

Mining ecophysiological responses of European beech ecosystems to drought

Fabio Gennaretti, Jerome Ogee, Julien Sainte-Marie, Matthias Cuntz

► To cite this version:

Fabio Gennaretti, Jerome Ogee, Julien Sainte-Marie, Matthias Cuntz. Mining ecophysiological responses of European beech ecosystems to drought. Agricultural and Forest Meteorology, 2020, 280, pp.1-9. 10.1016/j.agrformet.2019.107780 . hal-02557077

HAL Id: hal-02557077 https://hal.inrae.fr/hal-02557077

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Mining ecophysiological responses of European beech ecosystems to

2	drought
3	
4	Fabio Gennaretti ^{a,b,*} ; Jérôme Ogée ^c ; Julien Sainte-Marie ^a ; Matthias Cuntz ^a
5	
6	^a Université de Lorraine, AgroParisTech, INRA, UMR1434 Silva, 54000 Nancy, France.
7	^b Institut de recherche sur les forêts, UQAT, Rouyn-Noranda, Québec, J9X 5E4, Canada.
8	^c INRA Centre de Bordeaux Aquitaine, UMR1391 ISPA, 33140 Villenave d'Ornon, France.
9	
10	*Corresponding author e-mail address and telephone number:
11	fabio.gennaretti@libero.it
12	+33 776692938
13	*Corresponding author full postal address:
14	INRA Centre Grand Est – Nancy, UMR1434 Silva, Rue d'Amance, 54280 Champenoux, France

15 Mining ecophysiological responses of European beech ecosystems to

16 drought

17 Abstract

18 The most accurate understanding of forest functioning during drought is crucial to improve the forecast 19 of future forest productivity. Here we investigate the ecophysiological responses (i.e. primary 20 production, evapotranspiration and water use efficiency) of European beech to drought events with the ecosystem model MuSICA, using as benchmark the observed fluxes at the experimental forest Hesse 21 (France). We show that MuSICA is able to realistically simulate observed drought-induced limitations. 22 23 Subsequently we use simulation experiments to provide: (1) a quantification of the reduction of ecosystem fluxes during the 2003 drought, (2) a partitioning of heat stress and water limitations during 24 25 droughts, (3) an analysis of the impact of specific drought trajectories, and (4) an evaluation of the 26 potential impact of projected climate change on the studied forest and (5) over the beech distributional 27 range. Our results show that the 2003 drought resulted in a 17% reduction of annual gross primary 28 production and in a 21% reduction of evapotranspiration at Hesse. The studied forest ecosystem is 29 mostly sensitive to negative precipitation anomalies (82% of the reduced forest productivity in 2003) 30 and almost insensitive to heat stress due to high temperatures (16%). Moreover, we show that the 31 ecosystem fluxes are limited more by fast drought onsets in the early growing season (June-July) than by 32 onsets later in the season. Deciphering the impact of future climate change on beech productivity is 33 complicated by large uncertainties in projected future precipitation and in the severity of extreme dry 34 years. Drastic reduction of ecosystem fluxes is only predicted with climate projections that show marked 35 reductions in precipitation. However, increased CO₂ fertilization in the future will counterbalance 36 negative drought impacts. This modelling-based study improves our understanding of the functioning of

an emblematic European tree species during extreme events and informs on potential future forest
 responses to projected climate change.

39 Keywords

40 Drought; carbon flux; Fagus sylvatica L.; ecosystem model; MuSICA; projected climate change

41 1. Introduction

42 The frequency of extreme climate events, and especially of droughts, is supposed to increase with future 43 climate change (Prudhomme et al. 2014; Zhao and Dai 2017). Central and Southern Europe in particular 44 are regional hotspots where drought severity and frequency will increase the most (Prudhomme et al. 45 2014). This implies that European forest ecosystems will face new and extreme conditions driving 46 changes in species productivity and distribution (Lindner et al. 2010). Indeed, severe droughts are linked 47 to significant reductions of forest productivity (Granier et al. 2007; Reichstein et al. 2007). Speciesspecific responses to drought should hence be analyzed thoroughly, in addition to possible interactions 48 49 between the impact of drought and other projected changes (e.g. increased plant water use efficiency 50 with elevated CO_2 ; Battipaglia et al. 2013).

