dynamic range and
offset mismatches at its output. While these range mismatches do not play a promi-
nent role in modern CMOS designs, inaccessible ribosome binding sites (RBS)
because of RBS context may be viewed as open faults and lead to stuck-at-0 faults at
the gate output. Stuck-at-0 faults were also observed after unintended recombination
had taken place in the synthetic circuit. Missing orthogonality between (repressor)
signals and corresponding promoters as well as transcriptional read-through because
of insufficient insulation by terminators lead to faults that resembled bridge faults
in CMOS circuits. Although the gate’s behavior was similar to that under bridge
fault, we would like to stress an important difference between the biological bridge
faults and those in silico: their directionality. While bridge faults in CMOS are mod-
eled as bidirectional, high resistance connections, their microbiological counterparts
(missing orthogonality and read-through) a priori are often directional.

In addition to permanent faults, noise plays a pronounced role in both silicon
and biological computers. Although signal noise is an issue in low-power CMOS
circuits with reduced dynamic range, the situation is intensified in biological circuits;
e.g., see the stochastic behavior for I = 10 and I = 100 input molecules in Fig. 3
where unintended short-0 pulses are to be expected. While such pulses may lead to
unintended, but time-limited, outputs in stateless circuits, their presence at the input
of stateful gates like the toggle switch may lead to a permanent failure of the circuit.

Digital Circuit Design for Biological and Silicon Computers 17

5 Conclusions

In this chapter, we presented design techniques for digital circuits, both for silicon
and biological computers. We saw that, while many high-level notions, like the
abstract concept of Boolean gates and their representation, are identical in both
worlds, distinctions have to be made when descending from the abstraction levels
towards functional implementations. This distinction is already visible in theBoolean
representation domain, as we saw that different implementations require different
production rules in the CHP language.

What we have presented in this chapter is only a small part of the vast space
of circuit design, both for electrical and biological circuits. But, we have tried to
present a relevant selection of similarities and prototypical differences between the
two. Clearly, there is a rich interplay possible between the fields of CMOS circuit
design and synthetic biology circuit design, though care must be taken to not blindly
transfer notions or complete designs from one to the other.

References

1. Anant Agarwal and Jeffrey H. Lang. Foundations of Analog and Digital Electronic Circuits.
Morgan Kaufmann, San Francisco, 2005.

2. Jennifer A. N. Brophy and Christopher A. Voigt. Principles of genetic circuit design. Nature
Methods, 11(5):508–520, 2014.

3. Matthew S. Dodd, Dominic Papineau, Tor Grenne, John F. Slack, Martin Rittner, Franco
Pirajno, Jonathan O’Neil, and Crispin T. S. Little. Evidence for early life in Earth’s oldest
hydrothermal vent precipitates. Nature, 543:60–64, 2017.

4. Zohar Erez, Ida Steinberger-Levy, Maya Shamir, Shany Doron, Avigail Stokar-Avihail, Yoav
Peleg, Sarah Melamed, Azita Leavitt, Alon Savidor, Shira Albeck, et al. Communication
between viruses guides lysis–lysogeny decisions. Nature, 541:488–493, 2017.

5. F. Joel Ferguson and John P. Shen. A CMOS fault extractor for inductive fault analysis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(11):1181–1194,
1988.

6. Véronique Ferlet-Cavrois, Lloyd W. Massengill, and Pascale Gouker. Single event transients
in digital CMOS: A review. IEEE Transactions on Nuclear Science, 60(3):1767–1790, 2013.

7. Timothy S. Gardner, Charles R. Cantor, and James J. Collins. Construction of a genetic toggle
switch in Escherichia coli. Nature, 403:339–342, 2000.

8. Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal
of Physical Chemistry, 81(25):2340–2361, 1977.

9. C. A. R. Hoare. Communicating sequential processes. In The Origin of Concurrent Program-
ming, pages 413–443. Springer, Heidelberg, 1978.

10. Michael Hucka, Andrew Finney, Herbert M. Sauro, Hamid Bolouri, John C. Doyle, Hiroaki
Kitano, Adam P. Arkin, Benjamin J. Bornstein, Dennis Bray, Athel Cornish-Bowden, et al.
The systems biology markup language (SBML): A medium for representation and exchange
of biochemical network models. Bioinformatics, 19(4):524–531, 2003.

11. Evgeny Katz. Enzyme-based logic gates and networks with output signals analyzed by various
methods. ChemPhysChem, 18(13):1688–1713, 2017.

