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Abstract. An increasing number of flood forecasting ser-
vices assess and communicate the uncertainty associated
with their forecasts. While obtaining reliable forecasts is a
key issue, it is a challenging task, especially when forecast-
ing high flows in an extrapolation context, i.e. when the event
magnitude is larger than what was observed before. In this
study, we present a crash-testing framework that evaluates
the quality of hydrological forecasts in an extrapolation con-
text. The experiment set-up is based on (i) a large set of
catchments in France, (ii) the GRP rainfall–runoff model de-
signed for flood forecasting and used by the French opera-
tional services and (iii) an empirical hydrologic uncertainty
processor designed to estimate conditional predictive uncer-
tainty from the hydrological model residuals. The variants
of the uncertainty processor used in this study differ in the
data transformation they use (log, Box–Cox and log–sinh) to
account for heteroscedasticity and the evolution of the other
properties of the predictive distribution with the discharge
magnitude. Different data subsets were selected based on
a preliminary event selection. Various aspects of the prob-
abilistic performance of the variants of the hydrologic un-
certainty processor, reliability, sharpness and overall quality
were evaluated. Overall, the results highlight the challenge of
uncertainty quantification when forecasting high flows. They
show a significant drop in reliability when forecasting high
flows in an extrapolation context and considerable variabil-
ity among catchments and across lead times. The increase in
statistical treatment complexity did not result in significant
improvement, which suggests that a parsimonious and easily
understandable data transformation such as the log transfor-

mation or the Box–Cox transformation can be a reasonable
choice for flood forecasting.

1 Introduction

1.1 The big one: dream or nightmare for the
forecaster?

In many countries, operational flood forecasting ser-
vices (FFS) issue forecasts routinely throughout the year
and during rare or critical events. End users are mostly con-
cerned by the largest and most damaging floods, when crit-
ical decisions have to be made. For such events, operational
flood forecasters must get prepared to deal with extrapola-
tion, i.e. to work on events of a magnitude that they and their
models have seldom or never met before.

The relevance of simulation models and their calibration
in evolving conditions, such as contrasted climate conditions
and climate change, has been studied by several authors.
For example, Wilby (2005), Vaze et al. (2010), Merz et al.
(2011) and Brigode et al. (2013) explored the transferabil-
ity of hydrological model parameters from one period to an-
other and assessed the uncertainty associated with this pa-
rameterisation, while Coron et al. (2012) proposed a gener-
alisation of the differential split-sample test (Klemes̆, 1986).
In spite of its importance in operational contexts, only a few
studies have addressed the extrapolation issue for flow fore-
casting, to the best of our knowledge, with the notable ex-
ception of data-driven approaches (e.g. Todini, 2007). Im-
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rie et al. (2000), Cigizoglu (2003) and Giustolisi and Lau-
celli (2005) evaluated the ability of trained artificial neural
networks (ANNs) to extrapolate beyond the calibration data
and showed that ANNs used for hydrological modelling may
have poor generalisation properties. Singh et al. (2013) stud-
ied the impact of extrapolation on hydrological prediction
with a conceptual model, and Barbetta et al. (2017) expressed
concerns for the extrapolation context defined as floods of a
magnitude not encountered during the calibration phase.

Addressing the extrapolation issue involves a number of
methodological difficulties. Some data issues are specific to
the data used for hydrological modelling, such as the rat-
ing curve reliability (Lang et al., 2010). Other well-known
issues are related to the calibration process: are the param-
eters, which are calibrated on a limited set of data, repre-
sentative or at least somewhat adapted to other contexts? A
robust modelling approach for operational flood forecasting,
i.e. a method able to provide relevant forecasts in conditions
not met during the calibration phase, requires paying spe-
cial attention to the behaviour of hydrological models and
the assessment of predictive uncertainty in an extrapolation
context.

1.2 Obtaining reliable forecasts remains a challenging
task

Even if significant progress has been made and implemented
in operational flood forecasting systems (e.g. Bennett et al.,
2014; Demargne et al., 2014; Pagano et al., 2014), some un-
certainty remains. In order to achieve efficient crisis man-
agement and decision making, communication of reliable
predictive uncertainty information is therefore a prerequi-
site (Todini, 2004; Pappenberger and Beven, 2006; Demeritt
et al., 2007; Verkade and Werner, 2011). Hereafter, reliability
is defined as the statistical consistency between the observa-
tions and the predictive distributions (Gneiting et al., 2007).

The uncertainty associated with operational forecasts is
most often described by a predictive uncertainty distribu-
tion. Assessing a reliable predictive uncertainty distribution
is challenging because hydrological forecasts yield residu-
als that show heteroscedasticity, i.e. an increase in the uncer-
tainty variance with discharge, time autocorrelation, skew-
ness etc. Some studies (e.g. Yang et al., 2007b; Schoups and
Vrugt, 2010) account for these properties for the calibration
of hydrological models within a Bayesian framework, using
specific formulations of likelihood. In an extrapolation con-
text, it is of utter importance that the predictive uncertainty
assessment provides a correct description of the evolution of
the predictive distribution properties with the discharge mag-
nitude. Bremnes (2019) showed that the skewness of wind
speed distribution depends on the forecasted wind. Mod-
elled residuals of discharge forecasts often exhibit high het-
eroscedasticity (Yang et al., 2007a). McInerney et al. (2017)
focused their study on representing error heteroscedasticity
of discharge forecasts with respect to simulated streamflow.

To achieve reliable forecasts, a correct description of the het-
eroscedasticity, either explicitly or implicitly, is necessary.

Various approaches to uncertainty assessment have been
developed to assess the uncertainty in hydrological predic-
tions (see e.g. Montanari, 2011). The first step consists of
identifying the different sources of uncertainty or at least the
most important ones that have to be taken into account given
a specific context. In the context of flood forecasting, decom-
posing the total uncertainty into its two main components
is now common: the input uncertainty (mainly the meteoro-
logical forecast uncertainty) and the modelling uncertainty,
as proposed by Krzysztofowicz (1999). More generally, the
predictive uncertainty due to various sources may be explic-
itly modelled and propagated through the modelling chain,
while the “remaining” uncertainty (from the other sources)
may then be assessed by statistical post-processing.

1.2.1 Modelling each source of uncertainty

A first approach intends to model each source of uncertainty
separately and to propagate these uncertainties through the
modelling chain (e.g. Renard et al., 2010). Following this
approach, the predictive uncertainty distribution results from
the separate modelling of each relevant source of uncertainty
(e.g. in their study on hydrological prediction, Renard et al.
(2010) did not have to consider the uncertainty in meteo-
rological forecasts) and from the statistical model specifi-
cation. While this approach is promising, operational appli-
cation can be hindered by the challenge of making the hy-
drological modelling uncertainty explicit, as pointed out by
Salamon and Feyen (2009).

In practice, it is necessary to consider the meteorological
forecast uncertainty to issue hydrological forecasts. The en-
semble approaches intend to account for this source of uncer-
tainty. They are increasingly popular in the research and the
operational forecasting communities. An increasing number
of hydrological ensemble forecasting systems are in opera-
tional use and have proved their usefulness, e.g. the Euro-
pean Flood Awareness System (EFAS; Ramos et al., 2007;
Thielen et al., 2009; Pappenberger et al., 2011; Pappenberger
et al., 2016) and the Hydrologic Ensemble Forecast Service
(HEFS; e.g. Demargne et al., 2014).

Multi-model approaches can be used to assess modelling
uncertainty (Velazquez et al., 2010; Seiller et al., 2017).
While promising, this approach requires the implementation
and the maintenance of a large number of models, which can
be burdensome in operational conditions. There is no evi-
dence that such an approach ensures that the heteroscedas-
ticity of the predictive uncertainty distribution would be cor-
rectly assessed.

