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Introduction

Grasslands are the most important agro-ecosystems worldwide; they deliver many ecosystem services, ranging from forage supply to soil carbon storage and biodiversity preservation [START_REF] Pilgrim | Interactions among agricultural production and other ecosystem services delivered from European temperate grassland systems[END_REF][START_REF] Gaujour | Factors and processes affecting plant biodiversity in permanent grasslands. A review[END_REF]. However, climate change caused by increased greenhouse gas emissions in the atmosphere may jeopardize the stability and functions of many ecosystems (Intergovernmental Panel on Climate Change, 2014). Reduced precipitation coupled with increased temperatures will lead to more frequent and intense droughts [START_REF] Tubiello | Crop and pasture response to climate change[END_REF][START_REF] Dai | Drought under global warming: a review[END_REF] and severe heat waves [START_REF] Trnka | Agroclimatic conditions in Europe under climate change[END_REF][START_REF] Orlowsky | Global changes in extreme events: regional and seasonal dimension[END_REF][START_REF] Seneviratne | No pause in the increase of hot temperature extremes[END_REF]. The interactions between these combined climatic factors result in complex responses that challenge our current understanding and will affect plant physiological processes in a way that cannot be predicted from single-factor treatments (Albert et al., 2011a;[START_REF] Dieleman | Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature[END_REF][START_REF] Mueller | Impacts of warming and elevated CO 2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time[END_REF]. An important issue is to explore to what extent extreme climatic events (ECEs, as defined by Smith, 2011a) will interact with the predicted rise in CO 2 , in particular, regarding their impact on plant mortality and therefore on overall ecosystem resilience [START_REF] Da | Will rising CO 2 and temperatures exacerbate the vulnerability of trees to drought?[END_REF][START_REF] Niu | Plant growth and mortality under climatic extremes: an overview[END_REF][START_REF] Felton | Integrating plant ecological responses to climate extremes from individual to ecosystem levels[END_REF].

Many studies have explored the role of moderate water deficits on plant water status and carbon uptake under elevated CO 2 concentrations (eCO 2 ) [START_REF] Clark | Physiological and morphological responses to elevated CO 2 and a soil moisture deficit of temperate pasture species growing in an established plant community[END_REF][START_REF] Korner | Biosphere responses to CO 2 enrichment[END_REF][START_REF] Volk | Soil moisture effects determine CO 2 responses of grassland species[END_REF][START_REF] Knapp | Detecting potential regional effects of increased atmospheric CO 2 on growth rates of western juniper[END_REF][START_REF] Morgan | Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO 2[END_REF][START_REF] Grant | Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall[END_REF]. Generally, eCO 2 enhanced plant biomass production and improved water relations under drought [START_REF] Clark | Physiological and morphological responses to elevated CO 2 and a soil moisture deficit of temperate pasture species growing in an established plant community[END_REF][START_REF] Ghannoum | The growth response of C 4 plants to rising atmospheric CO 2 partial pressure: a reassessment[END_REF][START_REF] Robredo | Elevated CO 2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery[END_REF]. In addition, depending on the warming intensity [START_REF] Dieleman | Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature[END_REF], eCO 2 alleviated the drought response in a range of grassland species [START_REF] Naudts | Combined effects of warming and elevated CO 2 on the impact of drought in grassland species[END_REF], and mitigated the impacts of climate extremes on the growth and production of Arabidopsis thaliana [START_REF] Zinta | Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO 2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels[END_REF]. Conversely, the stimulatory effects of eCO 2 on growth and photosynthesis may decline due to increases in temperature stimulating photorespiration [START_REF] Ziska | Increasing growth temperature reduces the stimulatory effect of elevated CO 2 on photosynthesis or biomass in two perennial species[END_REF] or due to water and nitrogen limitations [START_REF] Reich | Plant growth enhancement by elevated CO 2 eliminated by joint water and nitrogen limitation[END_REF]. However, the effects of combined severe climatic extremes and CO 2 concentration on the ability of perennial herbaceous plants to survive and recover from severe stress have been explored relatively little [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF].

The accumulation of water-soluble carbohydrates (WSCs) under eCO 2 may contribute to increases in both drought resistance, that is, the maintenance of leaf growth under moderate water deficit, and also drought survival under severe water deficit [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF][START_REF] Volaire | A unified framework for plant drought adaptive strategies: across scales and disciplines[END_REF]. Under severe drought, once complete leaf senescence is reached, the dehydration tolerance of meristematic tissues of shoots and roots ensures plant survival by maintaining cell integrity through cell membrane stabilization [START_REF] Volaire | Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions[END_REF][START_REF] Zwicke | What functional strategies drive drought survival and recovery of perennial species from upland grassland?[END_REF]. WSCs, particularly fructans (soluble sucrose-derived fructose polymers), contribute to dehydration tolerance [START_REF] Volaire | Growth, carbohydrate reserves and drought survival strategies of contrasting Dactylis glomerata populations in a Mediterranean environment[END_REF][START_REF] Livingston | Fructan and its relationship to abiotic stress tolerance in plants[END_REF] through cellular protection by membrane stabilization [START_REF] Hincha | Fructans from oat and rye: composition and effects on membrane stability during drying[END_REF] and reactive oxygen species (ROS) scavenging [START_REF] Peshev | Towards understanding vacuolar antioxidant mechanisms: a role for fructans?[END_REF]. These WSC reserves also play a role during recovery, since they are hydrolysed to fuel regrowth after rehydration [START_REF] Amiard | Carbohydrate and amino acid composition in phloem sap of Lolium perenne L. before and after defoliation[END_REF]. Under eCO 2 , temperate grassland species generally accumulated more WSCs, but a high variability of responses between species has been reported [START_REF] Casella | Long-term effects of CO 2 enrichment and temperature increase on the carbon balance of a temperate grass sward[END_REF][START_REF] Allard | Nitrogen cycling in grazed pastures at elevated CO 2 : N returns by ruminants[END_REF][START_REF] Dumont | A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and Mediterranean areas[END_REF]. Moreover, climate extremes under eCO 2 also elicited larger increases in the quantities of WSCs including fructans in grasses [START_REF] Abdelgawad | Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO 2 : a comparison of fructan and non-fructan accumulators[END_REF]. Since the protective properties of WSCs differ among compounds, in terms of both membrane stabilization [START_REF] Hincha | Fructans from oat and rye: composition and effects on membrane stability during drying[END_REF] and ROS scavenging [START_REF] Morelli | Fentondependent damage to carbohydrates: free radical scavenging activity of some simple sugars[END_REF], the biochemical composition of the WSC pool should be considered. Indeed, temperature conditions can modify not only the amount of WSCs but also their composition [START_REF] Abeynayake | Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass[END_REF], such as the distribution of fructan polymers [i.e. the relative content of low and high degree of polymerization (DP) fructans].