Among the emblematic European tree species, European beech (*Fagus sylvatica* L.) may be severely impacted by drought during the growing season, resulting in xylem embolism and reduced productivity (Gessler et al. 2007). Beech has already experienced locally increased growth limitations over the 20th century due to drought, which has reduced tree competitiveness in relation to other species (Scharnweber et al. 2011). This loss of competitiveness is especially evident at the southern edge of the species distributional range (Peñuelas et al. 2007). A process-based assessment of the ecophysiological responses of European beech to drought would allow an analysis of the species vulnerability to climate 58 change and would potentially improve future projections of beech growth performance over its59 distributional range.

Such process-based assessment could be performed with ecophysiological models. These models can play an important role in investigations and forecasts of drought impacts on forests because they ensure a coupled representation of the processes behind carbon and water fluxes (Bonan and Doney 2018; Ogée et al. 2003). The selected models should guarantee plausible simulations also at the margin or outside of their calibration environment. Indeed, plausible extrapolations beyond the observed boundary conditions are crucial to accurately predict future ecosystem functioning and carbon budget during extreme events, such as future droughts (Clark et al. 2011).

67 Some studies have already quantified the impact of drought on ecosystem productivity globally (Zhao 68 and Running 2010), on specific regions (Ciais et al. 2005), or on specific forest ecosystems (Reichstein et 69 al. 2007). However, droughts are the result of two components: an increase in temperature-induced 70 plant stress (e.g. effects of temperature on vapor pressure deficit, or the effects on carboxylation rate) 71 and a decrease in water availability driven by low precipitation (Zhao and Dai 2017). The partitioning of 72 heat stress and water limitations during drought events for specific ecosystems is still to be further 73 analyzed. Moreover, each drought has its own climate trigger and its timing of occurrence during the 74 year (Mo 2011), potentially inducing a very specific impact on forests. For example, fast drought onsets 75 in spring followed by average summer conditions can have different impacts on annual ecosystem 76 performance than lesser but constant reduction in water availability during the whole growing season. 77 Impacts due to different drought trajectories should also be better analyzed. Here we focus on the 78 ecophysiological responses (i.e. forest water and carbon fluxes, and ecosystem water use efficiency) of 79 European beech forests using simulation experiments. First, we ensure that the used ecosystem model 80 (MuSICA; Ogée et al. 2003) is able to realistically simulate drought-induced flux reductions at an 81 experimental site, even for much drier periods than used during model calibration. Second, we re-

4

compute the local impact of the 2003 drought on ecosystem fluxes using a novel simulation-based approach. Third, we quantify the partitioning of heat stress and water limitations during drought. Fourth, we investigate the impact of different drought trajectories. Fifth, we evaluate the potential impact of projected climate change on the productivity and water use of beech forests locally and, sixth, evaluate the potential impact over the entire species distributional range in Europe.

87 2. Materials and Methods

88 2.1. The Hesse forest experimental station

89 We used the data of the Hesse forest experimental station (Granier et al. 2008) to optimize the MuSICA 90 ecosystem model for beech forests. The Hesse site (+48.7° latitude, +7.1° longitude, 300 m elevation) is 91 a European beech forest located in north-eastern France (Moselle) in the center of the species 92 distributional range. Hesse belongs to the ICOS infrastructure (www.icos-ri.eu) and there are 20 years of 93 ecosystem fluxes and ecophysiological measurements available at the site. Hesse is a drought-sensitive 94 ecosystem and extreme dry years, such as 2003, produce significant anomalies on the observed carbon 95 dynamics (Granier et al. 2007). We used measured ecophysiological traits for the initialization of the 96 model parameters (Dufrêne et al. 2005) and soil water content at three soil depths (SWC; 0.1, 0.3 and 97 0.55 m), carbon fluxes (net ecosystem exchange - NEE; and gross primary production - GPP; NEE was 98 partitioned into GPP and ecosystem respiration using the night-time approach of Reichstein et al. 2005) 99 and evapotranspiration (ET) for further parameter optimization and validation.