In forecasting mode, data assimilation schemes based on
statistical modelling are of common use to reduce and as-
sess the predictive uncertainty. Some algorithms such as par-
ticle filters (Moradkhani et al., 2005a; Salamon and Feyen,
2009; Abbaszadeh et al., 2018) or the ensemble Kalman filter
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(Moradkhani et al., 2005b) provide an assessment of the pre-
dictive uncertainty as a direct result of data assimilation (“in
the loop”). Some of these approaches can explicitly account
for the desired properties of the predictive uncertainty dis-
tribution, such as heteroscedasticity, through the likelihood
formulation.

1.2.2 Post-processing approaches

Alternatively, numerous post-processors of deterministic or
probabilistic models have been developed to account for the
uncertainty from sources that are not modelled explicitly.
They differ in several aspects (see a recent review by Li et al.,
2017). Most approaches are conditional: the predictive uncer-
tainty is modelled with respect to a predictor, which most of-
ten is the forecasted value (Todini, 2007, 2009). Some meth-
ods are based on predictive distribution modelling, while oth-
ers can be described as “distribution-free”, as mentioned by
Breiman (2001). Among the former, many approaches are
built in a statistical regression framework to assess the total
or remaining predictive uncertainty. Examples are the hydro-
logic uncertainty processor (HUP) in a Bayesian forecasting
system (BFS) framework (Krzysztofowicz, 1999; Krzyszto-
fowicz and Maranzano, 2004), the model-conditional pro-
cessor (MCP; Todini, 2008; Coccia and Todini, 2011; Bar-
betta et al., 2017), the meta-Gaussian model of Montanari
and Grossi (2008) or the Bayesian joint probability (BJP)
method (Wang et al., 2009), among others. The latter ap-
proaches build a description of the predictive residuals from
past error series, such as data-learning algorithms (Solo-
matine and Shrestha, 2009). Some related methods are the
non-parametric approach of Van Steenbergen et al. (2012),
the empirical hydrological uncertainty processor of Bour-
gin et al. (2014) or the k-nearest neighbours method of
Wani et al. (2017). The quantile regression (QR) framework
(Weerts et al., 2011; Dogulu et al., 2015; Verkade et al., 2017)
lies in between in that it introduces an assumption of a linear
relationship between the forecasted discharge and the quan-
tiles of interest.

1.2.3 Combining different approaches

The approaches presented in Sect. 1.2.1 and 1.2.2 are not
exclusive of each other. Even when future precipitation is
the main source of uncertainty, post-processing is often re-
quired to produce reliable hydrological ensembles (Zalachori
et al., 2012; Hemri et al., 2015; Abaza et al., 2017; Sharma
et al., 2018). Thus, many operational flood forecasting ser-
vices use post-processing techniques to assess hydrologi-
cal modelling uncertainty, while meteorological uncertainty
is taken into account separately (Berthet and Piotte, 2014).
Post-processors are then trained with “perfect” future rainfall
(i.e. equal to the observations). Moreover, even for assess-
ing modelling uncertainty, combining the strengths of several
methodologies may improve the results.

Note that many of these approaches use a variable transfor-
mation to handle the heteroscedasticity and more generally
the evolution of the predictive distribution properties with
respect to the forecasted discharge. Some have no calibrated
parameter, while others encompass a few calibrated param-
eters, allowing more flexibility in the predictive distribution
assessment. More details on commonly used variable trans-
formations are presented in Sect. 2.1.4.

1.3 Scope

In this article, we focus on uncertainty assessment with
a post-processing approach based on residuals modelling.
While the operational goal is to improve the hydrological
forecasting, this study does not consider the meteorological
forecast uncertainty: it only focuses on the hydrological mod-
elling uncertainty, as these two main sources of uncertainty
can be considered independently (e.g. Bourgin et al., 2014).
Del Giudice et al. (2013) and McInerney et al. (2017) pre-
sented interesting comparisons of different variable transfor-
mations used for residuals modelling. Yet, their studies do
not focus on the extrapolation context. Since achieving a re-
liable predictive uncertainty assessment in an extrapolation
context is a challenging task likely to remain imperfect if the
stability of the characteristics of the predictive distributions
is not properly ensured, it requires a specific crash-testing
framework (Andréassian et al., 2009). The objectives of this
article are

– to present a framework aimed at testing the hydrological
modelling and uncertainty assessment in the extrapola-
tion context,

– to assess the ability and the robustness of a post-
processor to provide reliable predictive uncertainty as-
sessment for large floods when different variable trans-
formations are used,

– to provide guidance for operational flood forecasting
system development.

We attempt to answer three questions: (a) can we improve
residuals modelling with an adequate variable transformation
in an extrapolation context? (b) Do more flexible transfor-
mations, such as the log–sinh transformation, help in obtain-
ing more reliable predictive uncertainty assessment? (c) If
the performance decreases when extrapolating, is there any
driver that can help the operational forecasters to predict this
performance loss and question the quality of the forecasts?

Section 2 describes the data, the forecast model, the post-
processor and the testing methodology chosen to address
these questions. Section 3 presents the results of the numer-
ical experiments that are then discussed in Sect. 4. Finally, a
number of conclusions and perspectives are proposed.
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Figure 1. The set of 154 unregulated catchments used in this study.
Average altitude is given in metres above sea level (m a.s.l.).

2 Data and methods

2.1 Data and forecasting model

2.1.1 Catchments and hydrological data

We used a set of 154 unregulated catchments spread through-
out France (Fig. 1) over various hydrological regimes and
forecasting contexts to provide robust answers to our re-
search questions (Andréassian et al., 2006; Gupta et al.,
2014). They represent a large variability in climate, to-
pography and geology in France (Table 1), although their
hydrological regimes are little or not at all influenced by
snow accumulation. Hourly rainfall, potential evapotranspi-
ration (PE) and streamflow data series were available over the
1997–2006 period. PE was estimated using a temperature-
based formula (Oudin et al., 2005). Rainfall and temperature
data come from a radar-based reanalysis produced by Météo-
France (Tabary et al., 2012). Discharge data were extracted
from the national streamflow HYDRO archive (Leleu et al.,
2014). When a hydrological model is used to issue forecasts,
it is often necessary to compare the lead time to a character-
istic time of the catchment (Sect. 2.1.2). For each catchment,
the lag time (LT) is estimated as the lag time maximising the
cross-correlation between rainfall and discharge time series.

2.1.2 Hydrological model

We used discharge forecasts computed by the GRP rainfall–
runoff model. The GRP model is designed for flood forecast-
ing and is currently used by the FFS in France in operational
conditions (Furusho et al., 2016; Viatgé et al., 2018). It is
a deterministic lumped storage-type model that uses catch-
ment areal rainfall and PE as inputs. In forecasting mode
(Appendix A), the model also assimilates discharge obser-
vations available when issuing a forecast to update the main
state variable of the routing function and to update the out-
put discharge. In this study, it is run at an hourly time step,
and forecasts are issued for several lead times ranging from
1 to 72 h. More details about the GRP model can be found in
Appendix A.

Since herein only the ability of the post-processor to ex-
trapolate uncertainty quantification is studied, the model is
fed only with observed rainfall (no forecast of precipitation),
in order to reduce the impact of the input uncertainty. For the
same reason, the model is calibrated in forecasting mode over
the 10-year series by minimising the sum of squared errors
for a lead time taken as the LT. The results will be presented
for four lead times, – LT / 2, LT, 2 LT and 3 LT – to cover the
different behaviours that can be seen when data assimilation
is used to reduce errors in an operational flood forecasting
context (Berthet et al., 2009).

