
HAL Id: hal-02553534
https://hal.inrae.fr/hal-02553534

Submitted on 14 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Economical optimization of a breeding scheme by
selective phenotyping of the calibration set in a

multi-trait context: application to bread making quality
S. Ben-Sadoun, Renaud Rincent, J. Auzanneau, François-Xavier Oury, B.
Rolland, E. Heumez, Catherine Ravel, Gilles Charmet, Sophie Bouchet

To cite this version:
S. Ben-Sadoun, Renaud Rincent, J. Auzanneau, François-Xavier Oury, B. Rolland, et al.. Economical
optimization of a breeding scheme by selective phenotyping of the calibration set in a multi-trait
context: application to bread making quality. TAG Theoretical and Applied Genetics, 2020, 133 (7),
pp.2197-2212. �10.1007/s00122-020-03590-4�. �hal-02553534�

https://hal.inrae.fr/hal-02553534
https://hal.archives-ouvertes.fr


1 

 

Economical optimization of a breeding scheme by selective 

phenotyping of the calibration set in a multi-trait context: 

application to bread making quality  

 

 

S Ben-Sadoun1, R Rincent1, J Auzanneau2, FX Oury1, B Rolland3, E Heumez4, C Ravel1, G Charmet1, S Bouchet1 

 

 

1 INRAE- UCA UMR1095, Genetics Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu 63000 

Clermont-Ferrand - France 

2 Agri-Obtentions, Ferme de Gauvilliers 78660 Orsonville - France 

3 INRAE – Agrocampus Ouest Rennes- Université Rennes 1 UMR 1349 IGEPP BP35327, 35653 Le Rheu Cedex, 

France 

4 INRAE UE Lille, 2 chaussée Brunehaut, Estrées-Mons, BP 50136, 80203 Peronne Cedex, France  

 

Corresponding author:  

Sophie Bouchet 

INRAE-UCA UMR1095, Genetics Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu 63000 

Clermont-Ferrand – France 

sophie.bouchet@inra.fr 

ORCID: 0000-0001-5868-3359 

 

 

  

mailto:sophie.bouchet@inra.fr


2 

 

Abstract 

 

Key message Trait-assisted genomic prediction approach is a way to improve genetic gain by cost unit, by 

reducing budget allocated to phenotyping or by increasing the program’s size for the same budget. 

 

This study compares different strategies of genomic prediction to optimize resource allocation in breeding schemes 

by using information from cheaper correlated traits to predict a more expensive trait of interest. We used bread 

wheat baking score (BMS) calculated for French registration as a case study. To conduct this project, 398 lines 

from a public breeding program were genotyped and phenotyped for BMS and correlated traits in 11 locations in 

France between 2000 and 2016. 

Single trait (ST), multi-trait (MT) and trait-assisted (TA) strategies were compared in terms of predictive ability 

and cost. In MT and TA strategies, information from dough strength (W), a cheaper trait correlated to BMS (r = 

0.45), was evaluated in the training population or in both the training and the validation sets, respectively. TA 

models allowed to reduce the budget allocated to phenotyping by up to 65% while maintaining the predictive 

ability of BMS. TA models also improved the predictive ability of BMS compared to ST models for a fixed budget 

(maximum gain: +0.14 in cross-validation and +0.21 in forward prediction). 

We also demonstrated that the budget can be further reduced by approximately one fourth while maintaining the 

same predictive ability by reducing the number of phenotypic records to estimate BMS adjusted means. In addition, 

we showed that the choice of the lines to be phenotyped can be optimized to minimize cost or maximize predictive 

ability. To do so, we extended the mean of the generalized coefficient of determination (CDmean) criterion to the 

multi-trait context (CDmulti).  

 

 

Key words  

Multi-trait selection. Trait-assisted selection. Selective phenotyping. Resource allocation optimization. Wheat 

baking quality. Coefficient of determination (CD)  
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Introduction 

 

 

Thanks to exponential genotyping cost decrease, computing and data storage capacities improvement, 

methodological and statistical developments, genomic selection is becoming an essential tool to optimize breeding 

efficiency by predicting the genetic value of candidates for complex traits using molecular marker information 

(Whittaker et al. 2000; Meuwissen et al. 2001). The use of genomic predictions at key steps of a breeding program 

can improve genetic gain per unit of time and cost, by skipping some field evaluation steps or optimizing the 

experimental design, i.e. minimizing the number of lines or replicates evaluated in one environment (Heslot et al. 

2017). 

To optimize phenotyping cost, we can also take advantage of correlated (secondary) traits that are easier or cheaper 

to measure, or can be obtained at an earlier stage. It is possible to predict correlated traits simultaneously using 

multivariate best linear unbiased prediction (BLUP; Henderson and Quaas 1976). Multi-trait genomic prediction 

(MT) models benefit from information contained in both genetic correlation between traits and genetic relationship 

among individuals (Calus and Veerkamp 2011). Two strategies are possible: 1) either the training population is 

genotyped and phenotyped for both traits and the candidate population is genotyped but not phenotyped for any 

of the traits, or 2) the candidates can be partly phenotyped for the trait of interest or the secondary trait. The latter 

strategy is called trait-assisted genomic selection (TA) (Fernandes et al. 2018). Benefits of MT models over single-

trait genomic prediction (ST) models were reported using simulated and empirical data (Calus and Veerkamp 

2011; Jia and Jannink 2012; Hayashi and Iwata 2013; Guo et al. 2014). As for single trait prediction, under a major 

QTL genetic architecture, Jia and Jannink (2012) found that Bayesian multivariate models (BayesA or BayesCπ) 

performed better than multi-trait GBLUP model. But for traits with polygenic genetic architecture, multi-trait 

GBLUP model was equal to the Bayesian multivariate models. MT models can however suffer from a high 

computational demand, time and some convergence problems (Michel et al. 2018). Obviously, genetic correlation 

between traits is a key factor determining the MT advantage over ST methods (Calus and Veerkamp 2011; Jia and 

Jannink 2012; Hayashi and Iwata 2013; Guo et al. 2014). Although MT models improve the predictive ability 

when the targeted trait has a low heritability and the secondary trait has higher heritability, the advantage of MT 

models to predict high heritability traits is low (Jia and Jannink 2012; Hayashi and Iwata 2013; Guo et al. 2014). 

Other factors also affect the prediction accuracy, including the size and the composition of the training set. 

Assuming that the number of markers is sufficient, the accuracy of the calibration model strongly depends on 

congruency between the allelic composition represented in the training population to estimate marker effects, and 

the allelic composition of the candidates whose performance is to be predicted (Habier et al. 2007).  When the 

prediction uses unrelated populations to train the prediction equations, prediction accuracy actually becomes 

negligible (Crossa et al. 2014). Methods based on minimizing the mean of the prediction error variance (PEVmean; 

Rincent et al. 2012; Akdemir et al. 2015; Isidro et al. 2015; Sarinelli et al. 2019) or maximizing the mean of the 

generalized coefficient of determination (CDmean) of the estimated contrast between candidates and the mean of 

the panel were proposed to optimize the sampling of key individuals to be phenotyped in unstructured (Rincent et 

al. 2012) and in structured multi-familial populations (Rincent et al. 2017). In any case, accurate predictions will 

not be obtained until a large enough pool of individuals that is relevant to the candidates is genotyped and 

phenotyped with a sufficient precision.  
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In bread wheat breeding programs, baking tests or dough rheology measurements are part of official variety 

evaluation for registration in many countries. Improving baking quality is a key aspect of wheat improvement but 

criteria may be specific to countries and targeted markets. In France, the most important criterion for baking quality 

is a normalized (NF V03-716) bread-making score (BMS). It is used to classify registered varieties into end-use 

quality classes. Varieties presenting high BMS scores are reserved for French baking; they must yield at least 2% 

higher than reference varieties in registration trials. Varieties with intermediate BMS scores are mainly meant to 

be exported or used in mixed flours and must yield 4% higher than reference varieties. Varieties with lower BMS 

can only be used as feed or fuel and must yield 7% more than reference varieties. This BMS score is a complex 

quantitative trait that integrates several physical measurements of dough and loaf. Its assessment requires a large 

amount of grains and flour which are not available in the first generations of the breeding program, i.e. in row-

nursery or small plots. In addition, BMS evaluation is time-consuming and quite expensive. Therefore, this trait is 

only evaluated at the very last steps of wheat breeding programs after the number of candidate lines was largely 

reduced. In French breeding programs, BMS is often estimated at earlier stages using less expensive traits such as 

the Chopin alveograph parameters which describe the dough rheological characteristics. Dough strength (W), in 

particular has a correlation of approximately 0.4 to BMS (Oury et al. 2010).  