An experimental approach seems best suited to explore the impacts of combined environmental factors on plant responses [START_REF] Reyer | A plant's perspective of extremes: terrestrial plant responses to changing climatic variability[END_REF]. At the Montpellier (France) Ecotron, eCO 2 was shown to enhance both the resistance and the short-term overall resilience of an upland grassland community submitted to an ECE consisting of a severe edaphic drought and air warming [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF]. Nevertheless, plant responses to eCO 2 are species-specific [START_REF] Reich | Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO 2 and N availability regimes? A field test with 16 grassland species[END_REF][START_REF] Roumet | Genotypic variation in the response of two perennial grass species to elevated carbon dioxide[END_REF]Teyssonneyre et al., 2002b;[START_REF] Maestre | Individual vs. population plastic responses to elevated CO 2 , nutrient availability, and heterogeneity: a microcosm experiment with co-occurring species[END_REF]. Exploring the responses of dominant species to climate extremes will be key for predicting 'winner' and 'loser' species [START_REF] Dukes | Tomorrow's plant communities: different, but how?[END_REF] and therefore future ecosystem dynamics and function [START_REF] Hoover | Resistance and resilience of a grassland ecosystem to climate extremes[END_REF][START_REF] Boeck | Patterns and drivers of biodiversity-stability relationships under climate extremes[END_REF]. Temperature regimes interact with eCO 2 to affect plant physiology and growth according to plant functional groups; for instance, C 3 plants are more responsive than C 4 species [START_REF] Wang | A meta-analysis of plant physiological and growth responses to temperature and elevated CO 2[END_REF]. Water stress and eCO 2 also interact to affect in different ways the growth of grasses that have contrasting drought strategies [START_REF] Fernandez | Do morphological changes mediate plant responses to water stress? A steady-state experiment with two C 4 grasses[END_REF][START_REF] Wullschleger | Plant water relations at elevated CO 2 -implications for water-limited environments[END_REF]. The botanical composition of temperate grasslands was shown to be modified under eCO 2 (Teyssonneyre et al., 2002b), and changes in species abundance could result from differential mortality of different species under ECE [START_REF] Grant | Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall[END_REF]. Overall, in combination with an ECE, eCO 2 may differentially affect species or plant functional groups [START_REF] Morgan | C 4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland[END_REF] and/or have a mitigating effect, particularly on drought survival [START_REF] Volaire | A unified framework for plant drought adaptive strategies: across scales and disciplines[END_REF] and growth recovery after drought, as was shown at the community level [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF].

This study was designed within an experiment conducted at the ecosystem level [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF] to analyse the effect of eCO 2 on the resistance and resilience to an ECE of two coexisting C 3 grass species (Dactylis glomerata and Holcus lanatus). We investigated traits associated with nitrogen, carbon, and water use, at shoot level (biomass), leaf level (water potential, growth, nitrogen content), and surviving leaf meristem level (water status, membrane stability, non-structural carbohydrate metabolism). The chosen species are known to respond positively to eCO 2 , but with higher drought resistance and survival for Dactylis (Teyssonneyre et al., 2002a, b). The extent of the intraspecific variability in response to an ECE and eCO 2 was therefore tested according to the following hypotheses: (i) eCO 2 increases resistance to ECE (leaf growth maintenance during ECE) through higher water and WSC content; (ii) eCO 2 improves survival and biomass recovery and therefore resilience after ECE; and (iii) WSC metabolism and fructan composition in leaf meristems play a central role to support cell protection in the most severe stages of ECE, and contribute to plant resilience.

Materials and methods

Experimental design

The experimental design was previously described by [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF]. The study tested the species' response to future climate scenarios projected for the period of the 2050s [START_REF] Ciais | Europe-wide reduction in primary productivity caused by the heat and drought in 2003[END_REF] For the representative Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020 year 2045, the projected annual means for air temperature and precipitation at Saint-Genès-Champanelle, France, were 10.9 °C and 770 mm (corresponding to +2.3 °C and -33 mm, respectively, compared with the 1990-2009 means). Therefore, the control treatment consisted of warmer and drier climatic conditions than the long-term climatic conditions occurring at Saint-Genès-Champanelle. The atmospheric CO 2 concentration projected for the 2050s under the A2 scenario is 520 ppm compared with the ambient CO 2 concentration (aCO 2 ) of 390 ppm measured at the Mauna Loa Observatory (Hawaii) in 2010.

Forty-eight monoliths (1 m 2 each) of intact soil and their resident plant communities were excavated in June 2009, down to the bedrock at 0.6 m depth, from an extensively managed upland semi-natural grassland site (Redon, 45°43′N, 03°01′E, 800 m a.s.l.) near Saint-Genès-Champanelle in the French Massif Central. The average botanical composition of plant communities was initially dominated by C 3 perennial grasses (60%), legumes (35%), and forbs (5%). The grasses D. glomerata and H. lanatus were present in all monoliths and constituted 37% and 14%, respectively, of the initial above-ground community biomass. The soil in this site is a Cambisol (59.5% sand, 19.2% silt, 21.4% clay, pH H 2 O 5.9).

The excavated monoliths were brought to Clermont-Ferrand INRA research station (45°46′N, 03°08′E, 350 m a.s.l., long-term 1980-2010 mean annual temperature 11.4 °C) for temperature acclimation until September 2009, where they received ambient precipitation and irrigation to maintain soil water content (SWC) near 80% of field capacity. They were then transported to Montpellier, and four monoliths representative of the species composition of the grassland were inserted in each of the 12 Ecotron macrocosms, where they acclimated, at aCO 2 , from April 2010 to early March 2011 to the climatic conditions of the representative year 2045. The Ecotron climate-regulation system tracked the hourly means of air temperature, air humidity, and daily precipitation projected by the model.

From mid-March 2011 to the end of the experiment, six macrocosms randomly selected out of the 12 were subjected to eCO 2 (520 ppm) while the other six were subjected to aCO 2 (390 ppm) (Fig. 1). ECE included a reduction in precipitation by 50% during 4 weeks in midsummer (25 June to 21 July: date D1) followed by 2 weeks (22 July to 4 August: date D2) with no irrigation and a concomitant heat wave (+3.4 °C compared with the 2050s average) (Fig. 1). This increase in air temperature corresponded to 7.1 °C above the 2000-2009 average for the same period, a value above the average of the 14 consecutive hottest days of the exceptional heat wave in summer 2003. This ECE, mimicking the strongest of such events projected by the downscaled ARPEGEv4 model over 2040-2060, was applied to three randomly selected macrocosms out of the six at each CO 2 concentration. After the ECE, from 5 to 31 August, irrigation was progressively increased in the treatment with ECE to obtain the same cumulative precipitation as in the control treatment (Con) referring to the 2050s climatic conditions without ECE. After the ECE and until the end of the experiment on 3 November, the macrocosms subjected to each CO 2 treatment had the same climatic conditions, replicating the downscaled model projections for the representative year 2045. Each of the four experimental treatments (390 Con, 390 ECE, 520 Con, 520 ECE) was replicated three times. For further details on the experimental conditions, see [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF].

