

Biogas sequestration from the headspace of a fermentative system enhances hydrogen production rate and yield

Antônio Djalma Nunes Ferraz Júnior, Clémence Pages, Eric Latrille, Nicolas Bernet, Marcelo Zaiat, Eric Trably

▶ To cite this version:

Antônio Djalma Nunes Ferraz Júnior, Clémence Pages, Eric Latrille, Nicolas Bernet, Marcelo Zaiat, et al.. Biogas sequestration from the headspace of a fermentative system enhances hydrogen production rate and yield. International Journal of Hydrogen Energy, 2020, 45 (19), pp.11011-11023. 10.1016/j.ijhydene.2020.02.064. hal-02555177

HAL Id: hal-02555177 https://hal.inrae.fr/hal-02555177

Submitted on 22 Aug2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

BIOGAS SEQUESTRATION FROM THE HEADSPACE OF A FERMENTATIVE SYSTEM ENHANCES HYDROGEN PRODUCTION RATE AND YIELD

4

Antônio Djalma Nunes Ferraz Júnior^{1*}, Clémence Pages¹, Eric Latrille¹, Nicolas 5 6 Bernet¹, Marcelo Zaiat³, Eric Trably¹ 7 ¹ LBE, Univ Montpellier, INRA, Narbonne, France. 8 ³Biological Processes Laboratory, Center for Research, Development and Innovation in 9 Environmental Engineering, São Carlos School of Engineering (EESC), University of 10 São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, São Paulo 13.563-120, Brazil. 11 12 13 Contacts: dferraz@iibce.edu.uy; clemence.pages@inra.fr; eric.latrille@inra.fr;

nicolas.bernet@inra.fr; zaiat@sc.usp.br; eric.trably@inra.fr;

*Corresponding author

- 14
- 15

16 Abstract

17 Total pressure (TP) affects the level of dissolved hydrogen gas in the fermentation 18 medium leading to metabolic shifts in mixed microbial-culture-based systems. In this 19 study, the effect on hydrogen production rate and yield was investigated at different TP 20 of a hydrogen-producing system using a microbial non-sterile culture previously heat-21 treated. Four continuous stirred-tank reactors (CSTR) were operated in parallel on a mineral salts-molasses medium (21 g-COD. L⁻¹) at 35°C, pH 5.5 and hydraulic 22 23 retention time (HRT) of 6 h. The TP was set at 80 kPa (R1), 100 kPa (R2), 120 kPa 24 (R3) and 140 kPa (R4) for which reactor performances were estimated at steady-state conditions. As the increase of TP consequently increased the partial pressure of 25 hydrogen (p_{H2}) , the hydrogen production rate (HPR) and yield (HY) were consistently 26 27 negatively influenced. The highest HPR and HY (406.1 \pm 36.8 mL-H₂ h⁻¹; 4.51 molH₂ mol⁻¹_{suc eq.}) were achieved at low pressure conditions (80 kPa). The composition of the 28 29 microbial community mainly represented by species from Sporolactobacillus and 30 Clostridium genera, did not change with the increase and /or decrease of the TP, 31 indicating a regulation at cellular but not population level.

32

Keywords: biohydrogen, dark fermentation, biogas sequestration, ppH₂, sugarcane
 molasses.

35

36

37 1. INTRODUCTION

The production of biohydrogen (BioH₂) from organic waste is a promising biotechnological process with gains at energetic, societal and environmental levels [1]. However, BioH₂ production by dark fermentation (DF) is still a technological challenge for being a very sensitive process, requiring careful balancing of the following parameters: pH [2] [3], temperature [4], organic loading rate (OLR) [5] and specific organic loading rate (sOLR) [6].

In fermentative systems using non-sterile mixed cultures, high H2 yields are associated with a mixture of acetate and butyrate fermentation pathways end-products, while low H₂ yields are associated with other reduced end-products such as lactate, solvents (ethanol, butanol and acetone) and alanine. To date, hydrogen yields in fermentative systems are mostly ranging between $1.2 - 2.3 \text{ molH}_2 \text{.mol}^{-1}_{\text{hexose}}$ which represent only 30 - 50% of the theoretical maximum hydrogen yield (4 molH₂.mol⁻¹_{hexose}, glucose) [7] [8] [9] [10].

51 Multiple reasons have been associated to low hydrogen yields such as (i) 52 anabolic consumption of the substrate for biomass synthesis [4] (ii) inappropriate 53 fermentative conditions [2] [11] (iii) hydrogenotrophic activity [12] (iv) 54 homoacetogenic activity [13] and (v) inhibition by partial pressure of hydrogen [14].

55 The partial pressure of hydrogen (p_{H2}) is an extremely important factor 56 especially for continuous BioH2 production [15] [16] [17] [18]. This factor is explained 57 by Le Chatelier's Principle that says "all chemical equilibrium responds to an increase 58 in the pressure, causing the reaction to move in the opposite sense to that, which rises the pressure." In biological multipahses systems, this event is associated to the 59 60 limitation of the liquid-to-gas mass transfer. The liquid-to-gas mass transfer limitation 61 arises because the gas production rate is higher than the transfer rate to the gas phase [19] [20]. Such a limitation have caused H2 supersaturation in the liquid with 62 63 concentrations of H2 between 5- and 71/fold higher than the equilibrium value [20] 64 [21]. Thereby, during the fermentation process, as the p_{H2} in bioreactors increases, H₂ 65 synthesis decreases [22]. This also can be explained through

66 Metabolic pathways shifts are also observed in function of the p_{H2} . According to 67 Hallenbeck [7] in Clostridial-type hydrogen producing fermentation at low p_{H2} , the 68 NADH generated during glycolysis can be reoxidized, probably by a NADH-dependent

[FeFe] hydrogenase. At moderate to high p_{H2} , this reaction is unfavorable, and NADH 69 70 is reoxidized by the formation of reduced organic compounds (previously mentioned). 71 As a consequence, low hydrogen yields are achieved.

72 Few methods to control the p_{H2} have been investigated: sparging (*i.e.*, gas 73 flushing to remove other dissolved gas, in this case H2), removing H₂ from the system 74 or reactor operation at low pressure. Mizuno et al [23] evaluated the influence of 75 sparging in a continuous stirred tank (CSTR) fed with a mineral salts-glucose medium 76 (10.7 gCOD.L⁻¹). Nitrogen gas was sparged at a flow rate of 15 times the specific 77 hydrogen production rate (sHPR) observed in a control CSTR (i.e., without sparging) that was 1.446 mL H₂. min⁻¹. g⁻¹ biomass. An increase of 68% of hydrogen yield was 78 79 achieved with sparging (1.43 molH₂.mol⁻¹ glucose).

80 Besides nitrogen, other gases such as internal biogas and only carbon dioxide 81 with different flow rates $(100 - 400 \text{ mL.min}^{-1})$ were investigated in a CSTR fed with a mineral salts-sucrose medium (20 gCOD.L⁻¹) (Kim and co-authors, [24]). The best 82 83 performances were obtained by CO₂ sparging at 300 ml.min⁻¹, resulting in the highest H2 yield of 1.68 molH₂.mol⁻¹ hexose converted. Concomitant to the increase of 84 hydrogen production and yield, too much sparging produces dilute gas stream, creating 85 86 a serious problem with respect to the H2 separation from the sparging gas [25].

Fast collection of biogas was also studied as the p_{H2} control method. Liang et al. 87 88 [26] investigated the biogas removal using a vacuum pump (31.4 kPa) and membrane 89 purification of H₂ from a fermentation system (Batch reactor; 2.5 g glucose added). The 90 authors reported that silicone rubber was effective in reducing the p_{H2} , improving the hydrogen production by 10% (2.6 – 3 mmol H_2 .g⁻¹ VSS. h⁻¹) and the hydrogen yield by 91 92 15% (0.84 – 0.92 molH₂. mol⁻¹ glucose). Lee et al. [27] investigated the effect of working 93 with reduced pressure in a CSTR, they worked with pressures similar to the ones in Liu 94 and Wang [28], between 0.2 and 0.9 atm, and concluded that H2 production can be 95 improved in fermentative systems with reduced pressure.

96 Interestingly, no difference regarding H₂ production was observed in pure 97 culture system (Clostridium butyricum strain SC-E1) under vacuum (28 kPa) and non-98 vacuum. Glucose-polypeptone at 0.5 and 1.0% concentration were used as substrate, resulting in maximum hydrogen yields of 1.8 - 2.2 and molH₂.mol⁻¹ glucose for all 99 100 condition evaluated [29].

101 Recently, another strategy to remove BioH2 from the fermentative systems has 102 been tested. Massanet-Nicolau et al. [30] reported a system with electrochemical H2 removal and carbon dioxide absorption as an effective strategy to increase H2 yields
and avoid its consumption. Also, membrane systems are suggested as a way to separate
and purify H2 [31].