Furthermore, dough strength was shown to be itself influenced by high-molecular-weight glutenin subunits 

(HMW-GS; reviewed by Shewry 2009) that are cheaper to type and necessitate just a few grains. HMW-GS are 

encoded by the Glu-1 loci, named Glu-A1, Glu-B1 and Glu-D1, located on the long arm of the homoeologous 

chromosomes of group 1 (Payne 1987). Each locus comprises the two tightly linked genes Glu-1-1 and Glu-1-2. 

To predict the degree of elasticity or tenacity of the dough of candidates to selection, HMW-GS used to be typed 

by sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of grain proteins. Several attempts 

were made to derive molecular markers from glutenin DNA sequences (reviewed by Liu et al. 2012) because they 

are cheaper and easier to implement routinely. Ravel et al (2020) recently developed KASP markers that predict 

the rheological properties of the dough slightly better than SDS-PAGE.    

Previous studies concerning multi-trait genomic predictions of baking quality related parameters such as dough 

rheological traits (Hayes et al. 2017; Michel et al. 2018; Lado et al. 2018) did not focus on BMS. In addition, none 

of these approaches tested the economic gain achievable with MT and TA models.  

In this study, we demonstrate how to decrease the cost of breeding an expensive trait by using the information of 

a cheap correlated trait. To do so, we used genomic prediction of BMS as a case study. We evaluated different 

strategies in terms of predictive ability and cost. We compared ST models, univariate genomic prediction models 

with molecular markers associated with HMW-GSs as fixed effects (ST-glu), MT and TA models using dough 

strength (W) as a correlated trait. Only individuals of the training set were phenotyped for the trait of interest in 

both MT and TA models. In MT model, only the individuals of the training set were phenotyped for the correlated 

trait W. In TA model, the training set and a variable proportion of the validation set were phenotyped for the 

correlated trait. In addition, we adapted the CDmean criterion (Rincent et al. 2012) to a multi-trait context 

(CDmulti) in order to determine which individuals should be phenotyped for the secondary and the trait of interest 

to optimize the predictive ability of the trait of interest.  
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Materials and Methods 

 

Plant material  

 

We analyzed a breeding population of F8-F9 winter-type bread wheat lines developed by the Institut National de 

la Recherche en Agriculture, Alimentation et Environnement (INRAE) and its subsidiary company Agri-

Obtentions. Each of the 1912 lines were evaluated between 2000 and 2016. Each year, the lines were phenotyped 

in 7 to 9 locations in France (Supplementary Table S1). In each environment, some registered varieties were used 

as controls, (6.8 control lines on average for trials in which BMS was phenotyped). Each control line has been 

evaluated for BMS for several consecutive years, up to 8 years for some of them. Those controls are essential to 

estimate adjusted means in further analyses. Crop management methods corresponded to high yield objectives 

(optimized pesticide, fungicide and nitrogen amount) to avoid confusing effects of disease or N-supply limitation. 

 

 

Genotyping data 

 

In total, 814 lines were genotyped using a 280K SNP array (Rimbert et al. 2018). As predictive ability was the 

same using a subset of 35K markers that minimize Linkage Desequilibrum (LD; result not shown), the 57 breeding 

lines that were produced after 2015 were genotyped with a 35K SNP array included in the 280K array.  Finally, 

21210 markers with minor allele frequency superior to 0.05 and less than 10% of missing data were kept for 

analyses. Missing data were imputed using a kinship-based EM algorithm (Poland et al. 2012), based on the 

assumption that marker genotypes follow a multivariate normal (MVN) distribution. A genomic relationship 

matrix K was computed using Endelman and Jannink equation (2012): 

 

K= 
𝑊𝑊𝑇

2 ∑(𝑝𝑘−1)𝑝𝑘
   (1) 

 

where W is a centered N × M marker matrix whose i-th row and k-th column is wik = xik + 1 − 2pk with Xik the 

genotype of the i-th individual for the k-th marker as {− 1,0,1} and pk the allele frequency at the k-th marker. These 

algorithms were implemented in the A.mat function of the rrBLUP package (Endelman 2011). 

Additionally, a subset of 200 lines was genotyped at 11 DNA-based KASP markers derived from the HMW-GS 

loci Glu-A1, Glu-B1, and Glu-D1 (Ravel et al. 2020). We calculated Pearson’s correlation between each of the 

KASP marker and the 21210 SNP markers. We identified 18 SNP markers with correlation higher than 0.9 with 

at least one of the HMW-GS markers. In the model using those KASP markers as fixed effects, these 18 SNP 

markers were filtered out to calculate the kinship matrix. 

The datasets with the genotyping data are available in the INRAE Dataverse repository (https://data.inra.fr/). They 

can be accessed with the following link https://doi.org/10.15454/AABGO7. 

 

https://data.inra.fr/
https://doi.org/10.15454/AABGO7
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Phenotypic data 

 

In total, 871 lines were both genotyped and evaluated for grain yield in 9.9 environments on average. Although 

yield, height, heading date and protein were recorded for all the F8 lines, baking and rheological traits were only 

available in half of the lines that were selected for F9 evaluation. Protein content was estimated by Near-Infrared-

Reflectance. This test was realized according to American Association of Cereal Chemists (AACC 39-10) method, 

using a wholemeal flour produced on a Cyclotec mill with a 0.8 mm sieve. Chopin alveograph (method AACC 

54-30A) was carried out on flour obtained with a Chopin mill or a Brabender Senior mill (the extraction rate of 

these two mills is about 70%). The dough strength (W), the tenacity (P) and the extensibility (L) of the dough were 

evaluated with a Chopin Alveolink apparatus (Tripette & Renaud, 92396 Villeneuve-la-Garenne, France). The 

bread-baking tests were realized according to the AFNOR method NF V03-716 (also called BIPEA test). This 

baking test gives a measure of loaf volume, a score for dough (out of 100 units), a score for crust (out of 100 units) 

and a score for crumb (out of 100 units); the sum of these 3 scores giving the final BIPEA score (out of 300 units). 

This final BIPEA score corresponds to the Bread Making Score (BMS). In total, 398 lines were both genotyped 

using an array and phenotyped for BIPEA BMS. 

The dataset with the phenotypic data is available in the INRAE Dataverse repository (https://data.inra.fr/). It can 

be accessed with the following link https://doi.org/10.15454/AABGO7. 