100 2.2. The MuSICA ecosystem model

101 MuSICA is a mechanistic ecosystem model primary developed to simulate water, carbon and energy 102 exchanges over the soil-vegetation-atmosphere continuum (Domec et al. 2012; Giuggiola et al. 2016; 103 Klein et al. 2014; Ogée et al. 2003; Ogée et al. 2004; Wingate et al. 2010). MuSICA discretizes the 104 ecosystem in several air and soil layers. In this project, we used 15 layers in the soil and 10 layers in the vegetation. Carbon fluxes depend on the coupling between photosynthesis (Farquhar et al. 1980) and
stomatal conductance (Leuning 1995), as well as on the simulation of respiration, leaf light interception
(Sinoquet et al. 1990), convection and turbulent transport (Raupach 1989) in each air layer. Soil water
fluxes are a mixture of preferential and matrix flows, the latter ones being described by Richards'
equations (Braud et al. 1995).

110 2.3. Model calibration and validation

111 MuSICA was optimized using as target half-hourly SWC, NEE and ET measurements of the year 2002, 112 which had normal climate conditions. ET observations were corrected to ensure energy balance closure 113 as proposed by Mauder et al. (2013). All MuSICA parameters were initialized according to our best 114 knowledge of the ecophysiological traits of the Hesse experimental forest. Subsequently, we used 115 Morris parameter screening (Morris 1991) to quantify the sensitivities of the target variables to the 116 individual model parameters of MuSICA (Cuntz et al. 2015). The Morris parameter screening analyses 117 the variations of the target variables with respect to variations in the model parameters (Saltelli et al. 118 2004). The identified sensitive parameters were further optimized using a differential evolution 119 algorithm (Abbass et al. 2001; Mier 2017). Finally, the 2003 dry year was used to verify that MuSICA 120 realistically simulates drought-induced ecosystem limitations as well as daily variations of observed 121 water-related variables during extreme dry periods. This calibration/validation scheme was specifically 122 designed because drought severity is supposed to increase with future climate change and, therefore, 123 plausible model extrapolations are crucial.

124 2.4. Local simulation experiments

Once MuSICA was optimized for Hesse, we performed several local simulations modifying the 2003 temperature and precipitation input data. These simulations were grouped in four experiments (Table 1). Experiment 1 quantifies the reduction of fluxes during the 2003 drought. Experiment 2 provides partitioning of heat stress and water limitations during drought. Experiment 3 studies the impact of alternative drought trajectories having the same severity than the 2003 drought but different timing of occurrence over the growing season (i.e. faster or slower drought onset). Experiment 4 analyzes the impact of future climate change on the studied forest. All simulations use the 2003 half-hourly variability to avoid potential impacts of different structures of rainy/dry, warm/cold, sunny/cloudy days. Only the monthly temperature and precipitation mean values were modified and were specific to each simulation:

135
$$T_n ew_{i,y} = T_r ef_i + \Delta_{i,y}$$
(1)

$$P_n e w_{i,y} = P_r e f_i \cdot \lambda_{i,y}$$
(2)

137 where $T_n ew_{i,y}$ ($P_n ew_{i,y}$) is the new temperature (precipitation) mean value of the month *i* and the 138 simulation *y*, $T_r ref_i$ ($P_r ref_i$) is the reference temperature (precipitation) mean value of the month *i* of 139 the median observed climate at Hesse (1997-2013), $\Delta_{i,y}$ is the climate anomaly of temperature for the 140 specific simulation *y*, and $\lambda_{i,y}$ is the climate anomaly factor of precipitation for simulation *y*. Specific 141 simulations and their climate anomalies are detailed in Table 1. Each simulation was preceded by a one 142 year spin-up period, which was subsequently discarded from following analyses, where MuSICA was 143 forced by the meteorology of an average year.