106 Despite these mentioned studies on this subject, more detailed research on this 107 topic is necessary to enable the production of BioH₂ at larger scale and with continuous 108 operation of the fermentation process. In this study, regular collection of biogas from 109 headspace of a fermentative continuous system was carried out aiming to control the 110 p_{H2} in the process and thus, attempt to maintain a high hydrogen productivity. The 111 dynamics of the microbial community was also studied based on the sequencing of the 112 V4 region of 16S rRNA gene for Bacteria using High-Throughput Sequencing (MiSeq 113 Sequencing System - Illumina).

114

115 2. MATERIALS AND METHODS

116

117 **2.1. Seed sludge**

The seed sludge was taken from an industry of commercialization of sugarcane and sugar beet plant (UASB-type reactor). The total volatile solids (TVS) concentration of the sludge was 53.7 g/L. Heat-treatment was applied to the sludge at 90°C for 1 h to inactivate hydrogen consumers and to harvest spore-forming anaerobic bacteria such as *Clostridium* sp. [32].

123

124 **2.2. Feeding solution**

125 A mineral salts-sugarcane molasses solution of 21 g COD L⁻¹ was used as 126 carbon source in a feeding medium composed by the following macro- and micro-127 nutrients (mg L⁻¹): NiSO₄.6H₂O, 0.5; FeSO₄.7H₂O, 2.5; FeCl₃.6H₂O, 0.25; CoCl₂.2H₂O, 128 0.04; CaCl₂.2H₂O, 2.06; SeO₂, 0.036; HCl, 0.25, according to Del Nery [33]. The C/N 129 ratio of molasses was 52.7.

130

131 **2.2. Reactor design and operational conditions**

Experiments were carried out in four continuous stirred reactors of 4 L with a working volume of 2 L (Figure 1). Each reactor was equipped with a stirring system made of a Rushton turbine and a marine propeller to ensure a homogeneous mixture. A revolution counter was connected to access to the measurement of the stirring velocity which was 250 rpm. The gas flow rate was measured with a peristaltic pump calibrated 137 at each different levels of pressure. Pressure was regulated with a control device 138 combining a pressure sensor and a peristaltic pump following a two-band control law. A 139 combined sensor was connected to the reactor for measuring the redox potential and pH 140 (4010/120/Pt100, Mettler Toledo). The pH and redox meter (M300 – Mettler Toledo) 141 was connected to a computer for on-line data acquisition (home-made software Odin in 142 collaboration with INRIA teams). The pH was set and controlled at 5.5 by adding 143 NaOH (2 M) with a peristaltic pump. Temperature in the reactor was also controlled 144 using a platinum probe Pt100 and a heating electric resistance. The temperature was maintained constant at 37 ± 0.5 °C. The hydraulic retention time (HRT) was 6 h, 145 resulting in an organic loading rate (OLR) of 84.2 gCOD.L⁻¹. d⁻¹, as suggested in [5]. 146 147 The total pressure tested is presented in Table 1. [Figure 1 – Please here]

[Table 1 – Please here]

- 148
- 149
- 150 151

152 The experimental setup was based on the following assumptions: (i) the second 153 column of Table 1 presents the initial TP of the four independent conditions (R1 to R4), 154 to evaluate the real influence of total pressure on hydrogen producing-system. This also 155 represents the condition where the microbial community had the same operating history; 156 (ii) other conditions (the third and fourth columns) were performed to evaluate how the 157 microbial community responds to a variation of total pressure to evaluate whether 158 hydrogen production was inhibited or if such inhibition is irreversible or reversible; (iii) 159 the steady-state for each operating condition was considered when the coefficient of 160 variance of the hydrogen production rate (HPR) was less than 10% based on its mean 161 value from the ten last HRT of each operating phase; (iv) considering the steady-state of 162 hydrogen-producing systems, the p_{H2} of the headspace and the concentration of 163 dissolved hydrogen in the liquid medium ([H₂] Liq.) were estimated by Dalton's and 164 Henry's Law, respectively; (v) Experiments without pressure control was not carried 165 out. Thereby, the condition at 100 kPa was set as control both to compare data between 166 conditions and reactors, and microbial community response to the total pressure 167 variation (also controlled). (vi) The inspected pressure range was chosen for be near 168 atmospheric pressure and to evaluate the sensibility of the process.

169

170 2.3. Chemical analysis

Biogas composition was analyzed as previously described in [34]. Reduced sugars and fermentation end-products were quantified using high performance liquid chromatography (HPLC; HPX 87 column - Biorad) coupled to a refractometer (Waters R410). The eluent used was a H₂SO₄ solution (0.222 μ l L⁻¹). The operating conditions were: elution flow, 0.4 mL min⁻¹; temperature of column, 35 °C; temperature of refractometer, 40 °C. Microbial cells (biomass) concentration was determined as volatile suspended solids (VSS) by filtration at 1.2 µm, according to [35].

178 2.4. DNA extraction, PCR amplification and High-Throughput Sequencing of 179 hydrogen-producing systems samples

180 At the end of each operating condition, microbial cells were collected after 181 centrifugation $(12000 \times g; 15 \text{ min})$ of 2 mL of culture. Genomic DNA was extracted 182 using the Wizard Genomic DNA Purification kit (Promega). The V3-4 region of the 183 16S rRNA the gene was amplified with forward primer 184 CTTTCCCTACACGACGCTCTTCCGATCTTACGGRAGGCAGCAG and the reverse 185 primer GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAA TCCT 186 plus the respective linkers over 30 amplification cycles at 65° C (annealing 187 temperature). An index sequence was added using the primers AATGA-188 TACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC and 189 CAAGCAGAAGACGGCATACGAGAT-index-TGACTGGAGTTCAGACGTGT

190 (PCR - 12 cycles). The PCR products were purified and loaded onto the Illumina 191 MiSeq cartridge according to the manufacturer's instructions for sequencing (paired-192 end; 250 bp reads) which was performed at the GeT PlaGe sequencing center of the 193 genotoul life science network in Toulouse, France (get.genotoul.fr). Quality checking 194 was made using a slightly modified version of the Standard Operation Procedure by 195 Kozich et al. [36] in Mothur version 1.33.0. Alignment and taxonomic outline was made 196 using release information: SILVA 102, as provided by Schloss et al. [37]. The software 197 PAUP* (version 4.0b10) was used to infer a phylogeny - criterion of maximum 198 parsimony [38]. Bootstrap support was calculated using 1500 repetitions. SumTrees 199 (version 3.3.1) of the DendroPy package (version 3.12.0) was used to map bootstrap 200 values to the best phylogeny [39]. Sequences of most abundant operational taxonomic 201 unit (OTU) found in the biofilm were deposited in the NCBI Genbank database under 202 the following accession name SUB5433515 (MK765997 - MK766231).

203

204 **2.5. Calculations**

205 Hydrogen Production Rate (HPR, mL-H₂ h⁻¹) and Hydrogen Yield 206 (HY, mol-H₂ mol⁻¹_{suc eq.}) were calculated using Equations 1 and 2 - 4, respectively.

207 HPR =
$$Q_g \cdot \% H_2$$
 (1)

208 HY =
$$((Q_g. nH_2)/V) / ((Q.(C_{s0} - C_{sF}))/MM_s)$$
 (2)

209
$$nH_2 = \%H_2 . n$$
 (3)

210
$$n = (P.V) / (R.T)$$
 (4)

where, Q_g is the biogas flow, $\%H_2$ is the hydrogen content in biogas, nH_2 is the number of mol of hydrogen, V is the volume of gas of the sample, Q is the liquid flow in the reactor, C_{S0} is the influent substrate concentration, C_{SF} is the effluent substrate concentration, and MM_S is the sucrose molar mass, n value corresponds to the total number of moles of sample (i.e., $\%H_2$, $\%CO_2$ and $\%CH_4$), P is the gas pressure, R is the universal ideal gas constant, and T is the absolute temperature.

The theoretical expected hydrogen production and the acetate produced from homoacetogenesis were calculated using Equations (5) and (6) as proposed by Luo et al. [3] and Ferraz Júnior et al [25]:

220
$$H_{2 \text{ theoretical}} = 2[A] + 2[B] - [P]$$
 (5)

221 Acetate homoacetogenesis =
$$(2[A] + 2[B] - [P] - [H_2])/6$$
 (6)

where [A], [B], [P] and [H₂] are the measured acetic, butyric and propionic acids; and the hydrogen concentrations in mM, respectively.

The COD balance expressed as COD recovery (Equation 7) of the fermentative process was calculated as follows:

226
$$\operatorname{COD}_{\operatorname{recovery}}\% = (\operatorname{COD}_{\operatorname{final}}/\operatorname{COD}_{0}) * 100$$
 (7)

227 where COD_0 is the COD of molasses fed and COD final is the sum of the mass, 228 expressed as g-COD, of every outlet component of the fermentative system, as proposed 229 by Ferraz Júnior et al [5].