2.1.3 Empirical hydrological uncertainty
processor (EHUP)

We used the empirical hydrological uncertainty proces-
sor (EHUP) presented in Bourgin et al. (2014). It is a data-
based and non-parametric approach in order to estimate the
conditional predictive uncertainty distribution. This post-
processor has been compared to other post-processors in ear-
lier studies and proved to provide relevant results (Bourgin,
2014). It is now used by operational FFS in France under
the operational tool called OTAMIN (Viatgé et al., 2019).
The main difference with many other post-processors (such
as the MCP, the meta-Gaussian processor, the BJP or the
BFS) is that no assumption is made about the shape of the
uncertainty distribution, which brings more flexibility to rep-
resent the various forecast error characteristics encountered
in large-sample modelling. We will discuss the impact of this
choice in Sect. 4.2.

The basic idea of the EHUP is to estimate empirical quan-
tiles of errors stratified by different flow groups to account for
the variation of the forecast error characteristics with fore-
cast magnitude. Since forecast error characteristics also vary
with the lead time when data assimilation is used, the EHUP
is trained separately for each lead time.

Hydrol. Earth Syst. Sci., 24, 2017–2041, 2020 www.hydrol-earth-syst-sci.net/24/2017/2020/
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Table 1. Characteristics of the 154 catchments, computed over the 1997–2006 data series.

Quantiles

0 0.05 0.25 0.50 0.75 0.95 1

Catchment area (km2) 9 27 79 184 399 942 3260
Average altitude (m above sea level) 64 92 188 376 589 897 1050
Average slope (%) 2 3 6 9 18 32 39
Lag time (h) 3 5 9 12 19 29 33
Mean annual rainfall (mm yr−1) 639 727 876 1003 1230 1501 1841
Mean annual potential evapotranspiration (mm yr−1) 549 549 631 659 700 772 722
Specific mean annual discharge (mm yr−1) 53 142 262 394 583 1114 1663
Mean annual discharge (m3 s−1) 1 1 1 2 5 17 53
Maximum hourly rainfall (mm h−1) 10 12 16 20 26 41 61
Quantile 0.99 of the hourly discharge (m3 s−1) 1 2 6 15 33 115 296

For each lead time separately, the following steps are used:

1. Training:

– The flow groups are obtained by first ordering the
forecast–observation pairs according to the fore-
casted values and then stratifying the pairs into a
chosen number of groups (in this study, we used
20 groups), so that each group contains the same
number of pairs.

– Within each flow group, errors are calculated as the
difference between the two values of each forecast–
observation pair, and several empirical quantiles
(we used 99 percentiles) are calculated in order to
characterise the distribution of the error values.

2. Application:

– The predictive uncertainty distribution that is asso-
ciated with a given (deterministic) forecasted value
is defined by adding this forecasted value to the em-
pirical quantiles that belong to the same flow group
as the forecasted value.

Since this study focuses on the extrapolation case, the val-
idation is achieved with deterministic forecasts higher than
the highest one used for the calibration. Therefore, only the
highest-flow group of the calibration data is used to esti-
mate the uncertainty assessment (to be used on the control
data). This highest-flow group contains the top 5 % pairs of
the whole training data, ranked by forecasted values. This
threshold is chosen as a compromise between focusing on
the highest values and using a sufficiently large number of
forecast–observation pairs when estimating empirical quan-
tiles of errors. In extrapolation, when the forecast discharge
is higher than the highest value of the training period, the
predictive distribution of the error is kept constant, i.e. the
same values of the empirical quantiles of errors are used, as
illustrated in Fig. 5.

The EHUP can be applied after a preliminary data trans-
formation, and by adding a final step to back-transform the
predictive distributions obtained in a transformed space. In
previous work, we used the log transformation because it
ensures that no negative values are obtained when estimat-
ing the predictive uncertainty for low flows (Bourgin et al.,
2014). When estimating the predictive uncertainty for high
flows, the data transformation has a strong impact in extrap-
olation, because the variation of the extrapolated predictive
distribution, which is constant in the transformed space, is
controlled in the real space by the behaviour of the inverse
transformation, as explained below.

2.1.4 The different transformation families

Many uncertainty assessment methods mentioned in the In-
troduction use a variable transformation to handle the het-
eroscedasticity of the residuals and account for the varia-
tion of the prediction distributions with the magnitude of the
predicted variable. Here, we briefly recall a number of vari-
able transformations commonly used in hydrological mod-
elling. Let y and ỹ be the observed and forecasted variables
(here, the discharge), respectively, and ε = y− ỹ the residu-
als. When using a transformation g, we consider the residuals
ε′ = g(y)− g(ỹ).

Three analytical transformations are often met in hydro-
logical studies: the log, Box–Cox and log–sinh transfor-
mations. The log transformation is commonly used (e.g.
Morawietz et al., 2011):

g1 : y 7−→ log(y+ a), (1)

where a is a small positive constant to deal with y val-
ues close to 0. It can be taken as equal to 0 when focus-
ing on large discharge values. This transformation has no
parameter to be calibrated. Applying a statistical model to
residuals computed on log-transformed variables may be
interpreted as using a corresponding model of multiplica-
tive error (e.g. assuming a Gaussian model for residuals
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of log-transformed discharges is equivalent to a log-normal
model of the multiplicative errors y/ỹ). Therefore, it may be
adapted to strongly heteroscedastic behaviours. It has been
used successfully to assess hydrological uncertainty (Yang
et al., 2007b; Schoups and Vrugt, 2010; Bourgin et al., 2014).

The Box–Cox transformation (Box and Cox, 1964) is a
classic transformation that is quite popular in the hydrologi-
cal community (e.g. Yang et al., 2007b; Wang et al., 2009;
Hemri et al., 2015; Reichert and Mieleitner, 2009; Singh
et al., 2013; Del Giudice et al., 2013):

g2[λ] : y 7−→
(y+ a)λ− 1

λ
if λ 6= 0 and g2[λ] = g1 if λ= 0.

(2)

Here a is taken as being equal to 0 (as for the log transforma-
tion); the Box–Cox transformation is then a one-parameter
transformation. It makes it possible to cover very differ-
ent behaviours. The log transformation is a special case of
the Box–Cox transformation when the calibration results in
λ= 0. In contrast, applying the Box–Cox transformation
with λ= 1 to the variable y to model the distribution of
their residuals is equivalent to applying no transformation
(Fig. 2). McInerney et al. (2017) obtained their most reliable
and sharpest results with λ= 0.2 over 17 perennial catch-
ments.

More recently, the log–sinh transformation has been pro-
posed (Wang et al., 2012; Pagano et al., 2013). It is a two-
parameter transformation:

g3[α,β] : y 7−→ β · log
(

sinh
(
α+ y

β

))
. (3)

This transformation provides more flexibility. Indeed, for
y� α and y� β, the log–sinh transformation reduces to no
transformation, while for α� y� β it is equivalent to the
log transformation (Fig. 2). Thus, with the same parameteri-
sation, it can result in very different behaviours depending on
the magnitude of the discharge. Applying no transformation
may be intuitively attractive when modelling the distribution
of residuals for large discharge values when the variance is
no longer expected to increase (homoscedastic behaviour).
It is then particularly attractive when modelling predictive
uncertainty in an extrapolation context, in order to avoid an
excessively “explosive” assessment of the predictive uncer-
tainty for large discharge values.

In addition to the log transformation used by Bourgin et al.
(2014), in this study we tested the Box–Cox and the log–sinh
transformations to explore more flexible ways to deal with
the challenge of extrapolating prediction uncertainty distri-
butions (Fig. 2). The impacts of the data transformations used
in this study are illustrated in Fig. 3.