144 The impact of future climate change in experiment 4 was analyzed using an ensemble of six EURO-145 CORDEX simulations forced by an RCP8.5 (Table 2; Jacob et al. 2014; data downloaded from the Pierre 146 Simon Laplace Institute node of the Earth System Grid Federation). This extreme RCP was selected to 147 emphasize the potential impact of climate change on forest ecophysiology and analyze forest responses 148 under extreme climate conditions. Furthermore, the role of increased CO₂ concentration in the future 149 was isolated by the production of MuSICA simulations at Hesse with both current and future CO₂ values. 150 Indeed, a 2.17-time increase in CO₂ concentration is forecast at the 2080-2100 horizon in RCP8.5 151 scenarios. The annual ecosystem fluxes (F) of the obtained MuSICA simulations y were compared between each other by percent change (*PC*) computations relative to the fluxes of the referencesimulation (median climate):

154
$$PC = \frac{F_y - F_{Ref}}{F_{Ref}} 100 \,(\%) \tag{3}$$

155 2.5. Regional simulation experiments

156 Experiment 4 described in the previous section was extended to analyze the potential impact of 157 projected climate change on European beech ecophysiology over the entire species distributional range 158 as defined by Caudullo et al. (2017). The MuSICA temperature and precipitation input data were 159 modified using the same EURO-CORDEX simulations (Table 2; all EURO-CORDEX data were extracted 160 over a regular 0.5° grid) and the same equations described earlier (Eq. 1 and 2). This climate forcing was 161 used to simulate European beech GPP and ET during extreme dry years at two time horizons (2006-2026 162 and 2080-2100; an extreme year was defined with median monthly temperature and precipitation of six 163 extreme dry years, one per simulation). We also took into account the impact of spatially different soil 164 properties. We used USDA soil classification and soil texture data available at "soilgrids.org" to estimate 165 MuSICA soil parameters, such as van Genuchten water retention parameters and saturated hydraulic 166 conductivity, using the Rosetta computer program (Schaap et al. 2001).

167 **3. Results**

168 3.1. Validation of MuSICA simulations during dry periods

MuSICA accurately simulates daily variation of GPP, ET and SWC at the Hesse European beech forest (Figs. 1 and S1-S2). The typical annual cycle of drying and rewetting of the soil profile is well caught by the model (Fig. 1, red and blue points). Furthermore, MuSICA simulations show similar performance over both, the 2002 calibration year and the 2003 validation year (Fig. 1), the latter was characterized by reduced precipitation and a severe 4-month drought starting in June and ending in late September (Fig. S3). Finally, observed drought-induced ecosystem limitations are well simulated, such as the limitation of evapotranspiration by soil water availability (Fig. 2). At Hesse, ecosystem fluxes begin to be limited by water availability once soil water in the top 70 cm drops below about 250 kg/m³, corresponding to values of relative extractable soil water (REW) lower than 0.3.

178 3.2. Mining forest responses to drought with simulation experiments

179 The first simulation experiment allowed a precise quantification of the reduction of ecosystem fluxes at 180 Hesse during the 2003 drought. Comparison of the simulation with a median climate but diurnal 181 variations of 2003 (2003_median_climate, red) and the full 2003 dry climate (2003, black) in Figure 3 182 shows that there is a reduction of cumulated annual GPP by 17% and a reduction in total ET by 21% at 183 Hesse due to higher temperatures and less precipitation. This suggests that such an important drought 184 had only a slight impact on water use efficiency (evapotranspiration decreased slightly more than 185 productivity). Interestingly, the divergence between the two simulations started only 1.5 months after 186 the beginning of the 2003 heatwave in early June (Fig. S3). This is the time needed to dry out the soil profile to the threshold of about 250 kg/m³ in the top 70 cm, or REW = 0.3, when plants start 187 188 experiencing water stress (Fig. 2).

189 The second experiment allowed the partitioning of heat stress and water limitations at Hesse during 190 drought. Comparing the simulation with a median climate but diurnal variations of 2003 191 (2003_median_climate, red), the simulation with median climate and the 2003 temperature anomalies 192 only (2003_T_limited, blue), the simulation with median climate and the 2003 precipitation anomalies 193 only (2003_P_limited, green), and the simulation with full 2003 dry climate (2003, black) in Figure 3, we 194 can observe that water limitations caused by low precipitations are responsible for most of the observed 195 reductions in GPP and ET. Heat stress due to high temperature is instead very low for GPP and negligible 196 for ET.