Plant community-level measurements

SWC was continuously measured at three soil depths (7, 20, and 50 cm) with TDR probes (IMKO, Ettlingen, Germany) and averaged across soil depths to assess relative SWC (RSWC) at each sampling date. The field capacity of the soil (SWC fc ) was 32.90% and the minimum soil moisture (SWC min ) at the end of the ECE, when all plants were senescent, was 8.16%. RSWC was calculated as the fraction of soil moisture available for plants with this equation: RSWC=(SWC-SWC min )/(SWC fc -SWC min ). The vegetation was cut at 5 cm height on 14 March, 26 April, 9 June, and 3 November, to mimic mown grassland. After harvest, samples of the last three cuts were frozen at -18 °C, then defrosted, sorted by species, and oven-dried at 60 °C for 48 h to determine specific level above-ground biomass. The March cut was excluded from the analyses as it represented biomass production from the previous autumn, before the onset of CO 2 treatment. For each species and each of the four treatments, resilience to ECE was estimated by the biomass resilience index (RESIL), calculated as the ratio of above-ground biomass harvested after the ECE (November cut) to above-ground biomass harvested before the ECE (mean of April and June cuts). A RESIL value of 1 corresponds to full recovery of species biomass. This index was chosen from among others [START_REF] Ingrisch | Towards a comparable quantification of resilience[END_REF] because the biomass data harvested in November integrate ECE resistance and recovery periods. This index allows comparison of the treatments because it is calculated for each replicate macrocosm.

Fig. 1. Experimental design and time course of the experiment. After a 1-year acclimation period, the vegetation was cut at 5 cm height (14 March) and the monoliths were submitted to four climatic scenarios: ambient (aCO 2 : 390 ppm, blue) or elevated (eCO 2 : 520 ppm, red) atmospheric CO 2 concentration, combined with an extreme climatic event (390 ECE and 520 ECE) or without ECE (390 Con and 520 Con). The ECE included a reduction in precipitation by 50% during 4 weeks in midsummer (25 June to 21 July: D1) followed by 2 weeks (22 July to 4 August: D2) with no irrigation and a concomitant heat wave (+3.4 °C compared with the projected 2050s average). Thereafter, the precipitation was gradually increased. The vegetation was cut at 5 cm height again on 26 April, 9 June, and 3 November. Leaf meristematic tissues were sampled at D1 ( 21 July) andD2 (4 August) Carbohydrate metabolism and resilience of grasses | 373

Plant traits

Before the onset of ECE (21 June) to 3 weeks after the ECE (22 September), lamina length was measured twice a week on the fastestgrowing leaves of four tillers per species (D. glomerata and H. lanatus) and per macrocosm to analyse the dynamics of leaf elongation rates. The mean leaf elongation rates measured during the ECE (LER ECE ) and the maximum leaf elongation rates measured during the recovery period (LERr) were analysed. Pre-dawn leaf water potential was measured on three detached green laminae from each species in each monolith on 17 June, 21 July (D1), and 4 August (D2) (Scholander pressure chamber, model 1000, PMS Instrument Company, Corvallis, OR, USA). On the same days, the relative water content (RWC) of these laminae was measured by weighing lamina tissue before and after rehydration overnight at 4 °C and after drying at 80 °C for 24 h.

Leaf and leaf meristem traits

For each species, leaves collected during the cuts on 26 April, 9 June, and 3 November and those used for water potential measurements were oven-dried at 60 °C for 48 h and then ball milled (MM200, Retsch, Germany). Leaf nitrogen content was analysed in the Isotopic platform of INRA Nancy (Isoprime100, IsoPrime, Manchester, UK). At dates D1 and D2, measurements were carried out on the leaf meristematic tissues (three tillers for each macrocosm), which are the organs that survive the longest in perennial grasses. From the fraction containing the lowest 20 mm of the tillers, the enclosed bases of immature leaf meristems were dissected out and split out into two subsamples. One was immediately weighed and then dried at 80 °C for 24 h to determine its water content. The other fresh subsample was used to measure electrolyte leakage [START_REF] Volaire | Effects of drought on water relations, mineral uptake, water-soluble carbohydrates accumulation and survival of 2 contrasting populations of cocksfoot (Dactylis glomerata L.)[END_REF] from the cells (seed analyser G2000, Wavefront Inc., Ann Arbor, MI, USA) and calculate the coefficient of membrane stability (CMS).

For the WSC analysis, on the same dates, three other subsamples of fresh leaf meristems per species and monolith were quickly weighed, dropped into liquid nitrogen and stored at -80 °C before freeze-drying at -100 °C for 48 h. Finely powdered samples (30-50 mg) were extracted in 80% ethanol and purified in mini-columns (Mobicols, MoBITec, Göttingen, Germany) with ion-exchange resins [START_REF] Amiard | Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass[END_REF]. WSCs (mg g -1 ) were analysed by HPLC on a cation exchange column (Sugar-PAK, 300×6.5 mm, Waters Corporation, Milford, MA, USA), eluted at 0.5 ml min -1 and 85 °C with 0.1 mM Ca-EDTA in water, and quantified using a refractive index detector (2410 Differential Refractometer, Waters Corporation, Milford, MA, USA). External standards used to quantify carbohydrates were glucose, fructose, sucrose, and Cichorium intybus inulin (Sigma-Aldrich, MO, USA).

Carbohydrates in the assay mixture were analysed by high-performance anion exchange chromatography and pulsed amperometric detection (HPAEC-PAD ICS-3000, Dionex, CA, USA) equipped with a CarboPac PA1 anion-exchange column (4×250 mm) with elution at 1 ml min -1 with 150 mM NaOH and an increasing concentration of sodium acetate: 0 mM (0-6 min), 50 mM (6-12 min), 100 mM (12-18 min), 175 mM (18-19 min), 250 mM (19-30 min), 425 mM (30-60 min). Fructan type (levan versus inulin) and DP were identified by comparison with standards of commercial fructans (1-kestotriose, 1,1-kestotetraose; Megazyme, Ireland), purified fructans (6-kestotriose; kind gifts of Professor I. Izuka, Hyogo, Japan) and inulin extracted from Taraxacum spp. Comparison of standards with D. glomerata and H. lanatus extracts revealed that both species accumulated β2,6 linked fructan (levans), in accordance with the literature [START_REF] Chatterton | Structures of fructan oligomers in orchardgrass (Dactylis glomerata L.)[END_REF][START_REF] Bonnett | Structural diversity of fructan in relation to the taxonomy of the Poaceae[END_REF]. Owing to the lack of commercially available analytical standards for fructans, absolute quantification of each peak was not possible. Instead, the relative amounts of the same DP were compared for each sample. The peak area of each DP of β2,6 fructan polymer (using the major peak when multiple peaks were present) from DP3 to DP65 was used to calculate the relative area of each peak as a percentage of the sum of DP3 to DP65 peak areas. As the amperometric response declines with increased chain length, it was not possible to compare the relative area of fructans differing in DP. The relative area of each peak (or group of peaks) expressed as a percentage of total peak area was used to analyse the treatment effects for each peak (or range of DPs). For analysis of the correlations between traits across species (Supplementary Table S1 at JXB online), the area percentage was weighted by the total fructan content in each sample.