230

Principal component analysis (PCA) was performed using STATISCA 10. 231 Primarily, a factor analysis was performed to identify the number of independent factors 232 [20]. The Kaiser criterion was used to decide the factors that could be retained for 233 interpretation [41]. The factors cut off was identified through the point of wherein the 234 eigenvalue level drop off continuously based on Catell [42].

- 235
- 236

3. **RESULTS AND DISCUSSION**

237

238 3.1. Hydrogen production (HPR) and yield (HY)

239 Four similar stirred reactors were operated in parallel with the same conditions 240 of pH, temperature, stirring, initial concentration of substrate and HRT. However, 241 different initial total pressures (TP) were applied (R1 - 80 kPa; R2 - 100 kPa; R3 - 120 242 kPa; and R4 – 140 kPa). The steady-state was reached after approximately 60 HRT 243 from the time when the TP of R1, R2 and R3 was increased to 100, 120 and 140 kPa, 244 respectively (Phase II). The R4 was disassembled, according to the experimental design. 245 A second steady-state was achieved within the same period as Phase I for the remaining 246 reactors. Then, R1 and R2 had their total pressure increased to 120 and 140 kPa, 247 respectively, and R3 decreased to 100 kPa (Phase III). The steady-state Phase III was 248 also achieved after 15 days.

Hydrogen content of biogas was around 47 - 54% for all reactors and 249 250 conditions. Methane was not observed in the biogas suggesting that the inoculum heat-251 treated, and the operating conditions inhibited the methanogenesis and favored the 252 hydrogen-producing process. The partial pressure of hydrogen (p_{H2}) was determined by 253 Dalton's law and the values ranged between 41-70 kPa. These values are slightly higher 254 than [26] and [29].

255 The different total pressure (TP) showed a strong influence on hydrogen 256 production rate (HRP, mL-H₂ h^{-1}) (Figure 1). The highest HPR (406.1±36.8 mL-H₂ h^{-1}) 257 was achieved in R1 with the lowest TP of 80 kPa. At atmospheric pressure (100 kPa), 258 the HRP decreased 25% in relation to Phase I. The HPR decreased even more (52%) 259 with the increase of TP to 120 kPa.

260	The same behavior was observed in R2 and R3. The increase of the TP from 100
261	to 140 kPa; and from 120 to 140 kPa, was reflected in HPR decrease of 70% (R2) and
262	17% (R3), respectively (Phase I). When the TP was alleviated to 100 kPa in R3, the
263	HPR increased by 90% in Phase I. In addition, the highest TP (140 kPa) as applied to
264	R4 resulted in the lowest value of HRP (61.6 ± 5.8 mL-H ₂ h ⁻¹) (Table 2). These findings
265	show that gas removal had a positive effect on HPR. The increase of the TP with a
266	consequent increase of the p_{H2} influenced negatively the Bio-H ₂ production.
267	Hydrogen yield (HY) followed the same trend as HPR, being the maximum and
268	the minimum values achieved of 4.51 and 0.56 mol-H ₂ mol ⁻¹ _{suc eq.} when the TP was 80
269	and 140 kPa, respectively (Table 2). The HY at initial TP of 80 KPa represented an
270	increase of 61.6% and 705% comparing to the controlled atmospheric pressure (100
271	kPa) and to the highest TP evaluated (140 kPa), respectively, reaffirming the high
272	influence of TP on biological hydrogen production process.
273	
274	[Figure 2 – Please here]
275	
276	[Table 2 – Please here]
277	
278	Based on the p_{H2} of the headspace, the concentration of dissolved hydrogen in
279	the liquid medium ([H ₂] _{Liq.}) was estimated by Henry's Law. The correlation between
280	[H ₂] _{Liq.} and; HPR and HY indicated a linear coefficient of 0.979 and 0.968, respectively
281	(Figure 3).
282	[Figure 3 – Please here]
283 284	By applying linear regression analysis on the experimental results, the equations
285	(4) and (5) were obtained to describe the influence of $[H_2]_{Liq.}$ on HPR and HY,
286	respectively. The $[H_2]_{Liq.}$ of 0.57 mg. L ⁻¹ resulted in maximum values of HPR and HY
287	while the [H ₂] $_{Liq.}$ of 0.99 mg. L ⁻¹ resulted in the lower values of the respective variables
288	indicating that during fermentation process, as the p_{H2} in bioreactors decreases, BioH ₂
289	synthesis increases (vice versa).
290	HPR = $-821.15^{*}[H_2]_{\text{Liq.}} + 890.1$ R ² = 0.979 (4)
291	$HY = -9.2954^{*}[H_{2}]_{Liq.} + 9.6264 \qquad R^{2} = 0.968 $ (5)
292	
293	3.2. Intermediates products from molasses fermentation

The conversion of sucrose, the main carbon source presented in the mineral salts-sugarcane molasses, was higher than 99% for all reactors and conditions. However, reducing sugars such as glucose and fructose remained in the acidogenic reactors liquid outlet in percentage between 29% and 37.4% (Figure S1). These findings are similar to the ones reported by [3] who evaluated different configurations of reactor to produce hydrogen from sucrose.

In addition to the molasses fermentation products, the organic acids were quantified to investigate the main metabolic pathways in the hydrogen-producing systems. Table 3 shows that the main intermediates products were acetate (49.1 - 22mM) followed by lactate (16.7 - 27.8 mM), ethanol (10.9 - 33.2 mM) and butyrate (16.1 - 24.1 mM). Traces of propionate (0.1 mM) were detected in conditions with TP higher than 100 kPa (Table 3).

At steady state, the metabolite yields were $0.4 - 0.9 \text{ mol}_{acetate.} \text{ mol}^{-1} \text{ suc. eq.}; 0.3 - 0.5 \text{ mol}_{lactate} \text{ mol}^{-1} \text{ suc. eq.}; 0.2 - 0.6 \text{ mol}_{ethanol} \text{ mol}^{-1} \text{ suc. eq.}; and 0.3 - 0.4 \text{ mol}_{butyrate} \text{ mol}^{-1} \text{ suc. eq.}$ 308 suc. eq. Similar values of organic acids yields have been reported by Palomo-Briones et al. 309 [43] who studied the influence of OLR on hydrogen production using a cheese whey-310 fed CSTR. Despite the carbon source being different from this study, heat pretreatment 311 of the sludge and operating conditions of pH, temperature, stirring, OLR and HRT were 312 analogous.

313 The theoretical hydrogen production was also estimated for each TP evaluated 314 according to the organic acids concentrations detected, mainly acetate, butyrate and 315 propionate. The measured hydrogen ranged between 9.9% and 44.2% of the theoretical 316 hydrogen estimated (Table 3), suggesting the homoacetogenesis pathway especially at a 317 TP of 140 kPa. Ferraz Júnior et al. [6] and Corona & Razo-Flores [44] reported similar 318 values for the measured H₂ and theoretical H₂ ratio. Finally, it is worth mentioning that 319 biomass, residual sugars, organic acids and H₂ represented between and 87.4 and 320 105.2% of the COD fed to the fermentation systems (Figure S1). In this study, the COD 321 fed drive to hydrogen production increased from 2.31% to 18% as the TP decreased 322 from 140 kPa to 80 kPa.

323 **3.3. Microbial community analysis**

324 16S ribosomal DNA gene sequences at steady states were analyzed by Illumina
 325 MiSeq technology to characterize the microbial community structure and reveal the

total pressure-associated changes. Microbial composition of all TP evaluated is depictedin Figure 4A.

More than 400 thousand partial 16S ribosomal DNA gene sequences were obtained out of which 94 – 98% were assigned to the domain *Bacteria* more specifically phylum *Firmicutes*. No sequence was assigned to the domain *Archaea* (9.6% of inoculum) by the end of reactors operation, indicating that the sludge pretreatment added to the operating conditions inhibited successfully methanogenesis.

333 More precisely, the most abundant microorganism harbored in all reactor and conditions were Sporolactobacillus (57 - 82%) followed by species of genus 334 335 Clostridium (14 - 31%) and Ethanoligenens (1.2 - 4.6%) (Figure 4A). This low 336 microbial diversity is considered as a common characteristic in Bio-H₂ producing 337 systems [11] and apparently, the strong pressure of selection becomes accentuated in 338 reactor with suspended biomass [45]. Remarkably, no drastic change in the microbial 339 community was observed at different TP, suggesting that both HPR and HY were 340 directly affected by the mass transfer process (Liquid-Gas) or even by inhibition of 341 synthesis/consumption of hydrogen at the cellular level rather than microbial 342 composition (Figure 4B). However, specific studies must be carried out to validate such 343 a statement.