197 Subsequently, we show that droughts with same severity but diverse trajectories (i.e. timing of drought 198 onset and recovery over the growing season) have different impacts on the ecosystem (Experiment 3; 199 Table 1 and Fig. 4). The beech forest in Hesse shows very similar annual sums of GPP and ET if there is 200 still some precipitation in June-July, which was the case in 2003 and is the case in the slow-onset 201 scenario (black and purple lines). However, the forest is sensitive to fast drought onset. If there is a 202 different precipitation timing with almost no precipitation in June-July, SWC decreases earlier than in 203 2003, leading to a longer drought-limited period, which cannot be compensated during drought release 204 later in the year (orange line). Note that all simulations in Fig. 4 have the same precipitation amount 205 over the growing season (Table 1).

206 Our fourth experiments allowed an evaluation of the impact of projected climate change at the studied 207 forest. Fig. 5 shows the expected changes between present and future forest performance over median 208 climatological years (Median_futur vs. 2003_median_climate; dark blue) and extreme dry years 209 (Xtreme futur vs. Xtreme today; light blue). The same figure also allows the comparison of the expected 210 impact of future extreme dry years (Xtreme futur vs. 2003 median climate; green) and of present 211 extreme dry years (Xtreme_today vs. 2003_median_climate; red) relative to present median conditions. 212 All CORDEX simulations used in Fig. 5 agree in projecting an important increase in temperature over the 213 growing season (median increase of +3.0 °C; Fig. S4). Conversely, there is a large spread in the 214 magnitude and sign of the precipitation change (Fig. 5; dark and light blue), which is the most influential 215 parameter modifying ecosystem fluxes in MuSICA at Hesse. MuSICA, forced by these climate inputs and 216 by stable, current CO₂ concentrations, projects only slight changes in GPP and ET during a median year 217 (Fig. 5, dark blue) and an extreme year (Fig. 5, light blue) of 2080-2100. Although EURO-CORDEX climate 218 simulations show hotter and drier extreme years in the future than today (Fig. 5, green and red), the 219 reduction of the ecosystem fluxes relative to present median conditions remains very similar. Indeed, 220 the simulated climate of extreme dry years in EURO-CORDEX is less severe than the observed extreme

year 2003, so that the soil water threshold of 250 kg/m³ in the top 70 cm, or REW = 0.3, is rarely reached 221 222 in the MuSICA simulations. The picture changes drastically if we include the future increase in CO_2 223 concentration projected by RCP8.5 simulations at the 2080-2100 horizon (2.17 current CO₂). Over a 224 median year (Fig. 5, dark blue), GPP increases by 36% in this case, ET decreases by 17%, leading to very 225 high water use efficiency (+64%). We computed that a 1.22-time increase in CO_2 concentration (+89) 226 ppm) would be enough to counterbalance future negative drought impacts on carbon fluxes (i.e. the 227 green horizontal bar in the fourth column of Fig. 5, showing the percent change in GPP with increased 228 atmospheric CO₂, which would then be located at the zero line).

229 We also compared the performance of potential European beech forests under current and future 230 extreme dry years over the entire species distributional range (Fig. 6). The results show that the species 231 is potentially vulnerable to climate change at its southern and western range, where projected 232 precipitation changes are large (Fig. S4). European beech forests in the Alps and in the north-eastern 233 part of the distribution range are insensitive to temperature and precipitation changes (Fig. 6, top row). 234 Indeed, water availability over the growing season is not a limiting factor for European beech in the Alps, 235 while CORDEX simulations project a precipitation increase in the north-eastern part of the species range 236 (Fig. S4). As it was the case for the Hesse forest, beech productivity is highly enhanced (the first and the 237 third quartiles of the GPP change are +40 and +55 %, respectively) if we include in our simulations the 238 increase of future CO_2 concentrations, with a clear southwest-northeast gradient of increased forest 239 productivity due to projected precipitation changes (Fig. 6, bottom row).