 

 

Statistical analysis of phenotypic data 

 

Adjusted means of the lines were estimated using Best Linear Unbiased Estimations (BLUEs) in ASReml-R library 

(Butler et al. 2009) using the following model for each trait: 

 

yijk =  μ +  gi + ej + gi × ej + εijk     (2) 

 

where yijk is the phenotypic value of the i-th genotype in the j-th environment (combination of year and site) and 

for the k-th repetition, μ is the overall mean, gi is the fixed effect of the i-th genotype, e j is the effect of j-th 

environment, gi × ej is the effect of the interaction between the i-th genotype and the j-th environment, and εijk is 

the residual error for the i-th genotype in the j-th environment and for the k-th repetition. All effects except the 

genotype effect were considered as random. Correlation between traits was calculated as the Pearson’s correlation 

between BLUEs. Note however that traits linked to baking quality were measured only once in each environment. 

Therefore, the gi × ej interaction was not included in the model for these traits. 

 

The estimation of adjusted means can affect the predictive ability of the genomic prediction models. Therefore, 

we evaluated the impact of the number of phenotypic records used to calculate BLUEs on the predictive ability. 

We especially investigated the importance of control lines that were phenotyped in all locations during several 

https://data.inra.fr/
https://doi.org/10.15454/AABGO7
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successive years in the estimation of BLUEs and the predictive ability, by comparing two different cases of BLUE 

calculations: 

1) In the first case, all phenotypic records for control lines and one to four phenotypic records (in four 

different trials) for the other lines were used to estimate BLUEs for BMS and W; 

2) In the second case, one to four phenotypic records for each line (the control and the other lines) were used 

to estimate BLUEs for BMS and W. 

For each scenario, the phenotypic records were randomly sampled 10 times. 

 

The variance components of the traits were assessed with ASReml-R using the model (2) but in this case all the 

effects (including genotypic effects) were considered as random. 

 

Repeatability was estimated at the plot and design levels as: 

 

plot repeatability = 
𝜎𝐺

2

𝜎𝐺
2+𝜎𝐺×𝐸

2 +𝜎ε
2       (3) 

 

 

design repeatability = 
𝜎𝐺

2

𝜎𝐺
2+𝜎𝐺×𝐸

2 𝑡⁄ +𝜎𝜀
2 (𝑡×𝑟)⁄

        (4) 

 

Where σ2
G; σ2

G×E and σ2
ε are the genotype, genotype × environment and residual variances respectively, t and r 

are the average number of trials per genotype and replicates in each trial per genotype, respectively. The variance 

components and repeatability were estimated using lines which were both phenotyped and genotyped. For the 

traits linked to rheological quality, σ2
G×E term was removed from equations (3) and (4). 

 

 

Genomic prediction models 

 

 

Single-trait GBLUP models 

 

First, a single-trait GBLUP model was used to obtain genomic predictions for different traits: 

 

y = Xβ + Za + ε       (5) 

 

Where y is a N × 1 vector of BLUEs obtained in the first step with N the number of lines; β is the vector of fixed 

effects; X is the corresponding design matrix for the fixed effect; Z is the design matrix for the random effects; a 

is the N x 1 vector of lines random effects with the additive genetic variance σ2
a and a~N(0,Kσ2

a); and ε is the 

residual error with the residual variance σ2
ε and ε~N(0,Iσ2

ε). 
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Three types of single-trait models were performed. The first one was a simple ST model in which the vector of 

fixed effects β modelled the grand mean. The second model, called ST-glu, included the 11 HMW-GS markers as 

fixed effect. The third model (ST-glu_stepwise) included as fixed effect the HMW-GS markers that explained a 

significant genetic variance. They were selected using a stepwise regression linear model implemented in the 

stepAIC function from the MASS package (Venables and Ripley 2002). In this model, no line random effect was 

included. 

 

 

Multi-trait GBLUP models 

 

The same genomic relationship matrix K was used for fitting the multi-trait model: 

 

y = Xβ + Za + ε       (6) 

 

Where y corresponds to an N × 2 vector of BLUEs for two traits, BMS which is the trait of interest and W which 

is a correlated trait less expensive to measure, β is the vector of fixed effects (the grand mean in this study); X is 

the corresponding design matrix for the fixed effect; a is the vector of N × 2 line effects with the corresponding 

random effect design matrix Z and a∼MVN (0, Σa⊗K) with the variance–covariance matrix Σa of the form: 

 

(
𝜎𝑎1

2 𝜎𝑎12

𝜎𝑎12 𝜎𝑎2
2 )             (7) 

 

where σa1
2 and σa2

2 are the genetic variance of the first and second trait, respectively, and σa12 is the genetic 

covariance between both traits. The variance of the residual effect followed ε∼MVN (0, Σε⊗I) where I is the 

identity matrix of dimension N × N and Σε has the same form than Σa. ⊗ indicate the Kronecker product operator 

between matrices. 

 

We investigated two ways of predicting the value of the trait of interest using multivariate models: either we 

predicted it for un-phenotyped individuals (MT model), or we predicted it for a set of individuals that were fully 

or partly phenotyped for the correlated trait (TA model). In both MT and TA scenarios, measurements of the 

targeted trait were only available for the training population.  

 

 

Model validation 

 

To compare the different models, predictions were evaluated using 5-fold cross-validations. This method consists 

in randomly splitting the data set in 5 folds of equal size and using 4 folds as the training set in order to predict 

performance of the lines from the fifth fold. Predictive ability is calculated for each fold as the Pearson’s correlation 

between predicted values and BLUEs. The same procedure is repeated 20 times. Predictive abilities and their 
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standard deviations were calculated as the mean of the 100 Pearson’s correlations. Models were tested using the 

lines which were both genotyped and phenotyped and which were not considered as control lines. 

 

 

Cost evaluation 

 

Budget allocated to phenotyping was obtained using the following equation: 

 

B = CpBMS × NBMS + CpW × NW    (8) 

 

Where NBMS and NW are the number of lines phenotyped for BMS and for W respectively; and CpBMS (150€) and 

Cpw (20€) are the cost of phenotyping one line for BMS and for W respectively.  

In the equation (8) CpBMS and Cpw are numeric constants but NBMS and NW are variable depending on the 

experimental design. It means that for a fixed budget there is several ways to allocate it between lines that are 

phenotyped for BMS or W, in the training set and in the validation set.  

Phenotyping cost for W corresponds to a minimum cost when we do it internally at INRA. BMS must be evaluated 

by certified companies and the price can vary between providers and depending on the volume we phenotype each 

year. In order to evaluate the impact of the cost ratio between W and BMS on the predictive ability of BMS, we 

made this ratio vary (ratio = 1/2, 1/3, 1/4, 1/5, 1/10 and 1/20). We performed this analysis with 3 different budgets, 

with CpBMS=150€, with a MT approach and a TA approach where all lines are phenotyped for W (Supplementary 

Table S2). 