344 Both Sporolactobacillus and Clostridium have been reported as obligate 345 anaerobes capable of producing endospores [32]. Therefore, these two genera are 346 strongly associated to the heat-treatment of seed sludge that is able to inactivate 347 hydrogen consumers, primely methanogenic archaea, and induce the formation of spore-348 forming anaerobic bacteria [1]. However, Sporolactobacillus is described as 349 homofermentative, lactic acid-producing organisms [46] [47] while species within the 350 *Clostridium* genus have been well proved to possess a high ability to produce hydrogen 351 independently of the reactor configuration [3], organic loading rate [32], 352 immobilization [4] or in suspension [12] [48]. With less dominance, in this study, but 353 not less important, the genus *Ethanoligenens* harbors the most promising hydrogen-354 producing organisms due to their capability to generate hydrogen at high rates and 355 efficiency [49].

356

[Table 3 – Please here]

357

358	Aiming to better understand the interaction among the indicators of reactor
359	performances, a principal component analysis (PCA) was performed (Figure 5). Two
360	principal components accounted for nearly 74% of the dataset variance. The results
361	showed two well-defined axes or principal components (PC): PC 1 which represents the
362	main effect of HPR, HY, acetate yield, TP 80 kPA and TP 100 kPa opposing TP 140
363	kPa; and PC II which represents TP 120 kPa, lactate, butyrate and ethanol yields
364	opposing TP 140 kPa. PC I reaffirms that the higher values of HPR and HY were
365	archived at the lowest TP evaluated while PC II indicates a direct effect of high
366	pressures on byturate, lactate and ethanol yields. The results also showed an inverse
367	relationship between ethanol yield and TP 140 kPa. It should be noticed that the
368	microbial community was not computed in the PCA analysis due to its quite low
369	variability (Figure 4B).
370	
371	[Figure 4 – Please here]
372	
373	[Figure 5 – Please here]
374	
375	3.4. Highly efficient Bio-H2 condition with regard to the literature
376	The operation of the dark fermentative high-rate CSTR fed with a mineral salts-
377	sugarcane molasses solution at low total pressure (i.e., TP and p_{H2} of 80 kPa and 41
378	kPa, respectively) was found to favor successfully the Bio-H ₂ production. The observed
379	Bio-H2 yields were even slightly one of the highest value when compared to other
380	reports (Table 4).
381	[Table 4 – Please here]
382	References linked to Table 4: [24] [23] [26] [29] [50] [10] [44]
383	
384	As previously presented, the microbial community composition was clearly
385	dominated by Sporolactobacillus, Clostridium and Ethanoligenens genera which
385 386	dominated by <i>Sporolactobacillus</i> , <i>Clostridium</i> and <i>Ethanoligenens</i> genera which catalyzed/ regulated the Bio-H ₂ production in the dark fermentation process,
385 386 387	dominated by <i>Sporolactobacillus</i> , <i>Clostridium</i> and <i>Ethanoligenens</i> genera which catalyzed/ regulated the Bio-H ₂ production in the dark fermentation process, independently of the TP imposed (Figure 4A). Theoretically, 8 moles of H ₂ per mole of

389 produced if acetate is obtained as the only fermentation product (Reaction 1). If butyrate

or ethanol are the fermentation products, 4 moles of H_2 per mole of sucrose are rather obtained (Reaction 2 and 3) [51] [52] [53].

392 Acetate-type fermentation 393 $C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 4H_2 + 2CO_2$ ΔG° -206.0 kJ.mol⁻¹ (1)394 395 *Butyrate-type fermentation* kJ.mol⁻¹ $C_6H_{12}O_6 \rightarrow CH_3CH_2CH_2COOH + 2H_2 + 2CO_2$ -255.0 396 ΔG^{o} 397 (2)398 399 *Ethanol-type fermentation* $C_6H_{12}O_6 + H_2O \rightarrow 2H_2 + 2CO_2 + CH_3CH_2OH + CH_3COOH \Delta G^{\circ} - 205.2 \text{ kJ.mol}^{-1}$ 400 401 (3)402

403 For acetate-type fermentation (glucose-model), the breakdown of pyruvate 404 yields (2 moles of H₂ per mole of glucose), and an additional 2 moles of H₂ per mole of 405 glucose is derived through Reaction 4 [54]. The reduction of hydrogenase by NADH is 406 energetically unfavorable under standard conditions unless at extremely low p_{H_2} (< 0.1 407 kPa)[55]. Based on the Gibb's free energy change, butyrate-type fermentation is more 408 energetically favorable and thus NAD is often used in butyrate-type fermentation. In 409 this sense, the combination of acetate and butyrate-type fermentation might occur 410 simultaneously during H_2 production using mixed cultures; and therefore, the maximum 411 hydrogen yield may never exceed 2.5 moles of H₂ per mole of glucose (i.e., 62.5% of its 412 maximum theoretical yield) (Reaction 5) [56] [57] [18]. In the case of sucrose as carbon 413 source, this value is equivalent to 5 moles of H₂. Based on this assumption, the low pressure applied in this study achieved a HY of 4.51 mol-H₂ mol⁻¹_{suc eq.}, which 414 415 represents 95% of the maximum hydrogen yield through mixed biological path 416 (Reaction 5).

417

418

419

420

 $NADH + H^+ \rightarrow H_2 + NAD^+ \qquad \Delta G^{\circ \circ} + 18.1 \text{ kJ.mol}^{-1}$

(4)

421 Acetate and butyrate-type fermentation using mixed culture

NADH: ferrodoxin oxireductase activity

422 $C_6H_{12}O_6 + 0.5H_2O \rightarrow 0.75CH_3(CH_2)_2COOH + 0.5CH_3COOH + 2CO_2 + 2.5H_2$ (5)

423

In addition, Procentese *et al.* [58] reported that species of *Clostridium acetobutylicum* could be inhibited by the accumulation of acetate (26 Mm) and butyrate (34 Mm). In the present study, acetate and butyrate were in the range of the inhibitory

427 concentrations (Table 3). In fermentative systems, these acids normally accumulate in 428 the growth medium as dead-end metabolites, since the conversion of these acids into 429 additional H₂ is thermodynamically unfavorable. Consequently, a redirection of the 430 cellular metabolic pathways towards solvent production is often taken. As an 431 illustration, Clostridium beijerinckii strains have been reported to reconsume the 432 produced acids at low pH, converting them into ethanol, isopropanol and butanol [59] 433 [60]. Considering the low abundance of *Ethanoligenens* (1.2 - 4.6%), ethanol 434 concentrations detected in the acidogenic reactors liquid outlet was attributed to 435 solventogenesis rather than the ethanol-type fermentation thus, not being accounted in 436 the theoretical hydrogen production (Equation 1).

437

438 **3.5. Homoacetogenesis still occurred at low pressure**

439 In the anaerobic digestion process, hydrogenotrophic methanogenesis (Reaction 440 6) is thermodynamically more favorable than homoacetogenesis (Reaction 7) in 441 standard conditions [61]. Acetate evolution as sole metabolite in the liquid phase can 442 only occur at p_{H2} below 0.06 kPa. Homoacetogenesis is also a possible pathway that 443 consumes hydrogen and generates acetate in anaerobic digestion, but the p_{H2} threshold 444 for acetate production through this pathway is 0.25 kPa at 35°C, which is high when 445 compared to the thresholds of 0.06 kPa (hydrogenotrophic methanogenesisis pathway) 446 [14][62].

In this study, the p_{H2} value at low-pressure was still 160 times higher than the p_{H2} threshold for acetate production by homoacetogenesis, indicating that even if methanogenesis was prevented by heat-pretreatment of sludge and operating condition, homoacetogenesis could have occured. The steady-state operation, low pH (5.5) and HRT of 6 h might also favor such reaction 7.

452

453	Hydrogenotrophic methanogenesis				
454	$4H_2 + HCO_3 + H^+ \rightarrow CH_4 + 3H_2O$	ΔG^{o}	- 1	35.5	kJ.mol ⁻¹
455	(6)				
456					
457	Homoacetogenesis				
458	$4H_2 + 2HCO_3^- + H^+ \rightarrow CH_3COO^- + 4H_2O$	ΔG^{o} -	104.5 kJ.mo	l ⁻¹	(7)
459					
460	In an experiment at atmospheric press	ure performed	d by Corona a	and Ra	azo-Flores
461	[44], the increase in the agitation speed from	n 150 to 300	rpm was in	pleme	ented as a
462	strategy to collect the hydrogen gas from the	liquid phase a	and avoid its	consu	mption by

463 homoacetogens. The authors reported that values between 30% and 38% of the 464 measured acetate came from homoacetogenesis, being the lower value of the acetate 465 estimated from homoacetogenesis was achieved at the highest stirring condition. This 466 finding is in accordance with the values obtained in this study at TP condition of 80 kPa 467 and 100 kPa (i.e., p_{H2} of 41 kPa and 49 kPa, respectively). Consistently, when TP of 468 140 kPa (p_{H2} of 70 kPa) was applied, acetate issued from homoacetogenesis reached 469 values up to 56.6% due to a higher availability of hydrogen in the liquid medium, 470 resulting in the worst condition for Bio-H₂ production even with agitation speed set at 471 250 rpm (operating condition – *subhead 2.2.*).