12. Ahmad S. Khalil and James J. Collins. Synthetic biology: Applications come of age. Nature
Reviews Genetics, 11(5):367–379, 2010.

13. Christina Kiel, Eva Yus, and Luis Serrano. Engineering signal transduction pathways. Cell,
140(1):33–47, 2010.

18 Matthias Függer, Manish Kushwaha, and Thomas Nowak

14. Peter T. Macklem and Andrew Seely. Towards a definition of life. Perspectives in Biology and
Medicine, 53(3):330–340, 2010.

15. Leonard R.Marino. General theory of metastable operation. IEEE Transactions on Computers,
C-30(2):107–115, 1981.

16. Alain J. Martin. Programming in VLSI: From communicating processes to delay-insensitive
circuits. Technical Report Caltech-CS-TR-89-1, California Institute of Technology, 1989.

17. James Alastair McLaughlin, Matthew Pocock, Göksel Mısırlı, Curtis Madsen, and Anil Wipat.
VisBOL: Web-based tools for synthetic biology design visualization. ACS Synthetic Biology,
5(8):874–876, 2016.

18. Jacques Monod. Chance and Necessity: An Essay on the Nature of Philosophy of Modern
Biology. Collins, London, 1972.

19. Jacques Monod and François Jacob. General conclusions: Teleonomic mechanisms in cellular
metabolism, growth, and differentiation. In Cold Spring Harbor Symposia on Quantitative
Biology, volume 26, pages 389–401. Cold Spring Harbor Laboratory Press, 1961.

20. Tae Seok Moon, Chunbo Lou, Alvin Tamsir, Brynne C. Stanton, and Christopher A. Voigt.
Genetic programs constructed from layered logic gates in single cells. Nature, 491:249–253,
2012.

21. Camilo Mora, Derek P. Tittensor, Sina Adl, Alastair G. B. Simpson, and Boris Worm. How
many species are there on Earth and in the ocean? PLoS Biology, 9(8):e1001127, 2011.

22. Tramy Nguyen, Timothy S. Jones, Pedro Fontanarrosa, Jeanet V. Mante, Zach Zundel, Douglas
Densmore, and Chris J. Myers. Design of asynchronous genetic circuits. Proceedings of the
IEEE, 107(7):1356–1368, 2019.

23. Daniel J. Nicholson. Is the cell really amachine? Journal of Theoretical Biology, 477:108–126,
2019.

24. Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya Paralanov,
Elizabeth A. Strychalski, David Ross, Douglas Densmore, and Christopher A. Voigt. Genetic
circuit design automation. Science, 352(6281):aac7341, 2016.

25. Giulia Oliva, Tobias Sahr, and Carmen Buchrieser. The life cycle of L. pneumophila: Cellular
differentiation is linked to virulence and metabolism. Frontiers in Cellular and Infection
Microbiology, 8:3, 2018.

26. Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65(6):386, 1958.

27. Herbert M. Sauro and Kyung Kim. Synthetic biology: It’s an analog world. Nature, 497:572,
2013.

28. Yolanda Schaerli, Magüi Gili, and Mark Isalan. A split intein T7 RNA polymerase for
transcriptional AND-logic. Nucleic Acids Research, 42(19):12322–12328, 2014.

29. John Selberg, Marcella Gomez, and Marco Rolandi. The potential for convergence between
synthetic biology and bioelectronics. Cell Systems, 7(3):213–244, 2018.

30. Brian Cantwell Smith. The foundations of computing. In Matthias Scheutz, editor, Computa-
tionalism: New Directions, pages 23–58. MIT Press, Cambridge, 2002.

31. Victor Sourjik and Ned S.Wingreen. Responding to chemical gradients: Bacterial chemotaxis.
Current Opinion in Cell Biology, 24(2):262–268, 2012.

32. Alexander Spirov, Khalid Fahmy, Martina Schneider, Erich Frei, Markus Noll, and Stefan
Baumgartner. Formation of the bicoid morphogen gradient: An mRNA gradient dictates the
protein gradient. Development, 136(4):605–614, 2009.

33. Jonathan J. Y. Teo, Sung Sik Woo, and Rahul Sarpeshkar. Synthetic biology: A unifying view
and review using analog circuits. IEEE Transactions on Biomedical Circuits and Systems,
9(4):453–474, 2015.