 

 

Multi-trait CDmean (CDmulti) and optimization algorithm 

 

The objective was to optimize the choice of individuals from the training set that should be phenotyped for the 

trait of interest BMS and for the correlated trait W to predict the individuals from the validation set. For that 

purpose, we extended the CDmean criterion (Rincent et al, 2012) to a multi-trait CDmean criterion (CDmulti). We 

first computed the prediction error variance (PEV), using the following equations (Lynch and Walsh 1998): 

 

[
𝑋𝑇(Σε

−1 ⊗ 𝐼)𝑋 𝑋𝑇(Σε
−1 ⊗ 𝐼)𝑍

𝑍𝑇(Σε
−1 ⊗ 𝐼)𝑋 𝑍𝑇(Σε

−1 ⊗ 𝐼)𝑍 + (Σa
−1 ⊗ 𝐾−1)

] [�̂�
â

] = [
𝑋𝑇(Σε

−1 ⊗ 𝐼)𝑦

𝑍𝑇(Σε
−1 ⊗ 𝐼)𝑦

]   (9) 

 

where y is the vector of phenotypes, β is a vector of fixed effects (in our case it is the intercept), a is a vector of 

random genetic values, X and Z are the corresponding design matrices for the fixed and random effects 

respectively, K is the kinship matrix, Σa is the genetic variance–covariance matrix between traits, and Σε is the 

residual variance-covariance matrix between traits. 
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With the following notations: [
𝑋𝑇(Σε

−1 ⊗ 𝐼)𝑋 𝑋𝑇(Σε
−1 ⊗ 𝐼)𝑍

𝑍𝑇(Σε
−1 ⊗ 𝐼)𝑋 𝑍𝑇(Σε

−1 ⊗ 𝐼)𝑍 + (Σa
−1 ⊗ 𝐾−1)

]

−1

= [
𝐶11 𝐶12

𝐶21 𝐶22
]  

 (10) 

 

 

we have 𝑃𝐸𝑉(â) = 𝑑𝑖𝑎𝑔(𝐶22)  (11) 

 

The multi-trait CD was defined using the following equation: 

 

𝐶𝐷𝑚𝑢𝑙𝑡𝑖(â) = 1 −
𝑃𝐸𝑉(â)

𝑑𝑖𝑎𝑔(Σa⊗𝐾)
  (12) 

 

𝐶𝐷𝑚𝑢𝑙𝑡𝑖 is the expected reliability (before phenotyping) for each trait and each individual. It takes values between 

0 and 1. The closer to 1 the criterion is, the more reliable the predictions are expected to be. We optimized the 

sampling by maximizing the mean of the 𝐶𝐷𝑚𝑢𝑙𝑡𝑖 (𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖) of individuals in the validation set for BMS, the trait 

of interest. For this a simple exchange algorithm was used. The initialization step consisted in randomly sampling 

calibration lines for BMS and/or W phenotyping and the corresponding 𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖 was calculated for the validation 

set for BMS. For each next step, one of the two traits (BMS or W) was randomly chosen. Then a random exchange 

between one individual in the calibration set for the chosen trait and one individual which was not in the calibration 

set was realized. If this new calibration set resulted in a higher𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖, the new calibration set was accepted, 

otherwise the exchange was rejected. This procedure was repeated 2000 times to reach an optimum.  

The genetic and residual variance-covariance matrices between traits (Σa and Σε) are estimated from phenotypic 

data. CDmulti is maximized before phenotyping. So those matrices have to be estimated using an independent 

dataset.  To do so, we used 201 lines phenotyped for W and BMS by the French institute responsible for variety 

testing and registration (Groupement d’Etude et de contrôle des Variétés Et des Semences : GEVES) and 

genotyped using the same set of SNP markers. 

 

We tested this optimization algorithm for several scenarios (Figure 1).  

 

The optimization algorithm was performed with two different conditions:  

1) in the first case, only individuals of the training set could be phenotyped for BMS and W (MT 

approach),  

2) in the second case, only individuals from the training set could be phenotyped for BMS, while any of 

the individuals (from the training or the validation sets) could be phenotyped for the secondary trait W (TA 

approach). 

In order to be able to compare GP models for different scenarios, lines from the validation set were never 

considered phenotyped for BMS, so that BMS predictive ability was always calculated on the same set of 

individuals.  
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We performed the optimization algorithm using different sample sizes that should be phenotyped for BMS and/or 

for W (Table 1).  

We defined three budgets:  

1) The most expensive budget allows to phenotype all the lines from the training set for BMS (47 700€),  

2) The intermediate budget allows to phenotype all the lines from the training set for W and half of the 

lines for BMS (30 210€),  

3) the less expensive budget allows to phenotype a quarter of the lines from the training set for BMS and 

three quarter of the lines from the training set for W (16 760€).  

 

For a fixed budget, equation (8) has two unknowns (NBMS, NW), and there are many different possible combinations 

of individuals and traits to phenotype. We tested this optimization algorithm with 4 resource allocation strategies 

for each of the three budgets and under both MT and TA conditions. The resource allocation strategies correspond 

to a proportion (25, 50, 75 and 100%) of the training set (MT approach) or of the total population (TA approach) 

that is phenotyped for W. Then the NBMS, the number of lines phenotyped for BMS, was calculated using the 

following equation obtained from equation (8): 

 

 

𝑁𝑏𝐵𝑀𝑆 =
𝐵−(𝐶𝑝𝑊×𝑁𝑏𝑊)

𝐶𝑝𝐵𝑀𝑆
   (13) 

 

 

Training and validation sets were defined using 5-fold cross-validations. For each scenario (MT or TA approach, 

one budget and one resource allocation), we tested 20 folds (4 replicates x 5-fold cross-validations). In addition, 

for each fold and each scenario the 𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖 optimization algorithm was repeated 5 times, which means that for 

each scenario the procedure has been performed 100 times. The BMS BLUEs from the training set and W BLUEs 

from the training set (MT) and part of the validation set (TA) were used to predict BMS in the validation set. We 

compared predictive abilities obtained from optimized (𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖) and random training sets (the mean predictability 

of 100 random sets for each scenario and each validation set). 

Furthermore, the most expensive budget (47 700€) allowed to perform a ST approach in which all the individual 

from the training set were phenotyped for BMS. Therefore, we also compared predictive ability obtained for 

optimized training sets within each scenario with the predictive ability obtained with a ST model for BMS 

(calculated for each cross-validation that has been tested with the optimization algorithm).  

In order to mimic real life situation, we also used a forward prediction strategy. In this case, the lines evaluated in 

2003-2013 composed the training set and were used to predict the lines evaluated from 2014 to 2016. 

The script of the optimization algorithm is available from the corresponding author on request. In addition, we 

extended the generalized CD of contrasts to the multi-trait context to adapt the optimization criterion to specific 

prediction objectives (see Appendix). 
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Results  

 

Trait variation and variance components   

 

Variance components and repeatabilities of yield, phenology and traits linked to bread making quality are 

presented in Table 2.  

Plot repeatability ranged from 0.25 for crumb score to 0.81 for heading date. Design repeatability ranged from 

0.66 for crumb score to 0.98 for heading date. Pearson’s correlations between BLUEs of each trait are presented 

in Supplementary Figure S1. As expected, yield was negatively correlated with protein content (r = -0.63). The 

Chopin alveograph parameters were also correlated with each other. Indeed, Tenacity (P) was highly negatively 

correlated with Extensibility (L) (r = -0.6), while W and P were highly positively correlated (r = 0.63). Loaf 

volume, dough, crust and crumb scores are components of the BIPEA test which mechanically explains their 

correlation with BMS (the final BIPEA score). 

As W is the trait that is the more correlated to BMS (r = 0.45) and its plot repeatability and design repeatability is 

higher (0.66 and 0.92 respectively) than for BMS (0.40 and 0.80 respectively), we used it as a secondary trait in 

MT and TA models in further analyses. 

 

 

Contribution of glutenin (HMW-GS) markers to genomic prediction 

predictive ability 

 

The 11 KASP markers derived from HMW-GS loci Glu-A1, Glu-B1, and Glu-D1 explained 31% and 8% of the 

phenotypic variation for W and BMS, respectively. The stepwise regression identified 3 markers explaining 30% 

of the W genetic variance and 4 markers explaining 8% of the BMS genetic variance, thus nearly as much as the 

11 markers used together. 

In order to compare ST, ST-glu and ST-glu_stepwise models, only the 200 lines that were phenotyped and 

genotyped with the 35K array and the KASP markers derived from HMW-GS loci were used for genomic 

predictions (Figure 2). For ST model with 200 lines, predictive ability was 0.49 for W and 0.28 for BMS. ST-glu 

and ST-glu_stepwise models had almost the same predictive ability for both traits (0.55 for W and 0.28 for BMS). 