472 3.6. Lactate-type fermentation might comprise an additional pathway to produce 473 Bio-H₂

474 Lactic acid bacteria (LAB) are often detected in mesophilic hydrogen producing
475 consortia as bacteria that accompany hydrogen producers [47]. However, the real role of
476 LAB in hydrogen-producing systems and their influence on hydrogen producers are still
477 unclear.

478 Noike et al. [63]; Ren et al. [49] and Gomes et al. [64] reported inhibition of 479 hydrogen producers by LAB due to substrate competition (replacement of hydrogen 480 fermentation by lactic acid fermentation) and excretion of bacteriocins. In contrast, a 481 positive role of LAB in dark fermentation process has also been reported [65]. 482 Fluorescence In Situ Hybridization (FISH) images from a high-rate fermentative 483 hydrogen system suggested that Streptococcus cells acted as seeds for granule formation 484 [66]. It is particularly important in CSTR, since this may help increasing biomass 485 concentration into the reactor leading it to higher Bio- H_2 production [65]. Yang et al. 486 [67] even declared the isolation of Lactobacillus bacteria capable of hydrogen 487 production during lactose fermentation.

488 Corroborating to the positive role of LAB in dark fermentation process, several 489 clostridia have also demonstrated the ability to ferment lactate. *Clostridium* 490 *propionicurn* uses the acrylate pathway to metabolize lactate, as a sole carbon and 491 energy source [68]. *Clostridium acetobutylicum* cultures metabolize lactate in corn steep 492 liquor [69]. *Clostridium beijerinckii* [70] and *Clostridium tyrobutryicum* [71] require 493 acetate as co-substrate to utilize lactate but the role of acetate and the pathway of lactate 494 metabolism have not been defined. One of the first reports of lactate conversion to butyrate and hydrogen was the study made by Thauer et al. [72] (Reaction 8). However, this reaction does not include acetate reduction. Later, in experiments made with *Clostridium acetobutylicum* strain P262, acetate was included in the equation and the Gibbs free energy was estimated at approximately -53.8 kJ.mol⁻¹ (Reaction 9) [73]. These last authors added that lactate utilization was catabolized by an inducible NAD-independent lactate dehydrogenase (iLDH) with the Michaelis constant of enzyme reaction (K_m) of 3.2 mM for D-lactate.

502 *Lactate conversion to butyrate and hydrogen*

```
505 Lactate and acetate conversion to butyrate and hydrogen via NAD-iLDH pathway
```

506 1.4CH₃CH(OH)COOH + 0.6CH₃COOH → CH₃(CH₂)₂COOH + 1.4CO₂ + 0.8H₂ + H₂O 507 ΔG° -53.8 kJ.mol⁻¹ (9)

508 Lactate and acetate conversion to butyrate and hydrogen 509 $CH_3COOH + 2CH_3CH(OH)COOH \rightarrow 3/2CH_3(CH_2)_2COOH + H_2 + 2CO_2 + H_2O$ 510 $\Delta G^{o^*} - 156.6 \text{ kJ.mol}^{-1}$ (10)

511 More recently, hydrogen and butyrate were produced from a mixture of acetate 512 (50.8 mM) and lactate (33.3 mM) using Clostridium diolis JPCC H-3. A molar ratio of 513 consumption of acetate to lactate was 1:2 and the very favorable Gibbs free energy of 514 the reaction (Reaction 10) strongly suggests that this reaction would have proceeded 515 [74]. Interestingly, in this study, Sporolactobacillus species were the most abundant 516 microorganisms in all reactors and conditions while lactate was the second most 517 abundant organic acids detected in the acidogenic reactor liquid outlet. As previously 518 mentioned, a moderate relationship was found between butyrate and lactate yields 519 indicating a direct interaction within these two metabolic intermediates (Figure 5).

520 Considering the actual concentrations of intermediates, butyrate and H_2 521 synthesis from lactate and acetate is favorable (Table 5). Therefore, the consumption of 522 lactate using acetate as co-substrate was suggested to be an additional pathway to 523 produce H_2 under the evaluated conditions.

[Table 5 – Please here]

References linked to Table 5: [75]

- 524
- 525
- 526
- 527

528 **4.** Conclusions

529 In this study, it was shown that the sequestration of biogas from bioreactor headspace 530 enhanced the hydrogen production rate and yield. The higher hydrogen yield (4.51 mol $H_2 \,.\, mol^{-1}{}_{suc} eq.$) achieved was obtained under a low total pressure of 80 kPa. Interestingly, the composition of the microbial community did not change with the increase and /or decrease of the total pressure. Acetate from homoacetogenesis was accounted even at low pressure conditions. In addition, observations suggest that lactate-type fermentation might play a key role in dark fermentation and might be more considered as additional pathway to produce hydrogen.

537

539

538 Acknowledgement

The authors gratefully acknowledge the financial support from FAPESP (Projects 2013/15665-8 and 2015/21650-9). Special thanks to Etienne Consoni, William Level,
Dr. Afifi Akiar, Dr. Antonella Marone, Dr. Jordan Seira, Dr. Diane Plouchart, Dr. Julie Jimenez, Dr. Gabriel Capson-Tojo, Dr. Wendy Jabberwocky, Dr. Silvio Riggio, Dr.
Martha Minale, Dr. Javiera Belen, Felipe Guilayn, Lucia Braga, Aurelie Bichot, Helene Thomas, Virginie Rossard, Alice Danel, Diane Ruiz, Pacôme Prompsy, Albane Lomenede, Clément Van Vlierberghe and Fernanda Peiter.

548 **Compliance with ethical standards**

549

547

- 550 Conflict of interest
- 551 The authors declare that they have no conflict of interest.
- 552553 *Ethical statement*

554 The authors confirm that the article does not contain any studies with human 555 participants or animals.

556

557 REFERENCES558

- Toledo-Alarcón J, Capson-Tojo G, Marone A, Paillet F, Ferraz Júnior ADN,
 Chatellard L, et al. Basics of bio-hydrogen production by dark fermentation.
 2018. doi:10.1007/978-981-10-7677-0_6.
- 562 [2] Koyama MH, Araujo Junior MM, Zaiat M, Ferraz Junior ADN. Kinetics of
 563 thermophilic acidogenesis of typical Brazilian sugarcane vinasse. Energy 2016.
 564 doi:10.1016/j.energy.2016.10.043.
- 565[3]Mota VT, Ferraz Júnior ADN, Trably E, Zaiat M. Biohydrogen production at pH566below 3.0: Is it possible? Water Res 2018;128. doi:10.1016/j.watres.2017.10.060.
- 567 [4] Ferraz Júnior ADN, Etchebehere C, Zaiat M. Mesophilic hydrogen production in
 568 acidogenic packed-bed reactors (apbr) using raw sugarcane vinasse as substrate:
 569 Influence of support materials. Anaerobe 2015.
- 570 doi:10.1016/j.anaerobe.2015.04.008.
- 571 [5] Ferraz Júnior ADN, Wenzel J, Etchebehere C, Zaiat M. Effect of organic loading
 572 rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic
 573 packed bed reactors. Int J Hydrogen Energy 2014;39:16852–62.
- 574 doi:10.1016/j.ijhydene.2014.08.017.
- Ferraz Júnior ADN, Etchebehere C, Zaiat M. High organic loading rate on
 thermophilic hydrogen production and metagenomic study at an anaerobic