Another common variable transformation is the normal
quantile transformation (NQT; e.g. Kelly and Krzysztofow-
icz, 1997). It is a transformation without a calibrated param-
eter linking a given distribution and the Gaussian distribu-

Figure 2. The inverse transformation explains the final effect on
the uncertainty assessment: the constant probability distribution in
the transformed space (provided by the EHUP) will result in a dis-
tribution in the untransformed space, whose evolution depends on
the behaviour of the inverse data transformation. Here, the Box–
Cox transformation provides different behaviours, depending on its
parameter value (λ). It ranges from an affine transformation (equiv-
alent to no transformation; red dashed line) to the log transforma-
tion (thick green dashed line). With a single parameterisation, the
log–sinh transformation can be equivalent to the log transformation
for values of y much smaller than the value of its parameter β and
equivalent to an affine transformation for large values of y (much
higher than β; see Appendix B).

tion, quantile by quantile. While several hydrological pro-
cessors such as the HUP, MCP and QR encompass the NQT-
transformed variables, Bogner et al. (2012) warn against
the drawbacks of this transformation, which is by construc-
tion not suited for the extrapolation context and requires ad-
ditional assumptions to model the tails of the distribution
(Weerts et al., 2011; Coccia and Todini, 2011). This is why
we did not test this transformation in this study focused on
the extrapolation context.

2.2 Methodology: a testing framework designed for
extrapolation context assessment

2.2.1 Testing framework

The EHUP is a non-parametric approach based on the char-
acteristics of the distribution of residuals over a training data
set. Moreover, the Box–Cox and the log–sinh transforma-
tions are parametric and require a calibration step. There-
fore, the methodology adopted for this study is a split-sample
scheme test inspired by the differential split-sample scheme
of Klemes̆ (1986) and based on three data subsets: a data
set for training the EHUP, a data set for calibrating the pa-
rameters of the variable transformation and a control data set

Hydrol. Earth Syst. Sci., 24, 2017–2041, 2020 www.hydrol-earth-syst-sci.net/24/2017/2020/
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Figure 3. Predictive 0.1 and 0.9 quantiles when assessed with no transformation, the log transformation, the Box–Cox transformation with
its λ parameter equal to 0.5 and the log–sinh transformation with its α and β parameters equal to 0.1 and 8, on the Ill River at Didenheim
(668 km2) for a lead time equal to LT, (a) as a function of the deterministic forecasted discharge and (b) for the flood event on 3 March 2006.
The heteroscedasticity strongly differs from one variable transformation to another.

for evaluating the predictive distributions when extrapolating
high flows.

2.2.2 Events selection

To populate the three data subsets with independent data,
separate flood events were first selected by an iterative proce-
dure similar to those detailed by Lobligeois et al. (2014) and
Ficchì et al. (2016): (1) the maximum forecasted discharge of
the whole time series was selected; (2) within a 20 d period
before (after) the peak flow, the beginning (end) of the event
was placed at the preceding (following) time step closest to
the peak at which the streamflow is lower than 20 % (25 %) of
the peak flow value; and (3) the event was kept if there was
less than 10 % missing values, if the beginning and end of
the event were lower than 66 % of the peak flow value and if
the peak value was higher than the median value of the time
series. The process is then iterated over the remaining data
to select all events. A minimum time lapse of 24 h was en-
forced between two events, ensuring that consecutive events
are not overlapping and that the autocorrelation between the
time steps of two separate events remains limited.

The number of events and their characteristics vary greatly
among catchments, as summarised in Table 2. Note that the
events selected for one catchment can slightly differ for the
four different lead times considered in this study, because the

selection was made using the forecasted discharge and not
the observed discharge.

2.2.3 Selection of the data subsets

The selected events were then gathered into three events sets
– G1, G2 and G3 – based on the magnitude of their peaks and
the number of useful time steps for each test phase (training
of the EHUP post-processor, calibration of the variable trans-
formations and evaluation of the predictive distributions):
G1 contains the lowest events, while the highest events are
in G3.

The selection of the data subsets was tailored to study the
behaviour of the post-processing approach in an extrapola-
tion context. The control data subset had to encompass only
time steps with simulated discharge values higher than those
met during the training and calibration steps. Similarly, the
calibration data subset had to encompass time steps with sim-
ulated discharge values higher than those of the training sub-
set.

To achieve these goals, only the time steps within flood
events were used. We distinguished four data subsets, as il-
lustrated in Fig. 4. The subset D1 gathered all the time steps
of the events of the G1 group. Then, the set D2 of the time
steps of the events of the G2 group was split into two subsets:
D2sup gathered all the time steps with forecasted discharge
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Table 2. Characteristics of the events selected for the lead time (LT) over the 1997–2006 data series.

Quantiles

0 0.05 0.25 0.50 0.75 0.95 1

Total length of events (d) 663 1178 1299 1505 1808 2061 2762
Number of events G1 28 65 114 141 193 276 434
Number of events G2 8 16 23 32 43 58 170
Number of events G3 7 12 19 26 35 46 162
Specific median value of the peak discharges G1 (mm h−1) 0.009 0.022 0.041 0.062 0.098 0.184 0.266
Specific median value of the peak discharges G2 (mm h−1) 0.026 0.064 0.140 0.217 0.342 0.706 1.042
Specific median value of the peak discharges G3 (mm h−1) 0.050 0.131 0.295 0.439 0.701 1.896 3.071

values higher than the maximum met in D1, and D2inf was
filled with the other time steps. Finally, D3 was similarly
filled with all the time steps of the G3 events with forecasted
discharge values higher than the maximum met in D2.

The discharge thresholds used to populate the D1, D2sup
and D3 subsets from the events belonging to the G1, G2 and
G3 groups were chosen to ensure a sufficient number of time
steps in every subset. We chose to set the minimum number
of time steps in D3 and D2sup to 720 as a compromise be-
tween having enough data to evaluate the methods and keep-
ing the extrapolation range sufficiently large. We lowered this
limit to 500 for the top 5 % pairs of D1, since this subset was
only used to build the empirical distribution by estimating
the percentiles during the training step and not used for eval-
uating the quality of the uncertainty assessment.

2.2.4 Calibration and evaluation steps

Since there are only one parameter for the Box–Cox trans-
formation and two parameters for the log–sinh transforma-
tion, a simple calibration approach of the transformation pa-
rameters was chosen: the parameter space was explored by
testing several parameter set values. For the Box–Cox trans-
formation, 17 values for the λ parameter were tested: from 0
to 1 with a step of 0.1 and with a refined mesh for the sub-
intervals 0–0.1 and 0.9–1. For the log–sinh transformation, a
grid of 200 (α, β) values was designed for each catchment
based on the maximum value of the forecasted discharge in
the D2 subset, as explained in greater detail in Appendix B.

Note that the hydrological model was calibrated over the
whole set of data (1997–2006) to make the best use of the
data set, since this study focuses on the effect of extrapolation
on the predictive uncertainty assessment only.

We used a two-step procedure, as illustrated in Fig. 5.
The first step was to calibrate the parametric transforma-
tions. For each transformation and for each parameter set,
the empirical residuals were computed over D1 and D2sup,
where the EHUP was trained on the highest-flow group of D1
(see Sect. 2.1.3) and the calibration criterion was computed
on D2sup. Indeed, the data transformations have almost no
impact on the uncertainty estimation by EHUP for events of

the same magnitude as those of the training subset. There-
fore, the calibration subset has to encompass events of a
larger magnitude (D2sup). The parameter set obtaining the
best criterion value was selected. In the second step, the
EHUP was trained on the highest-flow group of D1, D2inf
and D2sup combined and using the parameter set obtained
during the calibration step. Then, the predictive uncertainty
distribution was evaluated on the control data set D3. Train-
ing the EHUP on the highest-flow group of the union of D1,
D2inf and D2sup allows the uncertainty assessment to be con-
trolled from small to large degrees of extrapolation (on D3).
Indeed if we had kept the training on D1 only, we would
have not been able to test small degrees of extrapolation on
independent data for every catchment (see the discussion in
Sect. 3.3).