Statistical analysis

Statistical analyses were carried out with R software (RStudio Team, 2015). Data were transformed when necessary (log, inverse, square, power 4, 5, or 6, boxcox) before analysis of variance (ANOVA) with the 'lmtest' package to conform to the assumptions of normality (Shapiro-Wilk test), homogeneity of variances (Bartlett test), and independence (Durbin-Watson test) or normality (Shapiro-Wilk test) of residues. For data for which the assumptions of normality, homogeneity of variances, and/or normality of residues were not obtained, analyses were carried out with the non-parametric Kruskal-Wallis test. For each trait, the factors species (D. glomerata, H. lanatus), CO 2 concentration (390, 520 ppm), climatic condition (Con, ECE), and date (D1, D2), as well as all of their interactions, were explored. Relationships between cell membrane stability and WSC, and relationships between resilience and plant traits, were analysed with non-parametric Spearman correlation tests.

Results

Responses of above-ground biomass

For both species, above-ground biomass in the spring before the ECE was not affected by the CO 2 concentration and was approximately 2-fold greater for H. lanatus than for D. glomerata (P=0.007; Table 1, Fig. 2A,B). In the autumn after the ECE (recovery period), no difference in biomass production was found between the species; the biomass of both species was slightly higher under eCO 2 (P=0.077), with a significant interaction between species and ECE (P=0.01; Table 1, Fig. 2A,B). As a result, the RESIL for control plants of D. glomerata was around 1.1 (±0.6) in both CO 2 treatments, and equal to 1.4 (±0.7) and 1.7 (±0.8) after the ECE under aCO 2 and eCO 2 , respectively (Fig. 2C). By contrast, the RESIL was close to zero after the ECE for H. lanatus but it was 2-fold higher (0.75±0.47) for the control plants under eCO 2 than under aCO 2 (0.34±0.16) (Fig. 2D).

Responses at leaf level

During the ECE, the mean leaf elongation rate (LER ECE ) was significantly (P<0.0001) affected by all fixed factors (species, CO 2 , ECE) and with significant interactions between factors (Table 1). Across all treatments, LER ECE was 3-to 5-fold higher for D. glomerata than for H. lanatus, for which the variability of data was also greater (Fig. 3A,C). The pattern of LER ECE response was similar for both species, with higher rates under eCO 2 , a decline during the ECE, and a final cessation of elongation for all stress treatments under less than 20% of RSWC. At that time, all leaves were mostly senescent for all plants of the swards under stress [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF]. As the stress progressed, the leaf water potential declined down to -7 MPa in both species (Table 2). The leaf RWC was significantly higher in D. glomerata (P=0.03), although a CO 2 ×ECE interaction was significant for both leaf water potential and RWC (Table 1). Leaf nitrogen content was on average 20% higher in D. glomerata than in H. lanatus, and declined during the ECE for both species, but increased at the lowest RSWC, with a significantly lower nitrogen content in H. lanatus at eCO 2 (Supplementary Fig. S1).

During the recovery period, all treatments and interactions significantly affected the LERr (Table 1). Although some (A,C) and H. lanatus (B, D) under four climatic scenarios: 390 (blue) or 520 (red) ppm atmospheric CO 2 concentration, combined with the ECE or without ECE (Con). Above-ground biomass was the biomass harvested above 5 cm height before the ECE (B ef ; mean of two cuts on 26 April and 9 June) and after the ECE at the end of the recovery period (R ecov ; 3 November cut). For the recovery period, the absence of a bar for H. lanatus grown at 390 ECE coincides with mortality. The resilience index was calculated by the R ecov to B ef above-ground biomass ratio; A value of 1 corresponds to full recovery of species biomass. Mean ±SD are shown (n=3 H. lanatus plants in the macrocosms recovered, none of the plants of this species sampled for LERr measurements recovered after the ECE (Fig. 3D). The LERr of D. glomerata reached that of control plants at aCO 2 for a RSWC greater than 50% (Fig. 3B). In addition, the recovery of D. glomerata was greatly enhanced under eCO 2 , since its LERr reached up to 12 mm day -1 , that is, 2-fold more than the control plants (Fig. 3B). In parallel, leaf nitrogen content more than doubled during the recovery period for both species (Supplementary Fig. S1).
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Responses at leaf meristem level

The water content and the CMS of meristematic tissues were not affected by CO 2 concentration but were significantly reduced in both species by the ECE treatment (Table 3, Fig. 4). In both species, fructans were the main WSCs in leaf meristematic tissues (Fig. 4, Supplementary Fig. S2). Levels of fructans, sucrose, and glucose, but not fructose, significantly differed between the species (Table 3). Overall, fructan content was ~30% higher in D. glomerata (mean 526 mg g DM -1 ) than in H. lanatus (mean 357 mg g DM -1 ), while sucrose content was 3-to 5-fold lower in D. glomerata (mean 16 mg g DM -1 ) than in H. lanatus (mean 53 mg g DM -1 ) (Table 3, Fig. 4). Fructan content was higher under eCO 2 (Table 3, Fig. 4E,F). Moreover, fructan content increased between D1 and D2 in ECE-treated and control plants of D. glomerata (P=0.027; t-test) and H. lanatus (P=0.026; t-test) (Fig. 4E,F). Sucrose content was affected by the ECE, with interactions with CO 2 concentration and date (Table 3, Fig. 4G,H). The ECE increased sucrose content at D2, with a bigger effect under aCO 2 than under eCO 2 (Fig. 4G,H). The analysis of fructan composition (Fig. 5) showed that fructans consisted of a mixture of oligo-and polysaccharides of mainly β(2,6) fructans (levans) in both species. In D. glomerata, fructans up to DP65 were identified, while in H. lanatus the highest detected DP was only 45. The pattern of fructan DP distribution varied between D1 and D2 and differed among species (Figs 6 and 7; Table 3). In D. glomerata, the relative abundance of DP9-24 increased while that of DP40-55 decreased (Fig. 6A,B), so that their ratio increased (Fig. 6C). Conversely, in H. lanatus, the relative abundance of DP9-12 declined while that of DP16-30 increased (Fig. 7A,B), so that their ratio decreased (Fig. 7C). Fructans were divided into three groups corresponding to low, medium, and high DP. For both species, low DP corresponds to the sum of DP3 and DP4. Medium DP corresponds to DP9-24 for D. glomerata and DP9-12 for H. lanatus. High DP corresponds to DP40-55 for D. glomerata and DP18-30 for H. lanatus. Other fructan DPs were not considered since they were not affected by the environmental factors (CO 2 concentration, climatic condition, date) (Figs 6 and7). The relative abundance of the three DP groups of fructans was not affected by eCO 2 (Table 3, Supplementary Fig. S3).