577		packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery.
578		Bioresour Technol 2015;186:81–8. doi:10.1016/j.biortech.2015.03.035.
579	[7]	Hallenbeck PC. Fermentative hydrogen production: Principles, progress, and
580		prognosis. Int J Hydrogen Energy 2009;34:7379–89.
581		doi:10.1016/i.iihvdene.2008.12.080.
582	[8]	Singh L. Wahid ZA. Methods for enhancing bio-hydrogen production from
583	[0]	biological process: A review I Ind Eng Chem 2015:21:70–80
584		doi:10.1016/LUEC 2014.05.035
585	[9]	Veras S Mozer TS Ruhim C C AS ScienceDirect Hydrogen · Trends
586	[2]	production and characterization of the main process worldwide 2016:2
587		doi:10.1016/j.jihydene 2016.08.219
588	[10]	Ferraz Júnior ADN Damásio ARI Paixão DAA Alvarez TM Squina FM
580	[IU]	Applied Metagenomics for Biofuel Development and Environmental
500		Sustainability Adv. Pasia Sai Sacond Conor Bioathanal from Sugaraana
501		Cham: Springer International Publishing: 2017 p. 107, 20. doi:10.1007/078.2
502		Chain. Springer International Publishing, 2017, p. 107–29. doi.10.1007/978-3-
592 502	F111	519-49820-5_7.
595 504		ruess L1, Ferraz ADN, Machado CB, Zalat M. Temporal dynamics and
594 505		here the interview of the second
595 596		bacteria in sugarcane vinasse dark fermentation: The key role of lactate.
596	[10]	Bioresour Technol 2018;24/:426–33. doi:10.1016/j.biortech.201/.09.121.
597	[12]	FM Braga A, Ferraz Junior ADN, Zaiat M. Thermophilic biohydrogen
598		production using a UASB reactor: performance during long-term operation. J
599		Chem Technol Biotechnol 2015:n/a-n/a. doi:10.1002/jctb.4665.
600	[13]	Carrillo-Reyes J, Celis LB, Alatriste-Mondragón F, Montoya L, Razo-Flores E.
601		Strategies to cope with methanogens in hydrogen producing UASB reactors:
602		Community dynamics. Int J Hydrogen Energy 2014;39:11423–32.
603	54.43	doi:10.1016/j.ijhydene.2014.05.099.
604	[14]	Kraemer JT, Bagley DM. Measurement of H 2 consumption and its role in
605		continuous fermentative hydrogen production. Water Sci Technol 2008;57:681.
606	F 4 F 7	doi:10.2166/wst.2008.066.
607	[15]	Doremus MG, Linden JC, Moreira AR. Agitation and pressure effects on
608		acetone-butanol fermentation. Biotechnol Bioeng 1985;27:852–60.
609		doi:10.1002/bit.260270615.
610	[16]	Dreschke G, Papirio S, Lens PNL, Esposito G. Influence of liquid-phase
611		hydrogen on dark fermentation by Thermotoga neapolitana. Renew Energy
612		2019;140:354–60. doi:10.1016/j.renene.2019.02.126.
613	[17]	Dreschke G, Papirio S, D'Ippolito G, Panico A, Lens PNL, Esposito G, et al. H2-
614		rich biogas recirculation prevents hydrogen supersaturation and enhances
615		hydrogen production by Thermotoga neapolitana cf. capnolactica. Int J Hydrogen
616		Energy 2019;44:19698–708. doi:10.1016/j.ijhydene.2019.06.022.
617	[18]	Noblecourt A, Christophe G, Larroche C, Santa-Catalina G, Trably E, Fontanille
618		P. High hydrogen production rate in a submerged membrane anaerobic
619		bioreactor. Int J Hydrogen Energy 2017;42:24656–66.
620		doi:10.1016/j.ijhydene.2017.08.037.
621	[19]	Barca C, Ranava D, Bauzan M, Ferrasse J-H, Giudici-Orticoni M-T, Soric A.
622		Fermentative hydrogen production in an up-flow anaerobic biofilm reactor
623		inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio
624		vulgaris. Bioresour Technol 2016;221:526–33.
625		doi:10.1016/j.biortech.2016.09.072.
626	[20]	Pauss A, Andre G, Perrier M, Guiot SR. Liquid-to-Gas mass transfer in anaerobic

627		processes: Inevitable transfer limitations of methane and hydrogen in the
628		biomethanation process. Appl Environ Microbiol 1990;56:1636–44.
629	[21]	Castelló E, Nunes Ferraz-Junior AD, Andreani C, Anzola-Rojas M del P,
630		Borzacconi L, Buitrón G, et al. Stability problems in the hydrogen production by
631		dark fermentation: Possible causes and solutions. Renew Sustain Energy Rev
632		2019:109602. doi:10.1016/j.rser.2019.109602.
633	[22]	Kisielewska M, Dębowski M, Zieliński M. Improvement of biohydrogen
634		production using a reduced pressure fermentation. Bioprocess Biosyst Eng
635		2015;38:1925–33. doi:10.1007/s00449-015-1434-3.
636	[23]	Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL. Enhancement of hydrogen
637		production from glucose by nitrogen gas sparging 2000;73:59–65.
638	[24]	Kim D, Han S, Kim S, Shin H. Effect of gas sparging on continuous fermentative
639		hydrogen production 2006;31:2158–69. doi:10.1016/j.ijhydene.2006.02.012.
640	[25]	Levin DB, Pitt L, Love M. Biohydrogen production : prospects and limitations to
641		practical application 2004;29:173-85. doi:10.1016/S0360-3199(03)00094-6.
642	[26]	Liang T, Cheng S, Wu K. Behavioral study on hydrogen fermentation reactor
643		installed with silicone rubber membrane 2002;27:1157-65.
644	[27]	Lee K-S, Tseng T-S, Liu Y-W, Hsiao Y-D. Enhancing the performance of dark
645		fermentative hydrogen production using a reduced pressure fermentation
646		strategy. Int J Hydrogen Energy 2012;37:15556–62.
647		doi:10.1016/j.ijhydene.2012.04.039.
648	[28]	Liu Y, Wang Y. Directional enhancement of fermentative coproduction of
649		hydrogen and acetic acid from glucose via control of headspace pressure. Int J
650		Hydrogen Energy 2017;42:4095–101. doi:10.1016/j.ijhydene.2016.09.083.
651	[29]	Kataoka N, Miya A, Kiriyama K. STUDIES ON HYDROGEN PRODUCTION
652		HYDROGEN-PRODUCING ANAEROBIC BACTERIA. Water Sci Technol
653		1997;36:41-7. doi:10.1016/S0273-1223(97)00505-2.
654	[30]	Massanet-Nicolau J, Jones RJ, Guwy A, Dinsdale R, Premier G, Mulder MJJ.
655		Maximising biohydrogen yields via continuous electrochemical hydrogen
656		removal and carbon dioxide scrubbing. Bioresour Technol 2016;218:512–7.
657		doi:10.1016/j.biortech.2016.06.115.
658	[31]	Ramírez-Morales JE, Tapia-Venegas E, Toledo-Alarcón J, Ruiz-Filippi G.
659		Simultaneous production and separation of biohydrogen in mixed culture systems
660		by continuous dark fermentation. Water Sci Technol 2015;71:1271–85.
661		doi:10.2166/wst.2015.104.
662	[32]	Ferraz Júnior ADN, Zaiat M, Gupta M, Elbeshbishy E, Hafez H, Nakhla G.
663		Impact of organic loading rate on biohydrogen production in an up-flow
664		anaerobic packed bed reactor (UAnPBR). Bioresour Technol 2014;164:371–9.
665		doi:10.1016/j.biortech.2014.05.011.
666	[33]	Del Nery V. Utilização de lodo anaeróbio imobilizado em gel no estudo de
667		partida de reatores de fluxo ascendente com manta de lodoNo Title. Universidade
668		de São Paulo, 1987.
669	[34]	Motte J-C, Trably E, Escudié R, Hamelin J, Steyer J-P, Bernet N, et al. Total
670		solids content: a key parameter of metabolic pathways in dry anaerobic digestion.
671		Biotechnol Biofuels 2013;6:164. doi:10.1186/1754-6834-6-164.
672	[35]	APHA. Standard methods for the examination of water and wastewater. 21ts ed.
673		Washington, DC, New York: American Public Health Association: American
674		Public Health Association; 2005.
675	[36]	Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of
676		a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing

677		Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl
678		Environ Microbiol 2013;79:5112–20. doi:10.1128/AEM.01043-13.
679	[37]	Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.
680		Introducing mothur: Open-source, platform-independent, community-supported
681		software for describing and comparing microbial communities. Appl Environ
682		Microbiol 2009;75:7537-41. doi:10.1128/AEM.01541-09.
683	[38]	Yang Z. Phylogenetic analysis using parsimony and likelihood methods. J Mol
684		Evol 1996;42:294–307.
685	[39]	Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic
686		computing. Bioinformatics 2010;26:1569–71.
687		doi:10.1093/bioinformatics/btq228.
688	[40]	Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I. Long-term effect of
689		inoculum pretreatment on fermentative hydrogen production by repeated batch
690		cultivations: Homoacetogenesis and methanogenesis as competitors to hydrogen
691		production. Biotechnol Bioeng 2011;108:1816–27. doi:10.1002/bit.23122.
692	[41]	Kaiser HF. The Application of Electronic Computers to Factor Analysis. Educ
693		Psychol Meas 1960;20:141–51. doi:10.1177/001316446002000116.
694	[42]	Cattell RB. The Scree Test For The Number Of Factors. Multivariate Behav Res
695	F 4 0 1	1966;1:245–76. doi:10.1207/s15327906mbr0102_10.
696	[43]	Palomo-Briones R, Trably E, López-Lozano NE, Celis LB, Méndez-Acosta HO,
697		Bernet N, et al. Hydrogen metabolic patterns driven by Clostridium-
698		Streptococcus community shifts in a continuous stirred tank reactor. Appl
099 700	F 4 4 1	Microbiol Biotechnol 2018;102:2465–75. doi:10.1007/S00253-018-8737-7.
700	[44]	Corona, Ellas; Razo-Flores V. Continuous hydrogen and methane production
701		anorgy recovery officiency. Discovery Technol 2018:240:224 41
702	[45]	Etchebeberg C. Costelló F. Wonzel I. del Piler Anzola Poies M. Porzacconi I.
705	[43]	Buitrán C, et al Mierobial communities from 20 different hydrogen producing
704		reactors studied by 454 pyrosequencing Appl Microbiol Biotechnol
705		$2016 \cdot 100 \cdot 3371 - 84$ doi:10.1007/s00253-016-7325-y
707	[46]	KITAHARAK SUZUKU SPOROLACTOBACILLUS NOV SUBGEN LGen
708	[10]	Appl Microbiol 1963:9:59–71. doi:10.2323/jgam 9.59
709	[47]	Cabrol L. Marone A. Tapia-Venegas E. Stever I-P. Ruiz-Filippi G. Trably E
710	[.,]	Microbial ecology of fermentative hydrogen producing bioprocesses: useful
711		insights for driving the ecosystem function. FEMS Microbiol Rev 2017:41:158–
712		81. doi:10.1093/femsre/fuw043.
713	[48]	Moscoviz R, Trably E, Bernet N, Carrère H. The environmental biorefinery:
714		state-of-the-art on the production of hydrogen and value-added biomolecules in
715		mixed-culture fermentation. Green Chem 2018;20:3159–79.
716		doi:10.1039/C8GC00572A.
717	[49]	Ren N, Lin H, Zhang K, Zheng G, Duan Z, Lin M. Cloning, Expression, and
718		Characterization of an Acetate Kinase from a High Rate of Biohydrogen
719		Bacterial Strain Ethanoligenens sp. hit B49. Curr Microbiol 2007;55:167–72.
720		doi:10.1007/s00284-007-0172-4.
721	[50]	Nasr N, Velayutham P, Elbeshbishy E, Nakhla G, El Naggar MH, Khafipour E,
722		et al. Effect of headspace carbon dioxide sequestration on microbial biohydrogen
723		communities. Int J Hydrogen Energy 2015;40:9966–76.
724		doi:10.1016/j.ijhydene.2015.06.077.
725	[51]	Saady NMC. Homoacetogenesis during hydrogen production by mixed cultures
726		dark fermentation: Unresolved challenge. Int J Hydrogen Energy

727 2013:38:13172–91. doi:10.1016/i.jihvdene.2013.07.122.	
728 [52] Mivake J. The Science of Biohydrogen, BioHydrogen, Boston, MA: St	pringer
729 US: n.d., p. 7–18. doi:10.1007/978-0-585-35132-2_2.	P8
730 [53] Anzola-Rojas M del P. Zajat M. De Wever H. Improvement of hydrog	en
731 production via ethanol-type fermentation in an anaerobic down-flow st	tructured
732 bed reactor Bioresour Technol 2016:202:42–9	il dottil od
733 doi:10.1016/i biortech 2015.11.084	
734 [54] Baghchehsaraee B. Nakhla G. Karamanev D. Margaritis A. Effect of e	xtrinsic
735 lactic acid on fermentative hydrogen production. Int J Hydrogen Energ	v
736 2009·34·2573–9. doi:10.1016/i.jihvdene.2009.01.010	53
737 [55] Hallenbeck PC. Fundamentals of the fermentative production of hydro	gen. Water
738 Sci Technol 2005:52:21–9	geni () ater
739 [56] HAWKES F HUSSY I KYAZZE G DINSDALE R HAWKES D C	ontinuous
740 dark fermentative hydrogen production by mesophilic microflora. Prin	ciples and
741 progress Int I Hydrogen Energy 2007:32:172–84	erpres and
742 doi $\cdot 10\ 1016/i$ jibydene 2006 08 014	
743 [57] WOOD WA Fermentation of Carbohydrates and Related Compounds	
744 Metabolism Elsevier: 1961 n $59-149 \text{ doi:}10.1016/B978-0-12-39562$	27-9 50010-
745 4	
746 [58] Procentese A Raganati F Olivieri G Russo ME Salatino P Marzocch	hella A
747 Continuous lactose fermentation by Clostridium acetobutylicumasses	ssment of
748 solventogenic kinetics. Bioresour Technol 2015:180:330–7	
749 doi:10.1016/i biortech 2015.01.008	
750 [59] Andersch W: Bahl Gottschalk G Level of enzymes involved in acetat	te
751 butyrate, acetone and butanol formation by Clostridium acetobutylicun	n. Eur I
752 Appl Microbiol Biotechnol 1983:18:327–32	
753 [60] Al-Shorgani NKN Kalil MS Yusoff WMW Hamid AA Impact of pE	H and
754 butyric acid on butanol production during batch fermentation using a n	new local
755 isolate of Clostridium acetobutylicum YM1 Saudi I Biol Sci 2018:25.	339-48
756 doi:10.1016/J.SIBS.2017.03.020	
757 [61] Zhang F. Zhang Y. Ding J. Dai K. Van Loosdrecht MCM. Zeng RJ. St	able
758 acetate production in extreme-thermophilic (70°C) mixed culture fermo	entation by
759 selective enrichment of hydrogenotrophic methanogens. Sci Rep 2014:	:4:1–9.
760 doi:10.1038/srep05268.	, ,.
761 [62] Poehlein A. Schmidt S. Kaster A-K. Goenrich M. Vollmers I. Thürmer	r A. et al.
762 An Ancient Pathway Combining Carbon Dioxide Fixation with the Ge	eneration
763 and Utilization of a Sodium Ion Gradient for ATP Synthesis. PLoS On	e
764 2012:7:e33439. doi:10.1371/iournal.pone.0033439.	
765 [63] Noike T. Inhibition of hydrogen fermentation of organic wastes by lact	tic acid
766 bacteria. Int J Hydrogen Energy 2002:27:1367–71. doi:10.1016/S0360)_
767 3199(02)00120-9.	
768 [64] Gomes SD, Fuess LT, Mañunga T, Feitosa de Lima Gomes PC, Zaiat N	M.
769 Bacteriocins of lactic acid bacteria as a hindering factor for biohydroge	en
770 production from cassava flour wastewater in a continuous multiple tub	e reactor.
771 Int J Hydrogen Energy 2016:41:8120–31. doi:10.1016/i.jihydene.2015	.11.186.
772 [65] Rafrafi Y. Trably E. Hamelin J. Latrille E. Meynial-Salles I. Benomar	S. et al.
773 Sub-dominant bacteria as keystone species in microbial communities n	oroducing
bio-hydrogen. Int J Hydrogen Energy 2013:38:4975–85.	-0
775 doi:10.1016/j.ijhydene.2013.02.008.	

777		analysis of a high-rate hydrogen-producing microbial community in anaerobic
778		agitated granular sludge bed bioreactors using glucose as substrate. Appl
779		Microbiol Biotechnol 2007;75:693–701. doi:10.1007/s00253-007-0854-7.
780	[67]	YANG P, ZHANG R, MCGARVEY J, BENEMANN J. Biohydrogen production
781		from cheese processing wastewater by anaerobic fermentation using mixed
782		microbial communities. Int J Hydrogen Energy 2007;32:4761–71.
783		doi:10.1016/j.ijhydene.2007.07.038.
784	[68]	Cato, E.P. WLG and SMF. Genus Clostridium Prazmowski 1880. Bergey's Man.
785		Syst. Bacteriol. Vol. 3 Firmicutes, Baltimore: Williams and Wilkins; 1986, p.
786		1149–52.
787	[69]	Datta R, Zeikus JG. Modulation of acetone-butanol-ethanol fermentation by
788		carbon monoxide and organic acids. Appl Environ Microbiol 1985;49:522–9.
789	[70]	Bhat J V. Barker HA. Clostridium lacto-acetophilum Nov. Spec. and the Role of
790	[]	Acetic Acid in the Butvric Acid Fermentation of Lactate. J Bacteriol
791		1947:54:381–91.
792	[71]	Woolford MK. The silage fermentation. Grassland Res. Inst., Hurley.
793	[, -]	Maidenhead, Berks SL6 5LR, UK,: CRC Press: 1 edition (June 1, 1984): 1984.
794	[72]	Thauer RK. Jungermann K. Decker K. Energy conservation in chemotrophic
795	[,_]	anaerobic bacteria Bacteriol Rev 1977:41:100–80
796	[73]	Diez-Gonzalez F. Russell IB. Hunter IB. The role of an NAD-independent
797	[,0]	lactate dehydrogenase and acetate in the utilization of lactate byClostridium
798		acetobutylicum strain P262 Arch Microbiol 1995:164:36–42
799		doi:10.1007/BF02568732
800	[74]	Matsumoto M Nishimura Y Hydrogen production by fermentation using acetic
801	[, .]	acid and lactic acid I Biosci Bioeng 2007:103:236–41 doi:10.1263/ibb.103.236
802	[75]	KLEEREBEZEM R VAN LOOSDRECHT MCM A Generalized Method for
803	[/0]	Thermodynamic State Analysis of Environmental Systems Crit Rev Environ Sci
804		Technol 2010:40:1–54 doi:10.1080/10643380802000974
805		
806		
807		
808		
809		
810		
811		
812		
813		
814		
815		
816		
817		
818		
819		
820		
821		
822		
822		
874		
825		
826		
020		

- 827 Figure captions
- 828 829

Figure 1. Schematic of experimental apparatus to control the total pressure of headspace of the hydrogen-producing systems fed with a mineral salts-sugarcane molasses solution. CSTR reactor image taken from http://enacademic.com/pictures/enwiki/66/Batch_reactor.2.jpg

834

Figure 2. Influence of total pressure (TP, kPa) on hydrogen production rate (HRP, mL-H₂ h⁻¹) of fermentative systems fed with a mineral salts-sugarcane molasses solution. A. Reactor 1 (R1) - 80 – 120 kPa, B. Reactor 2 (R2) - 100 – 140 kPa, C. Reactor 3 (R3) -120 – 100 kPa. D. Reactor (R4) - 140 kPa.