2.3 Performance criteria and calibration

2.3.1 Probabilistic evaluation framework

Reliability was first assessed by a visual inspection of the
probability integral transform (PIT) diagrams (Laio and
Tamea, 2007; Renard et al., 2010). Since this study was car-
ried out over a large sample of catchments, two standard nu-
merical criteria were used to summarise the results: the α
index, which is directly related to the PIT diagram (Renard
et al., 2010), and the coverage rate of the 80 % predictive in-
tervals (bounded by the 0.1 and 0.9 quantiles of the predictive
distributions), used by the French operational FFS (a perfect
uncertainty assessment would reach a value of 0.8). The α
index is equal to 1− 2 ·A, where A is the area between the
PIT curve and the bisector, and its value ranges from 0 to 1
(perfect reliability).

The overall quality of the probabilistic forecasts was eval-
uated with the continuous rank probability score (CRPS;
Hersbach, 2000), which compares the predictive distribution
to the observation:

CRPS=
1
N

N∑
k=1

+∞∫
0

[
Fk(Q)−H

(
Q−Qk,obs

)]2
dQ, (4)
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Figure 4. Illustration of the selection of the data subsets for the Ill River at Didenheim (668 km2). First, the events are selected (grey
highlighting). Then, the four data subsets are populated according to the thresholds (horizontal dashed lines). See Sect. 2.1.3 for more
details.

where N is the number of time steps, F(Q) is the predic-
tive cumulative distribution, H the Heaviside function and
Qobs is the observed value. We used a skill score (CRPSS)
to compare the mean CRPS to a reference, here the mean
CRPS obtained from the unconditional climatology, i.e. from
the distribution of the observed discharges over the same data
subset. Values range from−∞ to 1 (perfect forecasts): a pos-
itive value indicates that the modelling is better than the cli-
matology.

For operational purposes, the sharpness of the probabilistic
forecasts was checked by measuring the mean width of the
80 % predictive intervals. A dimensionless relative-sharpness
index was obtained by dividing the mean width by the mean
runoff:

1−

N∑
k=1

[
q0.9 (Qk)− q0.1 (Qk)

]
N∑
k=1

Qk,obs

, (5)

where q90(Q) and q10(Q) are the upper and the lower bounds
of the 80 % predictive interval for each forecast, respectively.
The sharper the forecasts, the closer this index is to 1.

In addition to the probabilistic criteria presented above,
the accuracy of the forecasts was assessed using the Nash–
Sutcliffe efficiency (NSE) calculated with the mean values
of the predictive distributions (best value: 1).

2.3.2 The calibration criterion

Since the calibration step aims at selecting the most reliable
description of the residuals in extrapolation, the α index was
used to select the parameter set that yields the highest reli-
ability for each catchment, each lead time and each trans-
formation. While other choices were possible, we followed
the paradigm presented by Gneiting et al. (2007): reliabil-
ity has to be ensured before sharpness. Note that the CRPS
could have been chosen, since it can be decomposed as the
sum of two terms: reliability and sharpness (Hersbach, 2000).

However, in the authors’ experience, the latter is the control-
ling factor (Bourgin et al., 2014). Moreover, the CRPS val-
ues were often quite insensitive to the values of the log–sinh
transformation parameters.

In cases where an equal value of the α index was obtained,
we selected the parameter set that gave the best sharpness in-
dex. For the log–sinh transformation, there were still a few
cases where an equal value of the sharpness index was ob-
tained, revealing the lack of sensitivity of the transformation
in some areas of the parameter space. For those cases, we
chose to keep the parameter set that had the lowest α value
and the β value closest to max

D2
(Q̃).

3 Results

3.1 Results with the calibration data set D2sup

Figure 6 shows the distributions of the α-index values ob-
tained with different transformations on the calibration data
set (D2sup) for lead times LT / 2, LT, 2 LT and 3 LT. The dis-
tributions are summarised with box plots. Clearly, not using
any transformation leads to poorer reliability than any tested
transformation. In addition, we note that the calibrated trans-
formations provide better results (although not perfect) than
the uncalibrated ones in the calibration data set, as expected,
and that no noticeable difference can be seen in Fig. 6 be-
tween the calibrated Box–Cox transformation (d), the cal-
ibrated log–sinh transformation (e) and the best-calibrated
transformation (f). Nevertheless, the uncalibrated log trans-
formation and Box–Cox transformation with parameter λ set
at 0.2 (BCλ=0.2) reach quite reliable forecasts. Comparing
the results obtained for the different lead times reveals that
less reliable predictive distributions are obtained for longer
lead times, in particular for the transformations without a cal-
ibrated parameter.

Figures 7 and 8 show the distribution of parameter values
obtained for the Box–Cox and the log–sinh transformation
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Figure 5. Residuals as a function of the forecast discharges in the transformed space. The horizontal dashed lines represent the 0.1, 0.25,
0.5, 0.75 and 0.9 quantiles of the residuals computed during the training phase of the EHUP post-processor, for the highest-flow group
(top 5 % pairs of the training data ranked by forecasted values). The straight horizontal lines represent their use in assessing the predictive
uncertainty in extrapolation during (a) the calibration step of the variable transformation parameters and (b) the evaluation step of the
predictive uncertainty. During the calibration step (a), many parameters set values are tested, while only the calibrated set of transformation
parameters is used during the evaluation step (b). The vertical dashed lines show the beginning of the extrapolation range. The grey dots
are the data pairs which are not selected in D1, D2inf, D2sup or D3: they are not used during the calibration step or the evaluation step.
Illustration from the Ill River at Didenheim, 668 km2. Data used for the EHUP training at each step is sketched by a thick rectangle. In this
study, only the top 5 % pairs of the training data ranked by forecasted values are used to estimate the residual distribution, since we focus on
the extrapolation behaviour of the EHUP.

during the calibration step. The distributions vary with lead
time. While the log transformation behaviour is frequently
chosen for LT/2 and LT, the additive behaviour (correspond-
ing to the use of no transformation; see Sect. 2.1.4) becomes
more frequent for 2 and 3 LT. A similar conclusion can be
drawn for the log–sinh transformation: a low value of α and
a high value of β yield a multiplicative behaviour that is fre-
quently chosen, for all lead times, but less for 2 and 3 LT than
for LT/2 and LT. This explains in particular the loss of relia-
bility that can be seen for the log transformation for 3 LT in
Fig. 6. These results reveal that the extrapolation behaviour
of the distributions of residuals is complex. It varies among

catchments and with lead time because of the strong impact
of data assimilation.

3.2 Results with the D3 control data set

3.2.1 Reliability

First, we conducted a visual inspection of the PIT diagrams,
which convey an evaluation of the overall reliability of the
probabilistic forecasts (examples in Fig. 9). In some cases,
the forecasts are reliable (e.g. the Thérain River at Beauvais,
755 km2, except if no transformation is used). Alternatively,
these diagrams may show quite different patterns, highlight-
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Figure 6. Distributions of the α-index values on the calibration data set D2sup, obtained with different transformations for four lead times
(the filled box plots represent the calibrated distributions). Box plots (5th, 25th, 50th, 75th and 95th percentiles) synthesise the variety of
scores over the catchments of the data set. The optimal value is represented by the horizontal dashed lines.