For each species, correlations between CMS and carbohydrate data in leaf meristems measured at D1 and D2 were investigated (Table 4). In both species, CMS was not correlated to fructan content or fructan composition (relative content of low-and high-DP fructans). In H. lanatus, CMS was negatively correlated to relative content of medium-DP fructans. In both species, CMS was lowest when the sucrose content was highest (Fig. 8A,B), and CMS was negatively correlated to sucrose content in H. lanatus (Table 4). CMS was negatively correlated to hexose contents in D. glomerata, and positively correlated to hexose contents in H. lanatus (Table 4). In H. lanatus, CMS was correlated with the low-DP fructans to sucrose ratio and with sucrose content (r=0.70 and -0.65, respectively; Table 4, Fig. 8D).

For the analysis of correlations across species between resilience to the ECE and plant traits, the traits related to medium-and high-DP fructans were not considered, since the DP groups differed according to the species (Figs 6 and7). The best predictors of resilience were the fructans to sucrose ratios, especially the low-DP fructans to sucrose ratio in leaf meristems at D1 and D2 (Supplementary Table S1, Fig. 9).

Discussion

This study explored the response of two coexisting perennial grass species growing in a community of a temperate semi-natural grassland grown under the predicted climatic of drought resistance [START_REF] Craine | Global diversity of drought tolerance and grassland climate-change resilience[END_REF] and also drought survival after severe water deficit [START_REF] Pérez-Ramos | Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species[END_REF][START_REF] Zwicke | What functional strategies drive drought survival and recovery of perennial species from upland grassland?[END_REF]. Contrary to our hypothesis, we found no significant mitigating effect of eCO 2 on the mortality of H. lanatus. However, eCO 2 had a positive effect on both resistance and recovery of D. glomerata. These results are discussed in light of the water, nitrogen, and carbon status response of the plants to the treatments.

Elevated CO 2 increases the drought resistance of H. lanatus and D. glomerata during moderate drought

Both grass species had higher leaf growth and leaf RWC under a combination of eCO 2 and moderate drought during the first stage of ECE. As shown at community level, these positive effects should have slowed leaf senescence and maintained photosynthesis for a longer period during drought than under aCO 2 [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF], leading to the higher content of fructans in leaf meristems. This confirms the importance of improved water relations under eCO 2 , which to some degree sustain photosynthesis in dry periods (Albert et al., 2011b). In addition, as leaf N content was significantly higher in D. glomerata than in H. lanatus, it may be hypothesized that the photosynthetic activity of D. glomerata is higher than that of H. lanatus, especially under eCO 2 (CO 2 ×species interaction: Table 1; [START_REF] Harmens | Does downregulation of photosynthetic capacity by elevated CO 2 depend on N supply in Dactylis glomerata?[END_REF]. Altogether, our results underline and confirm that eCO 2 alleviates the effects of drought stress by conservation of water [START_REF] Morgan | Elevated CO 2 enhances water relations and productivity and affects gas exchange in C 3 and C 4 grasses of the Colorado shortgrass steppe[END_REF][START_REF] Morgan | C 4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland[END_REF][START_REF] Robredo | Elevated CO 2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis[END_REF][START_REF] Holtum | Elevated CO 2 and forest vegetation: more a water issue than a carbon issue?[END_REF], higher carbon fixation, and higher fructan accumulation; thus, eCO 2 contributed to increased drought resistance. Previous studies have shown that the level of WSC accumulation in response to eCO 2 largely depended on N availability in the leaves [START_REF] Dumont | A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and Mediterranean areas[END_REF]. Here, the relatively low WSC accumulation under eCO 2 may indicate that N availability was high enough to sustain leaf growth (Fig. 3), root growth [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF], and root exudation [START_REF] Pendall | Rhizodeposition stimulated by elevated CO 2 in a semiarid grassland[END_REF], which limited storage of WSCs in both species.

H. lanatus and D. glomerata show contrasting ECE survival

Although H. lanatus and D. glomerata are both C 3 perennial grasses co-occurring in temperate grassland with similar rooting depth (Pages and Picon-Cochard, 2014), they showed contrasting survival after the ECE. It was previously shown that although species with different growth habits varied in their responses to CO 2 and nitrogen, there was also substantial variation in responses among species within groups [START_REF] Reich | Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO 2 and N availability regimes? A field test with 16 grassland species[END_REF]. In the present study, almost all H. lanatus plants died, whereas all D. glomerata survived. This stark contrast between a 'loser' and a 'winner' species [START_REF] Dukes | Tomorrow's plant communities: different, but how?[END_REF] strongly affected the botanical composition of the grassland macrocosms following the treatments (data not shown). As the grassland macrocosms had a realistic soil depth of 0.6 m, it can be assumed that both species had a rooting depth able to explore the full soil profile and therefore that their potential water uptake was comparable under drought. It has been suggested that long-term responsiveness to rising CO 2 concentrations differs between slow-and fast-growing plants [START_REF] Ali | A trait-based ecosystem model suggests that long-term responsiveness to rising atmospheric CO 2 concentration is greater in slow-growing than fast-growing plants[END_REF]. Our results also tend to suggest that growth patterns, with a much greater growth potential for D. glomerata than H. lanatus, may be associated with greater ECE survival, irrespective of the treatments. Although above-ground growth of both species was maintained for a similar period in the summer, the water status of leaves and meristems of D. glomerata was higher at some dates, especially under eCO 2 . Altogether, the species with a greater acquisition strategy and higher growth rate (D. glomerata) survived better than the species with a more resource-conservative strategy (H. lanatus). Assuming that this pattern for temperate ecotypes of perennial grasses can be generalized, it differs from the pattern found for Mediterranean ecotypes of perennial grasses such as D. glomerata, for which a reduction or cessation of leaf growth (summer dormancy) are the most efficient strategies to conserve soil water resources and therefore to survive severe drought [START_REF] Volaire | Growth, carbohydrate reserves and drought survival strategies of contrasting Dactylis glomerata populations in a Mediterranean environment[END_REF][START_REF] Volaire | Summer dormancy in perennial temperate grasses[END_REF]. Since the leaves were mostly senescent at the end of the ECE for all species present in the community [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF], plant survival relied on maintenance of the viability of leaf meristems [START_REF] Volaire | Growth, carbohydrate reserves and drought survival strategies of contrasting Dactylis glomerata populations in a Mediterranean environment[END_REF][START_REF] Volaire | Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions[END_REF]. Our study found major differences between the tested species in WSC accumulation in meristematic tissues of leaves. The stress-tolerant species D. glomerata accumulated a larger amount of fructans than the sensitive species H. lanatus, which in turn accumulated a larger amount of sucrose. These differences in WSC level and composition might be associated with the two species' differential survival and recovery after the ECE. In particular, the level of sucrose, which accumulated to a much greater extent in the sensitive species, was highly and negatively correlated to the maintenance of cell stability of the meristems at the end of the ECE, confirming previous results on temperate ecotypes of herbaceous species [START_REF] Zwicke | What functional strategies drive drought survival and recovery of perennial species from upland grassland?[END_REF]. The higher degree of polymerization of fructans in D. glomerata (up to DP65) could contribute to its greater survival compared with H. lanatus, which accumulated smaller fructans (up to DP45). Similar differences have been observed among the Asteraceae family, in which drought-resistant species (Echinops ritro and Vigueira discolor) accumulate fructans of higher DP (30-100) [START_REF] Itaya | Biosynthesis in vitro of high-molecular-mass fructan by cell-free extracts from tuberous roots of Viguiera discolor (Asteraceae)[END_REF][START_REF] Vergauwen | Properties of fructan:fructan 1-fructosyltransferases from chicory and globe thistle, two Asteracean plants storing greatly different types of inulin[END_REF] than species with lower drought resistance (Cichorium intybus, Helianthus tuberosus; [START_REF] Van Den Ende | The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing[END_REF][START_REF] Marx | Hydrolysis of fructan in grasses: A β-(2-6)-linkage specific fructan-β-fructosidase from stubble of Lolium perenne[END_REF]. It has been observed in vitro that highly polymerized fructans (from bacteria) had a greater protective effect against water stress than lower DP fructans (from Cichorium) [START_REF] Demel | Fructans interact strongly with model membranes[END_REF], and that positive synergistic effects on membrane stabilization were obtained with a mixture of DP<7 and DP>7 fructans (from oat or rye) compared with either DP<7 or DP>7 fructans alone [START_REF] Hincha | Fructans from oat and rye: composition and effects on membrane stability during drying[END_REF]. In D. glomerata, the high range of DP (from DP3 to DP65) could lead to a better synergistic effect than in H. lanatus, with its smaller range of DP, and this could partly explain the difference in membrane stability between the two species. Fructans can act on membranes either directly, by inserting into the lipid headgroups [START_REF] Livingston | Fructan and its relationship to abiotic stress tolerance in plants[END_REF], or indirectly, by reducing lipid peroxidation through ROS scavenging [START_REF] Peshev | Towards understanding vacuolar antioxidant mechanisms: a role for fructans?[END_REF]. In D. glomerata, the maintenance of CMS observed under ECE might be due to the accumulation of highly polymerized fructans.