839

Figure 3. Linear fit of the experimental data obtained from monitoring of fermentative systems fed with a mineral salts-sugarcane molasses solution with different total pressure (TP, kPa). A. Hydrogen production rate (HPR, mL-H₂ h⁻¹) and concentration of hydrogen dissolved in the liquid medium ([H₂] _{Liq}.) ratio. B. Hydrogen yield (HY), mol-H₂ mol⁻¹_{suc eq}.) and concentration of hydrogen dissolved in the liquid medium ([H₂] Liq.) ratio.

846

Figure 4. A. Composition of microbial community of hydrogen-producing systems at
different total pressure (TP, kPa) fed with a mineral salts-sugarcane molasses solution.
B. Correlation between *Clostridium*, *Ethanoligenens* and *Sporolactobacillus* species
within TP (kPa).

851

Figure 5. Principal components analysis of hydrogen-producing systems at different
total pressure (TP, kPa) fed with a mineral salts-sugarcane molasses solution.

- 854
- 855

Component 1 (45.3%)

	Total pressure (kPa)					
Reactor	Initial TP and independent condition ^a	Condition of TP Inc	acrement/Decrement ^a			
R 1	80	100	120			
R2	100	120	140			
R3	120	140	100			
R4	140	-	-			

Table 1. Experimental design and different total pressure (kPa) applied to the hydrogen-producing systems fed with a mineral salts-sugarcane molasses solution.

a. The steady-state of the reactor was adopted as criterion of condition change.

Desetor	Total pressure (TP; kPa) / Partial pressure of hydrogen (p_{H2} ; kPa)						
Reactor	80 / 41	100 / 49	120 / 61	140 / 70			
R1	406 (4.51)	302 (3.02)	194 (2.15)	-			
R2	-	332 (2.79)	210 (1.88)	102 (0.64)			
R3	-	338(3.35)	210 (1.52)	102 (0.63)			
R4	-	-	-	62 (0.56)			

Table 2. Hydrogen production rate (HPR, mL-H₂ h⁻¹) and hydrogen yield ((HY), mol-H₂ mol⁻¹_{suc eq.}) of fermentative systems fed with a mineral salts-sugarcane molasses solution.

Reactor	Conditions	Acetate ^a (mM)	Butyrate ^a (mM)	Propionate ^a (mM)	Ethanol ^a (mM)	Lactate ^a (mM)	Experimental H ₂ (mM)	Theoretical $H_2^{b}(mM)$	Exp. H ₂ / Theoretical H ₂ (%)	Acetate from homoacetogenesis/ Total acetate ^c (%)	COD _{rec} ^d (%)
	80 kPa	37.3 ± 1.7	24.1 ± 1.1	0.0 ± 0.0	19.5 ± 2.2	18.9 ± 0.0	54.2 ± 4.9	122.7	44.2	30.7	99.1
R1	100 kPa	39 ± 1.4	18.4 ± 2.3	0.1 ± 0.0	30.4 ± 4.3	21.1 ± 2.2	40.3 ± 3.4	114.5	35.2	31.8	98.2
	120 kPa	35.6 ± 1.2	24.1 ± 1.2	0.1 ± 0.0	19.5 ± 2.1	21.1 ± 1.1	25.8 ± 2.6	119.2	21.7	43.8	100.2
	100 kPa	33.2 ± 0.3	21.8 ± 0.9	0.0 ± 0.0	26.2 ± 3.5	27.8 ± 1.7	44.3 ± 3.1	110	40.2	33	100.6
R2	120 kPa	35.2 ± 3.1	21.8 ± 1.1	0.1 ± 0.0	33.2 ± 0.5	25.7 ± 1.4	28 ± 2.5	114	24.6	40.7	104.8
	140 kPa	29.5 ± 1.6	19.5 ± 1.0	0.1 ± 0.0	13 ± 2.2	26.1 ± 1.9	13.6 ± 1.0	97.8	13.9	47.6	87.4
	120 kPa	44 ± 1.7	20.7 ± 1.1	0.1 ± 0.0	26.1 ± 6.5	26.1 ± 3.3	28 ± 2.8	129.3	21.7	38.3	105
R3	140 kPa	28.8 ± 1.0	21.8 ± 0.7	0.1 ± 0.0	17.4 ± 3.2	22.2 ± 1.1	13.6 ± 2.2	101.1	13.5	50.6	89.6
	100 kPa	49.1 ± 3.4	16.1 ± 0.6	0.0 ± 0.0	10.9 ± 2.2	16.7 ± 1.2	45.1 ± 4.4	130.4	34.6	28.9	96.7
R4	140 kPa	22 ± 0.2	19.5 ± 1.2	0.0 ± 0.0	15.2 ± 4.3	20 ± 6.7	8.2 ± 0.9	83.1	9.9	56.6	90.8

Table 3. Intermediates of hydrogen-producing systems at different total pressure (TP, kPa) and fed with a mineral salts-sugarcane molasses solution.

a. Mean value \pm standard deviation; n=6.

b. Theoretical hydrogen production and yield are based on the acetate, butyrate and propionate produced according to Ferraz Júnior et al. (2014b).

c. Acetate from homoacetogenesis was calculated according to Luo et al. [27].

d. Calculated according to Ferraz Júnior et al. [18].

				<u> </u>	
Controlling method of p_{H2}	Reactor	Sludge	Substrate / OLR (gCOD.L ⁻¹ .d ⁻¹)	HY (mol H ₂ . mol ⁻¹ substrate)	Reference
CO ₂ and N ₂ sparging	CSTR	Mixed	Sucrose / 40	1.68	[14]
N ₂ sparging	CSTR	Mixed	Glucose / 27.02	1.43	[13]
Membrane separation	Batch	Mixed	Glucose / 2.5 ^a	0.92	[16]
Collection of biogas	CCS ^b	Pure ^c	Glucose-polypeptone / 5.4 - 30	2.3	[17]
CO ₂ sequestration	IBRCS ^d	Mixed	Glucose / 25.7	2.96	[40]
Increase of temperature	APBR ^e	Mixed	Sugarcane vinasse / 84.2	3.7	[41]
Stirring	CSTR	Mixed	Agave bagasse / 44	44.6%* ^f	[32]
Biogas collection	CSTR	Mixed	Molasse / 84.2	4.51	This study

Table 4. Maximum hydrogen yield reported from different methods of controlling the partial pressure of hydrogen (p_{H2}) .

a. Food / Microorganisms ratio equal to 23.8 (2.5 g of sucrose added);

b. Continuous culture system;

c. Clostridium butyricum strain SC-E1;

d. Integrated biohydrogen reactor clarifier systems;

e. Anaerobic packed-bed reactor;

f. Value obtained from the ration of hydrogen measured and the estimated hydrogen produced via acetic and butyric pathways. The authors do not express HY in mol.mol⁻¹ probably due to the lignocellulose hydrolysates be composed by glucose, xylose, arabinose, cellobiose, lignin fragments, among others.

Table 5. Gibb's energy of lactate and acetate conversion into butyrate and hydrogen reaction.

Reactor	Total pressure (TP; kPa) / Gibb's energy (ΔG° ; kJ.mol ⁻¹)			
R1	80 / -80.2	100 / -79.5	120 / -79.5	-
R2	-	100 / - 77.8	120 / -78.3	140 / -78.2
R3	-	100 / -81.0	120 / -78.2	140 / -78.2
R4	-	-	-	140 / -79.8

 ΔG° were calculated at 25 °C and standard concentrations. ΔG were calculated at pH 5.5, 37 °C and the intermediates concentrations as shown in Table 3. Gibbs' energy values were computed in accordance with Kleerebezem and Van Loosdrecht [67].