They both improved the predictive ability of W but not that of BMS. 
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Single-trait versus multi-trait and trait-assisted genomic prediction 

models 

 

Three models (ST, MT and TA) were tested using the 398 lines which were both genotyped and phenotyped for 

W and BMS. For ST model, predictive ability was 0.57 for W and 0.38 for BMS (Figure 2).  Although MT model 

did not improve the quality of BMS predictions, TA model improved it (+0.15). In addition, we predicted W using 

BMS as correlated trait. MT model did not improve the quality of W predictions, unlike TA model. Besides, the 

gain in predictive ability generated by TA model was lower for W (+0.10) than for BMS (+0.15). 

We compared MT and TA approaches with 3 different budgets and 4 different resource allocation strategies 

(Figure 3). TA method performed better in terms of predictive ability than MT method in each scenario in cross-

validation and in forward prediction. For each of the three budgets, the predictive ability for BMS was higher when 

all the lines (of the training set in MT case and of the total population in TA case) were phenotyped for the less 

expensive trait, W. The intermediate budget with at least 75 % of lines phenotyped for W was almost as accurate 

(0.5) than the expensive budget with 100% of lines phenotyped for W (0.51). This means that we can save 36% of 

the budget with this phenotyping strategy.  

We used as a reference the predictive ability obtained with a ST model in which all the individuals from the training 

set were phenotyped for BMS (horizontal line in Figure 3). The cost of this ST approach is equal to the most 

expensive budget. For the intermediate budget, when all the lines from the training set were phenotyped for W, 

the predictive ability of BMS with MT model was close to the predictive ability obtained with ST model and the 

budget was reduced by 36%. In addition, for each budget, the predictive ability for BMS obtained using the TA 

model was higher than the predictive ability obtained with the ST model when at least three quarters of the lines 

were phenotyped for W. This means that TA approach improved the predictive ability compared to ST and MT 

approaches (maximum gain: +0.14 in cross-validation and +0.21 in forward prediction when all the lines were 

phenotyped for W) and allowed to reduce the cost by up to 65%. 

In addition, the ST model to predict BMS for the lines evaluated between 2014 and 2016 using older lines 

(evaluated from 2003 to 2013) as training set, showed a lower predictive ability than in cross-validation scenarios 

(-0.2). MT approach slightly improved the predictive ability compared with ST model, but it remained under 0.22. 

TA approach greatly improved this predictive ability (maximum predictive ability with random sampling: 0.41) 

whichever the budget. In addition, the predictive ability reached with TA approach in forward prediction was 

closed to the predictive ability obtained with ST approach in cross-validation scenario. 

 

 

Selective phenotyping using Multi-trait CDmean criterion 

 

To test whether we could minimize phenotyping or improve predictive ability by optimizing the choice of 

individuals to phenotype for BMS and/or W, we used a multi-trait CDmean criterion (𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖) in an optimization 

algorithm. The multi-trait CD criterion allowed to improve slightly but systematically the predictive ability (+0.013 
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on average) for BMS compared to random sampling. The gain in terms of predictive ability allowed by the multi-

trait CD criterion was slightly higher for TA approach in forward prediction strategy (+0.023 on average). 

On average, the gain in predictive ability generated by TA model compared to MT model was +0.13 in cross-

validation scenarios and +0.15 in forward prediction strategy. Note that for TA method using the multi-trait 

CDmean criterion, the number of lines phenotyped for W in the validation set was higher compared to random 

sampling (Supplementary Figure S2).  

 

 

Impact of the cost ratio between W and BMS on BMS predictive ability 

 

We evaluated the impact of the cost ratio between W and BMS on BMS predictive ability for MT and TA 

approaches. To do so, we compared predictive ability of BMS in several scenarios (Supplementary Table S2) by 

varying the cost ratio (ratio = 1/2, 1/3, 1/4, 1/5, 1/10 and 1/20). We fixed the budget allocated to phenotyping (the 

three budgets described above), the cost of phenotyping one line for BMS cost for one line (CpBMS=150€) and the 

percentage of the lines phenotyped for W (100% of the training set in MT approach and 100% of the total 

population in TA approach). 

When the cost difference between the two traits was small and the budget allocated to phenotyping was low, the 

budget was not sufficient to phenotype each line for W (Supplementary Table S2). Therefore, only the results 

obtained with the intermediate and the expensive budget were shown in the Figure 4. 

When the cost difference between the two traits increased, the number of lines phenotyped for BMS increased as 

well, and consequently the predictive ability of BMS was improved. Indeed for the expensive budget (which 

corresponds to the budget needed to phenotype each line of the training set for BMS), the predictive ability of 

BMS ranged from 0.35 when the ratio was 1/2 to 0.38 when the ratio was 1/20 for MT approach and ranged from 

0.48 when the ratio was 1/2 to 0.52 when the ratio was 1/20 for TA approach. For the intermediate budget, the 

same trends were found. We could not evaluate the predictive ability of BMS with the TA model when the ratio 

between the costs of phenotyping of each trait was 1/2 because NBMS was too small and it led to convergence model 

issues. Even if the interest of using a TA approach rather than a ST approach was slightly lower when the cost 

difference decreased, TA model still performed better than ST approach when the ratio was 1/2 and for a fixed 

budget (gain in predictive ability: +0.09). 

 

 

Impact of the number of phenotypic records on predictive ability 

 

We evaluated the impact of the number of phenotypic records to estimate BMS and W BLUEs on BMS predictive 

ability for ST, MT and TA models (Figure 5). The number of phenotypic records for each line (except the control 

lines) ranged from 1 to 4. The three models were tested using the 322 lines which were both genotyped and 

phenotyped for W and for BMS in at least 4 environments. 
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We also evaluated the impact of control lines (evaluated 7 environments on average for BMS) to estimate BLUEs 

on BMS predictive ability. To do so, we compared two cases regarding controls: 1) all the phenotypic records of 

control lines were used to estimate BLUEs in order to have a more connected design; 2) we sampled the same 

number of control lines as candidate lines to calculate BLUEs. 

For the three models, the predictive ability increased with the number of phenotypic records when we used all 

controls. The highest gain in terms of predictive ability was when the traits were evaluated in two environments 

compared to one (+ 0.11, + 0.08 + 0.07 for ST, MT, TA respectively). In addition, the predictive ability for using 

three records was slightly higher compared to two (+ 0.05 on average) and almost similar using four records (+ 

0.02 on average) whichever the model used. For each scenario, the predictive ability was higher when all the 

phenotypic records of control lines were used to calculate BLUEs (+0.04, +0.04 +0.03 for ST, MT, TA respectively 

for 2 records). Note that the budget allocated to phenotyping can be significantly lower (-50 or 25% for 2 or 3 

records). In addition, when both traits were measured in more than one environment, MT did not allow to improve 

predictive ability of BMS compared to ST model. But TA model always performed better than MT and ST models 

whichever the number of phenotypic records.  
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Discussion 

 

This study focused on the comparison of different strategies to optimize resource allocation in breeding programs 

by using information from a cheap correlated trait to predict an expensive trait of interest. We used winter bread 

wheat baking quality (BMS) as a case study. Single-trait (ST), multi-trait (MT) and trait-associated (TA) strategies 

were compared in terms of predictive ability and cost. In multivariate approaches, information from dough strength 

(W) which is correlated (r = 0.45) to BMS and is less expensive to phenotype, was used. In MT analyses, only 

lines of the training set were phenotyped for W, whereas lines of the training and the validation sets were evaluated 

for W in TA analyses. In addition, we proposed and tested a multi-trait CDmean criterion (CDmulti) to optimize 

the choice of the set of lines to be phenotyped in the multi-trait context. To conduct this study, a public French 

breeding population of winter bread wheat lines was analyzed. 