According to current knowledge, levans are synthesized by sucrose:fructan 6-fructosyltransferase (6-SFT) and degraded by fructan 6-exohydrolase (6-FEH) [START_REF] Vijn | Fructan: more than a reserve carbohydrate?[END_REF]. 6-SFT catalyses the transfer of a fructosyl residue from sucrose to sucrose or from sucrose to fructans by forming a β(2,6) fructosyl-fructose linkage. 6-SFT allows both the initiation of levan synthesis and the elongation of the levan chain. In H. lanatus, the relative abundance of the different fructan polymers changed during the ECE, resulting in a more polymerized assemblage. Given that at the same time, total fructan content did not increase, the entry of carbon (in the form of the fructosyl residue from sucrose) into the fructan pool via 6-SFT activity for levan elongation was balanced by an exit of carbon via 6-FEH activity, which catalyses the release of fructose from fructans. This fructan trimming strategy may be associated with the low ECE survival of H. lanatus. In D. glomerata, the total fructan content increased during the ECE and the relative abundance of the different fructan polymers changed, resulting in a more depolymerized assemblage. This might be due to the fact that all newly synthesized fructans were of medium DP or that, concomitantly with fructan synthesis, the pre-existing high-DP fructans were depolymerized. Such a strategy combining fructan trimming and accumulation may have enhanced the ECE survival of D. glomerata. In plant species that accumulate inulin [fructan consisting of linear β(2,1) linked fructosyl units], fructan synthesis requires two enzymes, a sucrose:sucrose 1-fructosyltransferase for initiation and a fructan:fructan 1-fructosyltransferase for elongation [START_REF] Van Den Ende | The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing[END_REF][START_REF] Vijn | Fructan: more than a reserve carbohydrate?[END_REF]. To date, proteins with fructan:fructan 6-fructosyltransferase (6-FFT) activity have not been described in levan-accumulating plant species. If 6-FFT exists in H. lanatus and D. glomerata, the results obtained would be interpreted differently. Indeed, contrary to 6-SFT, which catalyses both the initiation and elongation of fructans, 6-FFT is responsible only for fructan elongation without concomitant entry of carbon into the fructan pool, the fructosyl donor being fructan instead of sucrose. Consequently, changes in the relative abundance of fructans could be supported by the induction of 6-FFT activity in H. lanatus and by the increase of 6-SFT, 6-FFT, and/or 6-FEH activity in D. glomerata. Further research is needed to unravel levan metabolism and its regulation in levan-accumulating grass species.

In addition, the WSC composition was associated with resilience. Indeed, the ratio of low-DP fructans to sucrose present in the leaf meristems during the ECE was the best predictor of resilience. Altogether, the results showed that a fine-tuning of the relative content and composition of WSCs is crucial for ECE survival. As previously shown in wheat [START_REF] Joudi | Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress[END_REF][START_REF] Zhang | A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought[END_REF][START_REF] Hou | Accumulation of water-soluble carbohydrates and gene expression in wheat stems correlates with drought resistance[END_REF] and among carbohydratemetabolizing enzymes, FEHs are key proteins for ECE survival, since they are involved in fructan size adjustment for cell protection during the ECE and fructan mobilization for carbon feeding of growing cells after the ECE. Comparison of a larger inter-and intra-specific range of populations of grasses should allow further exploration of the mechanistic relationships between drought resilience and fructan metabolism.

Elevated CO 2 enhances strong compensatory growth after stress for the species surviving ECE

During the ECE, the overall water use efficiency at the community level was greater under eCO 2 [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF], while leaf extension rate in water-stressed plants of both species were also enhanced, as found previously [START_REF] Casella | Long-term effects of CO 2 enrichment and temperature increase on the carbon balance of a temperate grass sward[END_REF][START_REF] Drake | More efficient plants: a consequence of rising atmospheric CO 2 ?[END_REF]. In our study, and as hypothesized, the most striking result was the enhancement of growth recovery of D. glomerata after the ECE under eCO 2 . Under aCO 2 , no compensatory growth of this species was observed after the ECE. These results contradict previous studies showing compensatory growth after drought in herbaceous species at aCO 2 but not eCO 2 [START_REF] Newton | Interaction of soil moisture and elevated CO 2 on the above-ground growth rate, root length density and gas exchange of turves from temperate pasture[END_REF][START_REF] Clark | Physiological and morphological responses to elevated CO 2 and a soil moisture deficit of temperate pasture species growing in an established plant community[END_REF]. This discrepancy may be due to the different nature and intensity of the stress to which plants were subjected, but also to the duration of acclimation to eCO 2 . Compared with the moderate drought applied in previous studies, the severity of the ECE in the present study resulted in full above-ground senescence of all plants. It was only under eCO 2 that resource use was efficiently enhanced after the ECE. The rapid regrowth of D. glomerata during the recovery period might take advantage of the pool of accumulated WSCs in leaf meristematic tissues together with a putative enhancement of 6-FEH expression allowing the release of fructose through fructan breakdown. In addition, the strong recovery of D. glomerata could also be explained by the capacity of roots to take up nitrogen, as shown at the community level in previous studies [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF][START_REF] Carlsson | Drought stress resistance and resilience of permanent grasslands are shaped by functional group composition and N fertilization[END_REF] and reflected in our study by the high leaf nitrogen content in this species (Supplementary Fig. S1B).