Figure 7. Distribution over the basins of the values of the Box–Cox transformation parameter obtained during the calibration step for the
four different lead times.

ing bias (e.g. the Meu River at Montfort-sur-Meu, 477 km2)
or under-dispersion (e.g. the Aa River at Wizernes, 392 km2,
or the Sioulet River at Miremont, 473 km2; for the latter, the
calibration on D2sup leads to log–sinh and Box–Cox trans-
formations equivalent to no transformation, which turns out
not to be relevant for the control data set, where the log and
the Box–Cox transformations are more reliable).

Then the distribution of the α-index values in Fig. 10 re-
veals a significant loss of reliability compared to the values
obtained with the calibration data set (Fig. 6). We note that
the log transformation is the most reliable approach for LT / 2
and is comparable to the Box–Cox transformation (BCλ=0.2)
for LT. With increasing lead time, the BCλ=0.2 transforma-
tion becomes slightly better than the other transformations,
including the calibrated ones. In addition, comparing the re-
sults obtained for the different lead times confirms that it is
challenging to produce reliable predictive distributions when
extrapolating at longer lead times. Overall, it means that the
added value of the flexibility brought by the calibrated trans-
formations is not transferable in an independent extrapola-
tion situation, as illustrated in Fig. 11.

In operational settings, non-exceedance frequencies of the
quantiles of the predictive distribution, which are the lower

and upper bounds of the predictive interval communicated
to the authorities, are of particular interest. The 80 % predic-
tive interval (bounded by the 0.1 and 0.9 quantiles) is mostly
used in France. It is expected that the non-exceedance fre-
quency of the lower bound and the exceedance frequency of
the upper bound remain close to 10 % for a reliable predic-
tive distribution. Deviations from these frequencies indicate
biases in the estimated quantiles. Figure 12 reveals that on
average the 0.1 quantile is generally better assessed than the
0.9 quantile on average, though the latter is generally more
sought after for operational purposes. More importantly, the
lack of reliability of the log transformation for the 3 LT lead
time seen in Fig. 10 appears to be related to an underestima-
tion of the 0.1 quantile, which is higher than for the other
tested transformations, while the 0.9 quantile is less under-
estimated than for the other transformations. These results
highlight that reliability can have different complementary
facets and that some parts of the predictive distributions can
be more or less reliable. In a context of flood forecasting,
particular attention should be given to the upper part of the
predictive distribution.

www.hydrol-earth-syst-sci.net/24/2017/2020/ Hydrol. Earth Syst. Sci., 24, 2017–2041, 2020



2028 L. Berthet et al.: Uncertainty assessment when forecasting high flows

Figure 8. Distribution over the basins of the values of the log–sinh transformation parameters obtained during the calibration step for the
four different lead times. γ1 = α/max

D2
(Q̃) and γ2 = β/max

D2
(Q̃) (see Appendix B).

3.2.2 Other performance metrics

In addition to reliability, we looked at other qualities of
the probabilistic forecasts, namely the overall performance
(measured by the CRPSS) and accuracy (measured by NSE).
We also checked their sharpness (relative-sharpness metric).
The distributions of four performance criteria are shown for
LT in Fig. 13. We note that the log transformation has the
closest median value for the coverage ratio, at the expense
of a lower median relative-sharpness value, because of larger
predictive interval widths caused by the multiplicative be-
haviour of the log transformation. In addition, the CRPSS
and the NSE distributions have limited sensitivity to the
variable transformation (also shown by Woldemeskel et al.
(2018) for the CRPS), even if we can see that not using
any transformation yields slightly better results. This con-
firms that the CRPSS itself is not sufficient to evaluate the
adequacy of uncertainty estimation. Similar results were ob-
tained for the other lead times (Supplement).

3.3 Investigating the performance loss in an
extrapolation context

For operational forecasters, it is important to be able to pre-
dict when they can trust the forecasts issued by their mod-
els and when their quality becomes questionable. Therefore
we investigated whether the reliability and reliability loss

observed in an extrapolation context were correlated with
some properties of the forecasts. First, Fig. 14 shows the re-
lationship between the α-index values obtained with D2sup
and those obtained with D3 for three representative trans-
formations. The results indicate that it is not possible to an-
ticipate the α-index values when extrapolating high flows in
D3 based on the α-index values obtained when extrapolating
high flows in D2sup.

In addition, two indices were chosen to describe the de-
gree of extrapolation: the ratio of the median of the fore-
casted discharges in D3 over the median of the forecasted
discharge in D2sup, and the ratio of the median of the fore-
casted discharges in D3 over the discharge for a return pe-
riod of 20 years (for catchments where the assessment of the
vicennial discharge was available in the national database:
http://www.hydro.eaufrance.fr, last access: March 2020). In
both cases, no trend appears, regardless of the variable trans-
formation used, with Spearman coefficients values (much)
lower than 0.33. The reliability can remain high for some
catchments even when the magnitude of the events of the
control data set is much higher than that of the training data
set (see Supplement for figures).

Finally, we found no correlation with the relative accuracy
of the deterministic forecasts either. The goodness of fit dur-
ing the calibration phase cannot be used as an indicator of
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Figure 9. Examples of PIT diagrams obtained with the control data set D3, with different transformations at four locations.

the robustness of the uncertainty estimation in an extrapola-
tion context (see Supplement for figures).

4 Discussion

4.1 Do more complex parametric transformations yield
better results in an extrapolation context?

Overall, the results obtained for the control data set suggest
that the log transformation and the fixed Box–Cox transfor-
mation (BCλ=0.2) can yield relatively satisfactory α index
and coverage ratio values given their multiplicative or near-
multiplicative behaviour in extrapolation. More tapered be-
haviours that can be obtained with the calibrated Box–Cox
or log–sinh transformations do not show advantages when
extrapolating high flows on an independent data set. In other

words, what is learnt during the calibration of the more com-
plex parametric transformations does not yield better results
in an extrapolation context.

These results could be explained by the fact that the cal-
ibration did not result in the optimally relevant parameter
set. To investigate whether another calibration strategy could
yield better results, we compared the performance on the
control D3 data set when the calibration is achieved on the
D2sup data set (“f: best calibrated”) and on the D3 data set
(“g: best reliability”). The results shown in Fig. 10 reveal
that, even when the best parameter set is chosen among the
217 possibilities tested in this study (17 for the Box–Cox
transformation and 200 for the log–sinh transformation), the
α-index distributions are far from perfect and reliability de-
creases with increasing lead time. This suggests that the sta-
bility of the distributions of residuals when extrapolating

www.hydrol-earth-syst-sci.net/24/2017/2020/ Hydrol. Earth Syst. Sci., 24, 2017–2041, 2020



2030 L. Berthet et al.: Uncertainty assessment when forecasting high flows

Figure 10. Distributions of the α-index values on the control data set D3, obtained with different transformations for four lead times (the
filled box plots represent the calibrated distributions). Box plots (5th, 25th, 50th, 75th and 95th percentiles) synthesise the variety of scores
over the catchments of the data set. The optimal values are represented by the horizontal dashed lines. Option “g” gives the best performance
that could be achieved with this model and this post-processor for these catchments (see the discussion in Sect. 4.1).

Figure 11. Scatter plots of the reliability α index obtained with the log transformation and the log–sinh transformation (a) in D2sup on the
calibration step and (b) on D3 in the control step.

high flows might be a greater issue than the choice of the vari-
able transformation. Nonetheless, the gap between the distri-
butions of the transformations without a calibrated parame-
ter (“b” and “c”), the best-calibrated transformation (“f”) and
the best performance that could be achieved (“g”) highlights
that it might be possible to obtain better results with a more
advanced calibration strategy. This is, however, beyond the
scope of this study and is therefore left for further investiga-
tions.

4.2 Empirically based versus distribution-based
approaches: does the distribution shape choice
impact the uncertainty assessment in an
extrapolation context?