 

Ability of glutenin (HMW-GS) markers to predict BMS 

 

In order to complement scarce phenotyping or pedigree information, Lande and Thompson (1990) proposed to 

rank individuals using molecular scores calculated as the sum of the effects of their alleles at selected QTLs. In 

this strategy, a threshold has to be chosen to determine the list of loci that significantly contribute to the trait 

variation. As it has been shown that allele effects were often overestimated in QTL detection (Beavis 1998), and 

that the infinitesimal model (Fisher 1918) that considers many loci of small effects was the best model to explain 

the variation of many quantitative traits such as yield, Meuwissen et al. (2001) proposed instead to use all available 

independent markers. To do so, phenotypic values are regressed in a linear model on all markers simultaneously, 

considering them as random effects with the same small genetic variance. The genetic values of individuals are 

estimated by best linear unbiased prediction. The critical difference with the Lande and Thompson approach is 

that this method does not require setting a significance threshold for the loci selected for trait prediction since all 

the markers are used in the model. In some cases however, explicitly modeling major QTLs as fixed effects in 

genomic prediction models can improve prediction accuracy in simulated data (Bernardo 2014) and experimental 

bread wheat data (Arruda et al. 2016; Michel et al. 2018; Sarinelli et al. 2019). In bread wheat, HMW-GS are 

important determinants of rheological properties of dough (reviewed by Anjum et al. 2007). Ravel et al. (2020) 

developed a set of KASP markers derived from glutenin DNA sequences to identify HMW-GS alleles. They 

showed that these markers detected more alleles and explained more rheological traits variation than SDS-PAGE 

method, which was commonly used in plant breeding. In our study, we integrated 11 of these HMW-GS markers 

as fixed effects into ST models. It improved the predictive ability of W compared to ST model. These results are 

consistent with the conclusion of Michel et al. (2018) who found that prediction accuracy was increased for several 

dough rheological traits when Glu-1 loci markers were including as fixed effects into the RR-BLUP model. But 

this model did not improve the predictive ability of BMS. This result might be due to the low percentage of genetic 

variance of BMS explained by the HMW-GS markers (8%). Bernardo (2014) actually demonstrated that only 

QTLs that explained at least 10% of the genetic variance could improve prediction accuracy. 
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Prediction of unphenotyped individuals (MT) 

 
Our results were consistent with some previous studies on experimental data in which MT models did not improve 

the predictive ability for individuals that were neither phenotyped for the trait of interest nor for the secondary 

trait, as  in pine tree (Jia and Jannink 2012), soybean (Bao et al. 2015), rye (Schulthess et al. 2016), maize (Dos 

Santos et al. 2016), wheat (Schulthess et al. 2018; Michel et al. 2018; Lado et al. 2018) and sorghum (Fernandes 

et al. 2018). 

Previous studies showed that MT could be beneficial in terms of accuracy compared to ST model when a part of 

the individuals of the training set were not phenotyped for the targeted trait but the correlated trait was evaluated 

for a larger number of individuals (Guo et al. 2014; Michel et al. 2018). We found a similar trend in our study. In 

fact, when only half of the lines in the training set were phenotyped for BMS but all the lines (training and 

validation sets)were phenotyped for W, the predictive ability was similar compared to a ST model in which all the 

lines from the training set were phenotyped for BMS, but the budget was reduced by one third.   

In the INRA-Agri-Obtentions bread wheat breeding program, F8 and F9 lines are evaluated in 9 environments in 

France on average. BMS is evaluated in 7 environments on average for control lines and in 4 environments for 

most of the other lines. Those measurements are very expensive (150€) and in this study, we tested if we could 

decrease the number of records (or the number of environments) without affecting the predictive ability of BMS. 

As expected, predictive ability increased with the number of phenotypic records. The higher gap of predictive 

ability was observed when 2 phenotypic records instead of 1 were used to predict BMS with ST model (+0.08). 

However, with 3 phenotypic records instead of 4, the predictive ability was little affected (+0.02), but the budget 

allocated to phenotyping was reduced by 25%. The predictive ability was higher (+0.03) when all the phenotypic 

records of control lines were used to calculate BLUEs. Controls are essential in the breeding program in order to 

take into account G×E and it is important to evaluate them in a large number of environments. By constrast, the 

number of records for other lines could be decreased with little effect on the predictive ability. Although 

phenotypic records were selected randomly for each line, we could further optimize the experimental design 

(Heslot et al, 2017) and control lines distribution in particular.  

  

 

Prediction when (part of) the candidates are phenotyped for the 

correlated trait (TA) 

  

TA method consists of predicting a trait using a multi-trait model when at least some of the candidates are 

phenotyped for one or several correlated traits. Several studies using experimental data demonstrated that TA 

models perform better than ST and MT models in terms of accuracy. TA models using high-throughput 

phenotyping for instance improved the prediction accuracy of bread wheat grain yield by up to 70% (Rutkoski et 

al. 2016; Sun et al. 2017; Crain et al. 2018). TA models also improved bread wheat baking quality related 

parameters using protein content (Michel et al. 2018) or dough rheological traits (Lado et al. 2018) as correlated 

traits. Predictive ability of Fusarium head blight severity in hybrid bread wheat was improved using plant height 
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and heading date as correlated traits (Schulthess et al. 2018). Wheat is not the only specie for which TA approach 

has been tested, Fernandes et al. (2018) showed that TA models increased prediction accuracy by up to 50% when 

using plant height as correlated trait to predict yield in sorghum.  

Our results were consistent with these studies, since predictive ability using TA model was higher than ST and 

MT predictive abilities whichever the studied scenario.  

For each studied budget (low, intermediate, high), the predictive ability of BMS was higher when all lines (training 

and validation) were phenotyped for the less expensive trait, W. It seems more important to phenotype a maximum 

of lines with a highly heritable trait than just a few lines for an expensive and less heritable trait. For similar budget, 

TA allowed higher predictive ability than ST (maximum gain: +0.14). For similar predictive ability (approximately 

0.38), TA allowed reducing the budget by up to 65%. So TA is a way to improve genetic gain by cost unit, either 

by reducing phenotyping cost and budget or increasing the program’s size for the same budget.  

We showed that the gain in predictive ability increased with the difference of phenotyping cost between the 

expensive and the cheap trait. These results highlighted the advantage of using a correlated trait as cheap as 

possible in multi-variate genomic prediction models. Nevertheless, TA model was still interesting compared to ST 

model with the smallest cost difference (ratio = 1/2) tested in this study (gain in predictive ability: +0.09).  In 

addition, even if it has no practical interest, we tried to predict W (plot repeatability = 0.66) using BMS (plot 

repeatability = 0.4) information and TA model, to compare the effect of the secondary trait’s heritability 

(approximated by plot repeatability) on predictive ability. The gain was inferior to those when we predicted BMS 

using W. This is congruent with the hypothesis that the higher the heritability of the secondary trait compared to 

the trait of interest, the higher the gain in predictability (Jia and Jannink 2012, Hayashi and Iwata 2013, Guo et al, 

2014). 

 

 

Forward prediction 

 

In order to study a situation more similar to the one the breeders are dealing with, we investigated a forward 

prediction strategy. ST predictive ability was almost divided by two when the oldest lines were used to predict the 

most recent lines compared to a cross-validation scenario. This discrepancy in predictive ability cannot be 

attributed to differences in the size of training sets. Indeed, the size of training set in cross-validation scenario was 

318 lines vs 309 in the case of forward prediction. Storlie and Charmet (2013) also reported that forward prediction 

in wheat is less accurate than cross-validation. Since the youngest lines are not differently (or less) genetically 

related to the oldest lines than the oldest lines with each other (results not shown), the most likely explanation is 

that new candidates are evaluated in new environments (years and locations) that have never been observed. 