Moreover, this study shows the effects of eCO 2 and extreme stress over an entire growing season, but the long-term impact of the stimulated resilience identified for one species and for the entire plant community [START_REF] Roy | Elevated CO 2 maintains grassland net carbon uptake under a future heat and drought extreme[END_REF] should be tested on a longer-term time scale due to a possible lag effect of ECE on biomass and species composition [START_REF] Lee | Photosynthetic responses of 13 grassland species across 11 years of free-air CO 2 enrichment is modest, consistent and independent of N supply[END_REF][START_REF] Zwicke | Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies[END_REF].

Although the ability of species to survive drastic climate change was claimed to be generally greater than hitherto recognized [START_REF] Hof | The benefits of climate change mitigation in integrated assessment models: the role of the carbon cycle and climate component[END_REF], our results also highlight a strong inter-specific variability that should be further explored experimentally and taken into account in models. D. glomerata, although present at low abundance, responded in the same way as the whole plant community in the samples, whereas H. lanatus tended to disappear after the extreme climatic stress, hence modifying the overall species abundance, with potential long-term impacts on grassland properties linked to ecosystem 
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  values are shown when <0.05. NS, Not significant. Three periods are considered: before ECE, during ECE, and during recovery after ECE (see Fig. 1)

Fig. 2 .

 2 Fig.2. Above-ground biomass (A, B) and resilience index (C, D) of two perennial grass species, D. glomerata (A, C) and H. lanatus (B, D) under four climatic scenarios: 390 (blue) or 520 (red) ppm atmospheric CO 2 concentration, combined with the ECE or without ECE (Con). Above-ground biomass was the biomass harvested above 5 cm height before the ECE (B ef ; mean of two cuts on 26 April and 9 June) and after the ECE at the end of the recovery period (R ecov ; 3 November cut). For the recovery period, the absence of a bar for H. lanatus grown at 390 ECE coincides with mortality. The resilience index was calculated by the R ecov to B ef above-ground biomass ratio; A value of 1 corresponds to full recovery of species biomass. Mean ±SD are shown (n=3). Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

Fig. 3 .

 3 Fig. 3. Leaf elongation rate during the ECE (A, C) and during the recovery period after the ECE (B, D) as a function of the relative soil water content (RSWC) of two perennial grass species, D. glomerata (A, B) and H. lanatus (C, D). Blue and red symbols correspond to 390 ppm and 520 ppm atmospheric CO 2 concentration, respectively. Squares correspond to control treatments (390 Con and 520 Con), for which only mean values of the three periods are shown. Blue triangles and dotted blue lines correspond to ECE treatment at 390 ppm CO 2 . Red triangles and solid red lines correspond to ECE treatment at 520 ppm CO 2. Mean ±SD are shown (n=3). For 390 Con and 520 Con, horizontal (RSWC) and vertical (LER) SD are shown.

Fig. 4 .

 4 Fig. 4. Water content (A, B), cell membrane stability (C, D), fructan content (E, F), and sucrose content (G, H) in leaf meristems of two perennial grass species, D. glomerata (A, C, E, G) and H. lanatus (B, D, F, H) under four climatic scenarios: 390 (blue) or 520 (red) ppm atmospheric CO 2 concentration, combined with the ECE treatment (ECE) or without ECE (Con). Leaf meristematic tissues of the two species were sampled at D1 (21 July) and D2 (4 August). Mean ±SD are shown (n=3). Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

Fig. 5 .

 5 Fig. 5. Distribution of the fructans according to their degree of polymerization (DP). HPAEC-PAD chromatogram profiles of water-soluble carbohydrates in leaf meristems of two perennial grass species, D. glomerata (A) and H. lanatus (B). DP for levans [β(2,6) linked fructans] are indicated above the corresponding peak. Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

Fig. 6 .

 6 Fig. 6. Relative abundance of fructans based on their degree of polymerization (DP) (A, B) and ratio of medium-to high-DP fructans (C) in leaf meristems of D. glomerata under four climatic scenarios: 390 (A) or 520 (B) ppm atmospheric CO 2 concentration combined with the ECE treatment (ECE) or without ECE (Con). The dashed boxes include the two groups of fructans with medium and high DP that were the most altered by the treatments. Leaf meristematic tissues were sampled at D1 (21 July) and D2 (4 August). Mean ±SD are shown (n=3). Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020
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 7 Fig. 7. Relative abundance of fructans based on their degree of polymerization (DP) (A, B) and ratio of medium-to high-DP fructans (C) in leaf meristems of H. lanatus under four climatic scenarios: 390 (A) or 520 (B) ppm atmospheric CO 2 concentration combined with the ECE treatment (ECE) or without ECE (Con). The dashed boxes include the two groups of fructans with medium and high DP that were the most altered by the treatments. Leaf meristematic tissues were sampled at D1 (21 July) and D2 (4 August). Mean and ±SD are shown (n=3). Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

Fig. 8 .

 8 Fig. 8. Relationship between cell membrane stability and sucrose content (A, B) or the low-DP fructans to sucrose ratio (C, D) in D. glomerata (A, C) and H. lanatus (B, D). Leaf meristematic tissues of the two species were sampled at D1 (21 July) and D2 (4 August). Dashed lines indicate a linear relationship (in B) or a logarithmic relationship (in D) for a significant Spearman correlation.

Fig. 9 .

 9 Fig. 9. Relationship between the resilience index of above-ground biomass of D. glomerata and H. lanatus and the ratio of low-DP fructans to sucrose level in leaf meristems measured at D1 (21 July). The dashed line indicates a logarithmic relationship for a significant Spearman correlation (n=2). Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

  

Table 1 .

 1 Effect of species (D. glomerata, H. lanatus), CO 2 concentration(390, 520 ppm), climatic condition (Clim)(Con, ECE), date (D1, D2) and their interactions, based on ANOVA, on above-ground biomass (BIOM), resilience index (RESIL), mean leaf elongation rate during ECE (LER ECE ), maximum leaf elongation rate during the recovery period (LERr), leaf pre-dawn water potential (POT), leaf relative water content (RWC), and leaf nitrogen content(LNC) 

	Period	Variable Species CO 2	Clim	Species×	Species×	CO 2 ×	Species×	Date	Date×	Date×	Date×
						CO 2	Clim	Clim	CO 2 ×Clim		Species	CO 2	Clim
	Before	BIOM	0.007	NS		NS							
	ECE												
	During	LER ECE	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0037	NS				
	ECE	POT	<0.0001	NS	<0.0001	NS	<0.0001	0.0188	NS	<0.0001	NS	NS	<0.0001
		RWC	0.03	NS	<0.0001	NS	NS	0.019	NS	<0.0001	NS	0.006	<0.0001
		LNC	<0.0001	<0.0001	NS	0.032	NS	NS	NS	NS	NS	NS	NS
	Recovery	LERr	<0.0001	<0.0001	<0.0001	<0.0002	<0.0001	0.0042	<0.0001				
	after	LNC	0.0101	0.0100	<0.0001	NS	NS	NS	NS				
	ECE	BIOM	NS	0.077	NS	NS	0.010	NS	NS				
		RESIL	0.0047	NS	NS	NS	NS	NS	NS				

  ). Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

Table 2 .