240 4. Discussion

Drought frequency over the 21st century will increase by more than 20% in Central and Southern Europe
and the dynamic response of vegetation to these droughts is highly uncertain (Prudhomme et al. 2014).
We thus need ecophysiological models able to capture key forest processes and to provide plausible

extrapolations over severe dry periods in order to assess the impact of increased drought frequency on forest functioning and carbon budgets (Clark et al. 2011; Williams et al. 2018). In our case, we used the MuSICA ecosystem model (Ogée et al. 2003) to analyze the ecophysiological responses of European beech to drought events. The model showed high skills in reproducing key variables and droughtinduced ecosystem limitations over an independent verification year with severe drought (year 2003; Figs. 1-2). MuSICA thus seems an appropriate tool to extrapolate the ecosystem responses to future droughts.

251 Our work refines the results of previous studies and points out important forest processes and 252 dynamical responses in a climate change context. Previous studies quantified a reduction of ecosystem 253 fluxes (GPP and ET) of more than 30% at the Hesse beech forest in 2003 (Granier et al. 2007; Reichstein 254 et al. 2007). Our results give instead a much more conservative estimate (-17% for GPP and -21% for 255 ET). Previous studies used the preceding 2002 year as reference for their quantifications. We rather 256 used a novel anomaly-based approach, attenuating the impact of specific years and of different climate 257 structures such as of wet/dry, warm/cold, or sunny/cloudy days between the dry year 2003 and the 258 reference.

259 We confirm here the key role of water limitations for reduced forest productivity during the 2003 260 drought (Granier et al. 2007; Reichstein et al. 2007). Furthermore, we are able to disentangle the 261 partitioning between heat stress and water limitations during drought. The results represented in Figure 262 3 estimate that 82% of the reduced forest productivity in 2003 can be attributed directly to low 263 precipitation. Only 16% of the reduced forest productivity comes from heat stress in the model, while 264 only 2% comes from combined effect of heat stress and water limitations. This low impact of 265 temperature is surprising because high temperatures influence plant biochemistry and increase vapor 266 pressure deficit, dampening stomatal conductance and enhancing soil water evaporation. Granier et al. 267 (2000) measured a difference of about 23% between ecosystem evapotranspiration and stand

transpiration at Hesse. They concluded that this difference could at least partly be due to soil 268 269 evaporation. They argued, though, that measurement uncertainties in both, ecosystem 270 evapotranspiration and stand transpiration, are so large that they cannot be proven to be significantly 271 different. This led Betsch et al. (2011) to neglect soil evaporation in their analysis of drought effects on 272 the Hesse beech forest. However, high temperatures should also affect plant biochemistry. Optimum 273 temperatures for biochemical reactions, such a carboxylation, were found to be above 35 °C for Fagus 274 sylvatica (Kattge and Knorr 2007), which are rarely reached in Hesse. However, maximum daily temperatures of the sunlit leaves increased from 39 (August 1st) to 48 °C (August 8th) during the hottest 275 276 spell of summer 2003, inducing a progressive and almost complete cessation of photosynthesis and 277 transpiration, especially in the upper canopy layer (Fig. S5). Such high temperatures have the potential 278 to damage sun-exposed leaves (e.g. burned epidermis). Although these carry-over effects of heat stress 279 are not accounted for in the model, the rather good agreement of MuSICA with ecosystem-scale water 280 and CO₂ flux observations during and after the 2003 heat wave, indicates that these effects have only a minor influence at the ecosystem scale and that water limitations remain crucial. 281

282 An important point of our study is the demonstration that rain seasonality matters, i.e. specific drought trajectories over the growing season can potentially drive different impacts to ecosystem fluxes. 283 284 European beech forests are more sensitive to fast drought onset in the early growing season (Fig. 4) 285 because the soil profile dries out earlier, leading to water limitations during times of highest incoming 286 radiation and hence highest ecosystem fluxes. This result is similar to what D'Orangeville et al. (2018) 287 found for eastern North American forests using tree-ring data but partially contrasts with the findings of 288 Granier et al. (2007) and Arend et al. (2016) pointing out that rainfall events during drought can rapidly 289 restore ecosystem fluxes. Although fluxes increase after rainfall in the fast onset scenario, they cannot 290 close the overall gap with the fluxes of alternative drought trajectories having the same severity but 291 slower onset (i.e. the actual 2003 drought trajectory and the experiment 2003_slow_onset). For this reason, a more in-depth analysis of the projected changes in drought seasonality should be sought (see Mo 2011). For example, do we have any indication that crucial months for beech forest productivity, such as June, are becoming drier relative to other months? How much precipitation deficit is needed during these crucial months to significantly reduce ecosystem fluxes and how long does it take to the soil profile to dry (e.g. 1.5 months in 2003 at Hesse; Fig. 3)? Such drought analysis should not be performed with simplistic drought indices, which respond mainly to temperature changes and result in biased interpretations (e.g. Thornwaite equation for potential ET; see Sheffield et al. 2012).