Although BLUEs were used to correct the environmental main effect, they did not correctly (efficiently) account 

for G×E interactions. Using TA by phenotyping some candidates with a correlated trait, we could take into account 

G×E in the new environment and better predict the candidates. This result suggests that TA model are particularly 

interesting to predict lines evaluated in new environments.  
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Moreover, a genomic Bayesian multi-trait and multi-environment model was developed by Montesinos-Lopez et 

al (2016) to take into account trait x genotype x environment interaction that could be interesting to test in that 

context.  

 

 

Optimization of the training set based on a multi-trait CD criterion 

(CDmulti) 

 

The size and the composition of the training population are key parameters of the accuracy of genomic prediction 

models. Optimizing the training set by selecting the most predictive individuals instead of using a random sampling 

leads to an increase of the predictive ability (Rincent et al. 2012; Akdemir et al. 2015; Isidro el al. 2015; Rincent 

et al. 2017; Sarinelli et al. 2019). In this study, we specifically developed a multi-trait CDmean criterion (CDmulti), 

which slightly but systematically improved the predictive ability for BMS. The gain of predictive ability was a bit 

higher for TA approach than MT approach, in particular with the forward prediction. This may be due to the fact 

that 𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖  leads to sample more lines to phenotype for W in the validation set because lines are more related to 

the candidates compared to the training set (Supplementary Figure S2). In this example the use of 𝐶𝐷̅̅ ̅̅
𝑚𝑢𝑙𝑡𝑖  resulted 

in small increase of predictive ability, but we can suppose that it could be more valuable in datasets with different 

genetic structure, or in the situation of lower budget in which the choice of the phenotyped lines would be essential. 

Note that the criterion CDmulti can be adapted to particular prediction objectives (eg: optimize predictive abilities 

within families as in Rincent et al. 2017) by using the corresponding contrasts (see Appendix for the generalized 

version of CDmulti).  

 

 

Conclusion  

In this study, we addressed the question of resource allocation, which is hardly ever mentioned in multi-trait 

studies. We demonstrated how to decrease the breeding cost of an expensive trait by using the information of a 

cheap correlated trait using trait-assisted (TA) genomic predictions. TA models are useful tools for breeders to 

optimize resource allocation while maintaining the predictive ability for the traits of interest. In our study, it 

reduced the budget allocated to phenotyping by up to 65% for Bread Making Score (BMS). TA models can also 

be used to improve the predictive ability of the trait of interest (+0.14 using cross-validation and +0.21 using 

forward predictions) for a fixed budget. The less expensive and labor-intensive, and the more heritable the 

correlated trait is compared to the trait of interest, the more TA could be useful in a breeding program. 

In addition, we highlighted the importance of control lines that are phenotyped in a large number of environments 

and which allow to decrease the number of phenotypic records (3 instead of 4) for the other lines with a small 

effect on BLUEs estimation.  

The multi-trait CD criterion (CDmulti) specifically developed in this study allowed a slight but systematic 

improvement of BMS predictive ability. It would be interesting to evaluate this criterion in a larger and more 
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diverse population. The tools and approaches developed in this study and exemplified using BMS prediction of 

bread wheat can be used in any species when relevant cheap correlated traits are available. 
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  MT TA 

Budget 

% of lines phenotyped for W 

(In the training set for MT and in the total 

population for TA) 

NW NBMS NW NBMS 

47 700€ 

100 318 275 398 264 

75 238 286 298 278 

50 159 296 199 291 

25 79 307 99 304 

30 210€ 

100 318 159 398 148 

75 238 169 298 161 

50 159 180 199 174 

25 79 190 99 188 

16 760€ 

100 318 69 398 58 

75 238 80 298 72 

50 159 90 199 85 

25 79 100 99 98 

 

Table 1 Number of selected individuals in each scenario 

 

NW, NBMS: Number of lines phenotyped for W and BMS, respectively  
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Trait Mean Var 𝝈𝑬
𝟐  𝝈𝑮

𝟐  𝝈𝑮𝒙𝑬
𝟐  𝝈𝒆

𝟐 
Plot 

repeatability 

Design 

repeatability 

Grain yield 91.34 269.67 236.06 14.05 26.55 9.27 0.28 0.84 

Plant height 87.85 94.27 50.85 30.31 5.87 4.94 0.74 0.95 

Heading date 140.98 63.04 45.47 8.08 7,72x10-4 1.93 0.81 0.98 

Protein content 11.17 1.89 1.4 0.26 0.21 0.1 0.46 0.91 

C
h

o
p

in
 a

lv
eo

g
ra

p
h

 

P
a

ra
m

et
er

s 

Dough 

strength:W 
205.63 3844.01 788.98 2030.03 --- 1045.85 0.66 0.92 

Tenacity: P 77.46 695.31 166.1 413.3 --- 117.67 0.78 0.95 

Extensibility: L 85.05 936.17 254.77 465.46 --- 282.5 0.62 0.9 

𝑷
𝑳⁄ ratio 1.16 0.74 0.14 0.34 --- 0.24 0.59 0.89 

B
IP

E
A

 T
e
st

 

Dough score 79.24 215.21 27.78 69.5 --- 120.13 0.37 0.77 

Crust score 50.18 483.88 96.94 145.1 --- 249.32 0.37 0.77 

Crumb score 93.98 61.16 15.13 12.16 --- 36.53 0.25 0.66 

Loaf volume 1482.44 48629.99 10647.39 15815.57 --- 23975.46 0.4 0.79 

BMS 223.4 1276.6 141.13 466.23 --- 688.96 0.4 0.8 

 

Table 2 Summary statistics, variance components and repeatabilities for the main traits and traits linked to bread 

making quality 

 

σ2
G; σ2

G×E and σ2
ε are the genotype, genotype x environment and residual variances respectively 
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Figure  

 

 

Fig. 1 Definition of each scenario 

NW, NBMS: Number of lines phenotyped for W and BMS, respectively. N: Total number of lines (number of lines in 

the training and the validation sets). Ntrain: Number of lines in the training set. CpBMS, Cpw: the cost of phenotyping 

for one line for BMS and for W respectively. First, we defined CpBMS = 150€ and Cpw
 = 20€. Then we made the 

cost ratio between W and BMS vary (ratio = 1/2, 1/3, 1/4, 1/5, 1/10 and 1/20). 
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Fig.2 Comparison of predictive ability using single-trait and glutenin diagnostic markers (ST-glu and ST-

glu_stepwise), single-trait (ST), multi-trait (MT) and trait assisted (TA) genomic prediction models  

N: Number of lines. On the left: comparison of predictive ability for each trait using three single-trait models (ST, 

ST-glu and ST-glu_stepwise). On the right: comparison of predictive ability using single-trait and multi-trait 

models. For the prediction of BMS, W was used as the correlated traits in bivariate models (MT and TA). For the 

prediction of W, BMS was used as the correlated traits in bivariate models (MT and TA). Error bars stand for 

standard deviation. 
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Fig. 3 Comparison of predictive ability for BMS in each scenario  

Results obtained with the 5-fold cross-validation method on the top. Results obtained when only the most recent 

lines are predicted on the bottom (Forward prediction). Solid lines correspond to predictive ability obtained using 

the ST model in cross-validation scenario. Dashed lines correspond to predictive ability obtained using the ST 

model in forward prediction scenario. Expensive, intermediate and cheap correspond to the three budgets. 

MT_CDmulti, TA_CDmulti: MT and TA approaches using the CDmulti to sample lines to phenotype, respectively. 