 2 Pre-dawn leaf water potential and lamina relative water content (RWC) of D. glomerata and H. lanatus under four climatic scenarios Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

		390 ppm				520 ppm			
		Control	ECE			Control	ECE		
		3 dates	Before ECE	D1	D2	3 dates	Before ECE	D1	D2
	D. glomerata								
	Leaf water potential (-MPa)	0.9±0.3	1.1±0.3	3.3±0.9	6.7±0.6	0.9±0.2	0.9±0.3	3.1±0.2	7±0
	Lamina RWC (%)	90.9±3.4	80.2±2.7	53.5±6.1	38.2±0.3	84.1±8.8	84.3±1.7	62.3±13.4	39.7±6.7
	H. lanatus								
	Leaf water potential (-MPa)	1.1±0.3	1.3±0.02	3.6±0.6	7.00±0	1.2±0.1	1.4±0.4	2±0.1	7±0
	Lamina RWC (%)	84.3±7.4	81.9±5.3	65.2±7.3	10.8±5.9	83.8±5.4	79.8±5.0	65.7±16.7	43.4±18.9
	Climatic scenarios were two atmospheric CO 2 concentrations (390, 520 ppm) with or without an ECE at three dates (before ECE, 17 June; during ECE,
	D1; end of ECE, D2; see Fig. 1). For the control treatment, average values of the three dates are shown. Data are presented as mean ±SD (n=3)

Table 3 .

 3 Effect of species, CO 2 concentration(390, 520 ppm), climatic condition (Clim)(Con, ECE), date (D1, D2), and their interactions (based on ANOVA) on water content, cell membrane stability (CMS), soluble carbohydrate content, total fructans:sucrose ratio, and low DP:sucrose ratio in leaf meristems of D. glomerata and H. lanatus For medium and high DP composition, medium DP:sucrose, high DP:sucrose and fructans:fructans ratios, the effect of species was not relevant (NR) since groups of medium and high DP were not similar in the two species. For the ratios of low DP:sucrose; low DP:medium DP, and medium DP:high DP, the effects of CO 2 , Clim, and date were analysed independently by non-parametric Kruskal-Wallis tests. P values are shown when <0.05. NS, Nonsignificant effect. -, Conditions for analysis not met. Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

	Variable		Species CO 2 Clim	Species×	Species×	CO 2 ×	Species×	Date	Date×	Date×	Date×
						CO 2	Clim	Clim	CO 2 xClim		Spe-	CO 2	Clim
											cies		
		Water content	0.004	NS	<0.001 NS	NS	0.050 NS	<0.001 NS	NS	<0.001
		CMS	NS	NS	<0.001 NS	0.009	NS	NS	0.003 NS	NS	<0.001
	Soluble	Fructans	<0.001	0.042 NS	NS	NS	NS	NS	<0.001 NS	NS	NS
	carbohydrate	Sucrose	<0.001	NS	<0.001 NS	NS	0.038 NS	NS	NS	NS	<0.001
	content (mg g DM -1 )	Glucose	0.027	NS	NS	NS	<0.001	NS	NS	0.004 NS	NS	NS
		Fructose	NS	NS	NS	NS	0.004	NS	NS	<0.001 NS	NS	NS
	Fructan composition	Low DP	<0.001	NS	NS	NS	0.004	NS	NS	NS	NS	0.018	NS
	(relative content, %)	Medium DP	NR	NS	NS	NR	NR	NS	NR	<0.001 NR	NS	NS
		High DP	NR	NS	NS	NR	NR	NS	NR	0.012 NR	NS	NS
	Fructans:sucrose	Total fructans:sucrose <0.001	NS	<0.001 NS	NS	NS	NS	NS	NS	NS	<0.001
	ratios	Low DP:sucrose	0.001	NS	0.002	-	-	-	-	NS	-	-	-
		Medium DP:sucrose	NR	NS	<0.001 NR	NR	NS	NR	NS	NR	NS	<0.001
		High DP:sucrose	NR	NS	NS	NR	NR	NS	NR	NS	NR	NS	0.004
	Fructans:fructans	Low DP:Medium DP	NR	NS	NS	NR	NR	-	NR	NS	NR	-	-
	ratios	Low DP:High DP	NR	NS	NS	NR	NR	NS	NR	0.0037 NR	0.019	NS
		Medium DP:High DP NR	NS	NS	NR	NR	-	NR	NS	NR	-	-

conditions of the 2050s, subjected or not subjected to an ECE including extreme drought and a heat wave, under ambient or elevated CO 2 concentrations. The resistance during the ECE and recovery after the ECE were high for D. glomerata and lower for H. lanatus. These results confirm that most native grasslands are likely to contain plants with a high diversity

Table 4 .

 4 Spearman correlation coefficients of soluble carbohydrate traits against cell membrane stability (CMS) measured in leaf meristems of D. glomerata and H. lanatus at D1 and D2 (n=24 for each species) P<0.05, **P<0.01, *** P<0.001; high significant Spearman correlations (P<0.001) are in bold. NS, Not significant. Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020

	Plant traits		Correlation with CMS
			D. glomerata	H. lanatus
	Soluble carbohydrate	Fructans	-0.34 NS	0.27 NS
	content (mg g DM -1 )	Sucrose	-0.33 NS	-0.65***
		Glucose	-0.56**	0.56**
		Fructose	-0.49*	0.46*
	Fructan composition	Low DP	0.01 NS	0.31 NS
	(relative content, %)	Medium DP	-0.04 NS	-0.42*
		High DP	0.05 NS	0.19 NS
	Fructans:sucrose ratios	Total	0.11 NS	0.64***
		fructans:sucrose		
		Low DP:sucrose	0.36 NS	0.70***
		Medium	0.37 NS	-0.64***
		DP:sucrose		
		High DP:sucrose	0.34 NS	0.57**
	Fructans:fructans ratios	Low DP:Medium	0.01 NS	0.54**
		DP		
		Low DP:High DP	0.13 NS	0.17 NS
		Medium DP:High	-0.03 NS	-0.27 NS
		DP		

*

Downloaded from https://academic.oup.com/jxb/article-abstract/71/1/370/5574621 by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 22 April 2020
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services. Our results, showing strong effects of plant carbon, nitrogen, and water status, cast a light on the crucial and timely question of the mechanisms underlying plant resilience under extreme stress (Smith, 2011b;[START_REF] Nimmo | Vive la résistance: reviving resistance for 21st century conservation[END_REF].
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Table S1. Correlations between plant traits and resilience. Fig. S1. Leaf nitrogen content in two grasses during and after an extreme climatic event.

Fig. S2. Monosaccharide contents in grass meristems during an extreme climatic event.

Fig. S3. Relative abundance of fructans in grass meristems during an extreme climatic event.