Besides the reduction of heteroscedasticity, many studies use
post-processors which are explicitly based on the assump-

tion of a Gaussian distribution and use data transformations
to fulfil this hypothesis (Li et al., 2017). Examples are the
MCP or the meta-Gaussian model; the NQT was designed
to precisely achieve it. In their study on autoregressive er-
ror models used as post-processors, Morawietz et al. (2011)
showed that error models with an empirical distribution for
the description of the standardised residuals perform bet-
ter than those with a normal distribution. We first checked
whether the variable transformation helped to reach a Gaus-
sian distribution of the residuals computed with the trans-
formed variables. Then we investigated whether better per-
formance can be achieved using empirical transformed dis-
tributions of residuals or using Gaussian distributions cali-
brated on these empirical distributions.

We used the Shapiro–Francia test where the null hypoth-
esis is that the data are normally distributed. For each para-
metric transformation, we selected the parameter set of the
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Figure 12. Distributions over the catchment set of (a) the non-exceedance frequency of the 0.1 quantile and (b) the exceedance frequency
of the 0.9 quantile on the control data set D3, obtained with the different transformations tested (the filled box plots are related to calibrated
transformations). The optimal values are represented by the horizontal dashed lines.

calibration grid which obtains the highest p value. For more
than 98 % of the catchments, the p value is lower than 0.018
(0.023) when the Box–Cox transformation (the log–sinh
transformation) is used. This indicates that there are only a
few catchments for which the normality assumption is not
to be rejected. In a nutshell, the variable transformations can
stabilise the variance, but they do not necessarily ensure the
normality of the residuals. It is important not to overlook this
frequently encountered issue in hydrological studies.

Even if there is no theoretical advantage to using the Gaus-
sian distribution calibrated on the transformed-variable resid-
uals rather than the empirical distribution to assess the pre-
dictive uncertainty, we tested the impact of this choice. For
each transformation, the predictive uncertainty assessment
obtained with the empirical transformed-variable distribu-
tion of residuals is compared to the assessment based on the
Gaussian distribution whose mean and variance are those of
the empirical distribution. Figure 15 shows the α-index dis-
tributions obtained over the catchments for both options in
the control data set D3. We note that no clear conclusion can
be drawn. No transformation (or identity transformation),
which does not reduce the heteroscedasticity at all, benefits

from the use of the Gaussian distributions for all lead times.
In contrast, the predictive uncertainty assessment based on
the empirical distribution with the log transformation is more
reliable than the one based on the Gaussian distribution. For
short lead times, it is slightly better to use the empirical dis-
tributions for the calibrated transformations (Box–Cox and
log–sinh), but we observe a different behaviour for longer
lead times. For these longer lead times, assessing the pre-
dictive uncertainty using the Gaussian distribution fitted to
the empirical distributions of transformed residuals obtained
with the calibrated log–sinh or Box–Cox transformations is
the most reliable option. It is better than using the log trans-
formation with the empirical distribution, but not very differ-
ent from using the BCλ=0.2 transformation.

Investigations on the impact of the choice between the em-
pirical and the Gaussian distributions on the post-processor
performance are shown in the Supplement. They show that
the choice of the distribution is not the dominant factor.
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Figure 13. Distributions of coverage rate, relative-sharpness, CRPSS and NSE values over the catchment set on the control data set D3,
obtained with the different transformations tested (the filled box plots are related to calibrated transformations). The optimal values are
represented by the horizontal dashed lines.

4.3 A need for a focus change?

In most modelling studies, several methodological steps de-
pend on the range of the observations. First, calibration is de-
signed to limit the residual errors in the available historical
data. However the largest residuals are often associated with
the highest discharge values. It is well known that removing
the largest flood events from a data set can significantly mod-
ify the resulting calibrated parameter set. This is particularly
true with the use of some common criteria, such as quadratic
criteria, which strongly emphasise the largest errors (Legates
and McCabe Jr., 1999; Berthet et al., 2010; Wright et al.,
2015). Conversely, it is likely that “unavailable data” such as
a physically realistic but (so far) unseen flood would signif-
icantly change the calibration results if it could be included
in the calibration data set. Moreover, model conceptualisa-
tion (building) itself is often based on the understanding of
how a catchment behaves “on average”. In some studies, out-
liers may even be considered as disturbing and be discarded
(Liano, 1996).

However, to provide robust models for operational pur-
poses, we also need to focus on rare (rarely observed) events,

still keeping in mind all the well-known issues associated
with working with (too) few data (Anctil et al., 2004; Per-
rin et al., 2007). For predictive uncertainty assessment, this
issue is exacerbated by the seasonality of hydrological ex-
tremes (Allamano et al., 2011; Li et al., 2013) for most ap-
proaches which rely heavily on data (beyond data-learning
approaches, all models which need to be calibrated). There-
fore, there is an urgent need to gather and compile data on
extreme events (Gaume et al., 2009). Nevertheless, opera-
tional forecasters must still prepare themselves to work in an
extrapolation context, as pointed out by Andréassian et al.
(2012).

5 Conclusions

Even if major floods are rare, it is of the utmost importance
that the forecasts issued during such events are reliable to fa-
cilitate efficient crisis management. Like Lieutenant Drogo
in the Tartar Steppe, who spent his entire life fulfilling his
day-to-day duties but waiting in his fortress for the inva-
sion by foes (Buzzati, 1940), many forecasters expect and
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Figure 14. Comparison of the α-index values obtained with D2sup and D3. One point for each catchment. The optimal values are represented
by the dashed lines. Similar results were obtained for the three other transformations (not shown).

are preparing for a major event, even if their routine involves
only minor events. That is why a strong concern for the ex-
trapolation context should be encouraged in all modelling
and calibration steps. This article proposes a control frame-
work focusing on the forecasting performance in an extrapo-
lation context.

We use this framework to test the predictive uncertainty
assessment using a statistical post-processing of a rainfall–
runoff model, based on a variable transformation. The lat-
ter has to handle the heteroscedasticity and the evolution of
the other predictive uncertainty distribution properties with
the discharge magnitude to issue reliable uncertainty assess-
ment, which is very problematic in an extrapolation context.
As pointed out by McInerney et al. (2017), the choice of the
heteroscedastic error modelling approach makes a significant
impact on the predictive performance. This is true as well in
an extrapolation context.

5.1 Main findings

Using the proposed framework for an evaluation in an ex-
trapolation context, we showed the following:

a. Using an appropriate variable transformation can signif-
icantly improve the predictive distribution and its relia-
bility. However, a performance loss still remains in an
extrapolation context with any of the three transforma-
tions we tested.

b. The transformations with more calibrated parameters do
not achieve significantly better results than the transfor-
mations with no calibrated parameter:

– while it allows a flexibility which can theoretically
be very attractive in an extrapolation context, the
log–sinh transformation is not more reliable in such
a context;

– the uncalibrated log transformation and Box–Cox
transformation with the λ parameter set to 0.2 are
robust and compare favourably.

c. We did not find any variable significantly correlated
with the performance loss in an extrapolation context.

The findings reported herein corroborate the results of
McInerney et al. (2017) within the context of flood fore-
casting and extrapolation: calibrating the Box–Cox or log–
sinh transformation can be counter-productive. We therefore
suggest that operational flood forecasting services could con-
sider the less flexible but more robust options: using the log
transformation or the Box–Cox transformation with its λ pa-
rameter set close to 0.2.

Importantly, these results reveal significant performance
losses in some catchments when it comes to extrapolation,
whatever variable transformation is used. Even if the scheme
tested yields satisfying results in terms of reliability for the
majority of catchments, it fails in a significant number of
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Figure 15. Distributions of the α-index values on the control data set D3, obtained with different transformations for four lead times, when
using the empirical distributions of residuals (straight box plots) and the Gaussian distributions (dashed box plots). The optimal values are
represented by the horizontal dashed lines.

catchments, and further investigations are needed to gain a
deeper understanding of when and why failures occur.