MT_Random, TA_Random: MT and TA approaches using a random sampling, respectively. 
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Fig. 4 Impact of cost ratio between W (cheap) and BMS (expensive) traits on the predictive ability of BMS using 

multi-trait (MT) and trait assisted (TA) genomic prediction models 

The dashed line corresponds to predictive ability obtained using ST model. Ratio between phenotyping costs: 

𝐶𝑝𝑊

𝐶𝑝𝐵𝑀𝑆
 with 𝐶𝑝𝑊  W cost for one line and 𝐶𝑝𝐵𝑀𝑆BMS cost for one line. CpBMS is a constant (150€) and CpW depends 

on the cost ratio. “Expensive” and “intermediate” correspond to the two budgets. The number on each barplot 

corresponds to the number of lines phenotyped for BMS. In each scenario, 100% of the lines of the training set 

(MT) or of the total population (TA) were phenotyped for W. 

 

  



33 

 

 

Fig. 5 Impact of the number of phenotypic records on predictive ability of BMS 

Case 1: all the phenotypic records of control lines were used to estimate BLUEs in order to have a more connected 

design. Case 2: phenotypic records of control lines were sampled in the same way as candidate lines to calculate 

BLUEs. In both cases, the total population (training and validation sets) includes 398 lines. Error bars stand for 

standard deviations.  

 

 
Graphics programs used to create the figures: 

- Microsoft PowerPoint: Figure 1 

- R environment : Figures 2-5 (ggplot2 package) 
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Supplementary material 

 

 

Name of trial GPS coordinates 

Champagne-Céréales 48°52’N/4°09’E 

Clermont-Ferrand 45°46’N/3°04’E 

Colmar 48°03’N/7°20’E 

Dijon 47°19’N/5°04’E 

Epi Centre 47°05’N/2°25’E 

Estrées-Mons 49°52’N/3°00’E 

Le Moulon 48°42’N/2°09’E 

Lusignan 46°25’N/0°11’E 

Orgeval 48°55’N/1°58’E 

Orsonville 48°27’N/1°52’E 

Rennes 48°06’N/1°40’W 

 
Table S1 Location of trials 
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Budget Method 
W cost per 

line (€) 

BMS cost 

per line (€) 

Ratio 

between W 

and BMS 

costs 

NW NBMS 

Predictive 

ability of 

BMS and sd 

47700 

TA 

75 150 1/2 398 119 0.48 ± 0.06 

50 150 1/3 398 185 0.48 ± 0.06 

37.5 150 1/4 398 218 0.50 ± 0.06 

30 150 1/5 398 238 0.51 ± 0.05 

15 150 1/10 398 278 0.51 ± 0.05 

7.5 150 1/20 398 298 0.52 ± 0.04 

MT 

75 150 1/2 318 159 0.35 ± 0.12 

50 150 1/3 318 212 0.37 ± 0.11 

37.5 150 1/4 318 238 0.37 ± 0.11 

30 150 1/5 318 254 0.38 ± 0.11 

15 150 1/10 318 286 0.38 ± 0.10 

7.5 150 1/20 318 302 0.38 ± 0.10 

30210 

 

TA 

75 150 1/2 398 2 NA 

50 150 1/3 398 68 0.46 ± 0.06 

37.5 150 1/4 398 101 0.48 ± 0.06 

30 150 1/5 398 121 0.50 ± 0.06 

15 150 1/10 398 161 0.51 ± 0.05 

7.5 150 1/20 398 181 0.52 ± 0.05 

MT 

75 150 1/2 318 42 0.31 ± 0.12 

50 150 1/3 318 95 0.34 ± 0.12 

37.5 150 1/4 318 121 0.36 ± 0.12 

30 150 1/5 318 137 0.36 ± 0.11 

15 150 1/10 318 169 0.37 ± 0.11 

7.5 150 1/20 318 185 0.38 ± 0.11 

16760 

TA 

75 150 1/2 223 NA NA 

50 150 1/3 335 NA NA 

37.5 150 1/4 398 12 NA 

30 150 1/5 398 32 0.45 ± 0.07 

15 150 1/10 398 71 0.48 ± 0.07 

7.5 150 1/20 398 91 0.50 ± 0.06 

MT 

75 150 1/2 223 NA NA 

50 150 1/3 318 5 NA 

37.5 150 1/4 318 32 0.23 ± 0.16 

30 150 1/5 318 48 0.26 ± 0.15 

15 150 1/10 318 79 0.31 ± 0.12 

7.5 150 1/20 318 95 0.32 ± 0.12 

 
Table S2 Variation of cost ratio between W (cheap) and BMS (expensive) and its impact on the predictive ability 

of BMS 

  
NW, NBMS: Number of lines phenotyped for W and BMS, respectively. Sd: Standard deviation. NBMS is not available 

when the budget is not enough to phenotype all the lines for W. Predictive ability is not available (NA) when NBMS 

is a negative number and when NBMS is small because of convergence model issues.  
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Fig.S1Pearson correlations between main traits and traits linked to bread making quality 

Yield: grain yield. Height: plant height. Heading: heading date. Protein: protein content. W: dough strength. P: 

Tenacity. L: Extensibility. Plratio: ratio Tenacity / Extensibility (P/L). Dough, Crust and Crumb: scores for dough, 

crust and crumb, respectively (obtained with the BIPEA test). Volume: dough volume. BMS: Bread Making Score 

(final BIPEA score) 
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Fig. S2 Percentage of lines phenotyped for W in the validation set for each resource allocation scenario 

 

Program used to create the figure S1: R environment with corrplot package. 

Graphics program used to create the figure S2: R environment with the ggplot2 package. 
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Appendix 

We extended here the generalized CD (Laloë 1993) to the multi-trait context. The objective is to compute the 

expected reliability (before phenotyping) in a multi-trait context for contrasts corresponding to the prediction 

objectives. To give an example, it is clear that if the objective is to accurately predict the difference (contrasts) 

between families, or to focus on predictions within families, the contrasts to be considered will be different and 

the optimal calibration sets as well. By defining contrasts corresponding to the prediction objectives, one can adapt 

the CDmulti criterion to the specific prediction objectives (see Rincent et al. 2017 for more details in the single 

trait context). 

 

For a given contrast c, the generalized Prediction Error Variance (PEV(c)) in the multi-trait context is equal to: 

 

PEV(c) =  𝑐𝑇(𝑍𝑇𝑀𝑍 + (𝛴𝑎
−1 ⊗ 𝐾−1))−1𝑐  (14) 

 

With M = (𝛴𝜀
−1 ⊗ 𝐼) − (𝛴𝜀

−1 ⊗ 𝐼)𝑋(𝑋𝑇(𝛴𝜀
−1 ⊗ 𝐼)𝑋)

−1
𝑋𝑇(𝛴𝜀

−1 ⊗ 𝐼) (15) 

where X and Z are the design matrices for the fixed and random effects respectively, K is the kinship matrix, Σa is 

the genetic variance–covariance matrix between traits, and Σε is the residual variance-covariance matrix between 

traits. ⊗ indicate the Kronecker product operator between matrices. 

 

The generalized multi-trait CD for a given contrast c is equal to: 

 

CDmulti (c) = 
𝑐𝑇((𝛴𝑎⊗𝐾)− (𝑍𝑇𝑀𝑍+(𝛴𝑎

−1⊗𝐾−1))
−1

)𝑐

𝑐𝑇(𝛴𝑎⊗𝐾)𝑐
 (16) 

 

As a reminder, a contrast is a vector whose elements sum to 0 and indicating the difference in which we are 

interested. For example, if we are interested in accurately predicting the difference between individual 1 and 

individual 2, the contrast to consider will be: 𝑐𝑇 = [1, −1,0,0,0,0, … ]. 

 

 