5.2 Limitations and perspectives

We used the framework designed by Krzysztofowicz (1999),
which has already been applied in various studies, that sep-
arates the input uncertainty (mainly the observed and fore-
casted rainfall) and the hydrological uncertainty. Our study
focuses only on the “effect” of the extrapolation degree in the
hydrological uncertainty when using the best available rain-
fall product. Future works should combine both input uncer-
tainty (rainfall) and hydrological uncertainty (Bourgin et al.,
2014) to evaluate the impact of using uncertain (forecasted)
rainfall in a forecasting context.

Though no variable was found to be correlated to the per-
formance loss, the investigations should be continued using
a wider set of variables. First, it may open new perspectives
to explain these losses and improve our understanding of the
flaws of the hydrological model and of the EHUP. Further-
more, it would be very useful to help operational forecast-

ers to detect the hydrological situations for which their fore-
casts have to be questioned (in particular during major events
when forecasts are made in an extrapolation context).

Furthermore, improving the calibration strategy and using
a regionalisation of the predictive distribution assessment, as
proposed in Bourgin et al. (2015) and Bock et al. (2018),
could help build more robust assessment of uncertainty quan-
tification when forecasting high flows.

Finally, more studies focusing on the extrapolation context
may help to better elucidate the limitations of the modelling
(hydrological model structure, calibration, post-processing
etc.) and their consequences for practical matters. It is to be
encouraged as a key for better and more reliable flood fore-
casting.
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Figure A1. The GRP model flow chart. After an interception step,
the production function splits the net rainfall (Pn), according to the
level of the production store. The effective rainfall (Pr) is the sum
of the direct flow and the percolation from this store. A corrective
multiplicative coefficient (CORR) is then applied. Then the flow
runs through a unit hydrograph (time base: TB) and the routing store
(capacity: ROUT).

Appendix A: GRP model

The GRP model belongs to the suite of GR models (Michel,
1983). These models are designed to be as simple as pos-
sible but efficient for hydrological studies and for various
operational needs, resulting in parsimonious model struc-
tures (https://webgr.irstea.fr/en/models/a-brief-history/, last
access: 1 April 2019). The GRP model is designed for fore-
casting purposes (Berthet, 2010). It is a deterministic con-
tinuous lumped storage-type model (Fig. A1). The inputs are
limited to areal rainfall and (interannual) potential evapotran-
spiration (both data may be available in real time). It can be
understood as the sequence of two hydrological functions:

– a production function which is the same as in the well-
known GR4J model developed by Perrin et al. (2003);

– a routing function which is a simplified version of the
GR4J’s routing function, since it only counts one flow
branch composed of a unit hydrograph and quadratic
routing store. The tests showed that the performance of
the GRP and GR4J structures was similar in a forecast-
ing mode.

A snow module (Valéry et al., 2014) may be implemented
on top of the model if necessary.

Like any GR model, it is parsimonious. It has only three
parameters: (a) an adjustment factor of effective rainfall,
which contributes to finding a good water balance; (b) the

unit hydrograph time base used to account for the time lag
between rainfall and streamflow; and (c) the capacity of the
routing store, which temporally smooths the output signal.

Its main difference with the other GR models is the imple-
mentation “in the loop” of two data assimilation schemes:

– a state-updating procedure which modifies the main
state of the routing function as a function of the last dis-
charge values,

– output updating based on an autoregressive model of
the multiplicative error or an artificial neural network
(multi-layer perception) whose inputs are the last dis-
charge value and the two last forecasting errors. In this
study, the autoregressive model was used.

The parameters are calibrated in forecasting mode, i.e.
with the application of the updating procedures. This model
is used by the French flood forecasting services, some hy-
droelectricity suppliers and canal managers at an hourly time
step in order to issue real-time forecasts for lead times rang-
ing from a few hours to a few days at several hundred sites.
Recently, Ficchì et al. (2016) paved the way to a multi-time-
step GRP version.

Appendix B: The log–sinh transformation behaviours

B1 Log–sinh transformation formulations

In this study, we used the formulations of the log–sinh trans-
formation chosen by Del Giudice et al. (2013):

g3[α,β] : y 7−→ β · log
(

sinh
(
α+ y

β

))
. (B1)

It is strictly equivalent to the formulation used by McInerney
et al. (2017):

g′3[a,b] : y 7−→
1
b

log(sinh(a+ b · y)). (B2)

B2 Different behaviours

Depending on the relative values of α and β and on the value
range of y, compared to α and β, the log–sinh transformation
can be reduced to an affine transformation (i.e. g3[α,β](y+

ε)− g3[α,β](y)= δ · ε) or to the log transformation. The for-
mer case is equivalent to no transformation (identity func-
tion; additive error model), whereas the latter one is equiva-
lent to a multiplicative error model (Table B1).
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Table B1. Summary of the different behaviours of the log–sinh transformation.

Cases Behaviours
α > 3 ·β Additive error model
y > 3 ·β Additive error model
α� y� β Multiplicative error model
y� α� β Additive error model
Otherwise if α+ y� β Multiplicative error model (with an additive constant)

When y� β,

sinh
(
α+ y

β

)
= sinh

(
α

β

)
· cosh

(
y

β

)
+ sinh

(
y

β

)
· cosh

(
α

β

)
' sinh

(
α

β

)
·

(
1+

y2

2 ·β2 + . . .

)
+ cosh

(
α

β

)
·

(
y

β
+ . . .

)
.

Thus,

g3[α,β](y)' β · log
(

sinh
(
α

β

)
+ cosh

(
α

β

)
·
y

β

)
.

When α� β, the latter results in

g3[α,β](y)' β · log
(
α+ y

β

)
. (B3)

B2.1 Cases where the log–sinh transformation is
equivalent to an affine transformation

If x > 3 and sinh(x)≈ ex/2, then log(sinh(x))= x− log(2).
Therefore when z= (α+y)/β > 3, the log–sinh transforma-
tion is equivalent to an affine transformation. In such cases,
g−1

3[α,β](g3[α,β](y)+ ε)= y+ ε.
This happens when

– α > 3 ·β;

– the β value is chosen to be large enough so that for any
y value in the discharge range y > 3 ·β.

Moreover, when y� α� β, Eq. (B3) gives

g3[α,β] ' β ·

[
log

(
α+ y

α

)
+ log(α)− log(β)

]
'
β · y

α
+β · (log(α)− log(β)).

The log–sinh transformation is then equivalent to an affine
transformation.

B2.2 Cases where the log–sinh transformation is
equivalent to a log transformation

As pointed out by McInerney et al. (2017), when α� y� β,
Eq. (B3) gives

g3[α,β](y)' β · log
(
y

β

)
.

The log–sinh transformation is then equivalent to a mere log
transformation.

B3 Calibration

The α and β parameters are in the same physical dimension
as the y variable. Since this study is dedicated to the extrap-
olation context, we used the following dimensionless param-
eterisation to calibrate the variable transformation in various
catchments. α and β are compared to the maximum fore-
casted discharge in the D2sup data subset:

α = γ1 ·max
D2
(Q̃) and β = γ2 ·max

D2
(Q̃). (B4)

In the calibration step, the parameter space is explored on a
(γ1, γ2) grid: 18 values of γ1 from 0.01 to 100 and 15 values
of γ2 from 0.1 to 100 were tested, excluding combined val-
ues leading to the very same behaviours, such as γ1� 3 ·γ2,
equivalent to no transformation (additive error model). A to-
tal of 200 (γ1, γ2) combinations were tested for each calibra-
tion.
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