299 Our comparison of the impact of current and future extreme dry years on European beech forests 300 reveals important key findings. First, the large uncertainties in the future trends of precipitation limit the 301 predictability of forest responses at specific sites and at European scale (see Fig. 5). This known issue 302 cannot fully be resolved due to the impact of high internal climate variability on precipitation (Knutti and 303 Sedláček 2013). Furthermore, we confirmed that caution should be paid when using climate model 304 simulations to analyze extreme years (see Asadieh and Krakauer 2015); climate models are constructed 305 to simulate climate and hence dampen interannual variations of meteorology. Observed severe 306 droughts at specific sites are more extreme than those simulated at the corresponding grid cells (see red 307 and black dots in Fig. 5). Consequently, drastic reductions of ecosystem fluxes at the Hesse forest (a 308 humid site only sensitive to extreme dry years) are only projected for those simulations with lower 309 precipitation amounts at the 2080-2100 horizon compared to today (Fig. 5; see points surrounded by 310 circles). This is consistent with the important role of critical thresholds in relative extractable water 311 determining forest responses to drought (Granier et al. 2007). These thresholds are clearly reached 312 more often over the southern and the western part of the beech distributional range (Fig. 6), where the 313 species has already shown its vulnerability to climate change (Hacket-Pain et al. 2016; Peñuelas et al. 314 2007). Although our analysis of the potential impact of future droughts on beech forests relies on 315 MuSICA's performance for Hesse, drought response traits of beech trees only show small differences

according to tree provenance (Aranda et al. 2014). In all cases, increased CO₂ fertilization in the future 316 317 (+2.17-time increase of CO₂ concentrations in the RCP8.5 scenarios at the 2080-2100 horizon) will 318 compensate negative drought impacts (Fig. 6). This response is consistent with retrospective studies 319 based on tree-ring δ^{13} C data, which show important increases in water use efficiency of beech trees over 320 the past century (up to 44%; Duquesnay et al. 1998). This response is also consistent with the increased 321 productivity of European forests projected by other modelling studies over the next century (Davi et al. 322 2006; Gea-Izquierdo et al. 2017). However, controlled experiments under a CO₂-enriched atmosphere 323 seem to show a more moderate CO₂ fertilization effect with almost no changes in productivity (Bader et 324 al. 2013). The effects of nutrient limitations should hence be included in future studies (see Luo et al. 325 2004; Norby et al. 2010).

326 5. Conclusion

327 In this study, we used the MuSICA ecosystem model (Ogée et al. 2003) to analyze the potential impact 328 of present and future droughts on fluxes and processes of European beech forests. Using MuSICA, we 329 were able to simulate realistic carbon and water fluxes at the leaf- and soil-level, and to quantify 330 precisely the impact of drought. Severe droughts may reduce European beech GPP and ET annual fluxes 331 by 20%. We demonstrated that low precipitation limits beech forest productivity much more than heat 332 stress. Beech forest ecosystems are also sensitive to the timing of drought onset over the growing 333 season. Finally, our results show a good adaptation of European beech ecosystems to projected climate 334 change because increased CO₂ concentration in the future will enhance plant water use efficiency 335 counterbalancing negative drought impacts. However, large uncertainties exist as simulated trends in 336 ecosystem fluxes depend mainly on projected trends and anomalies of precipitation, which are both 337 largely uncertain in climate model projections. This study represents a step forward to a more complete 338 ecophysiological understanding of the potential impact of drought on the productivity and seasonal dynamics of European beech forests, which should be enhanced in the future by the inclusion of additional processes such as nitrogen limitations, legacy/carry-over effects after extreme events, or growing season and phenological changes.

342

343 Acknowledgements

344 We acknowledge André Granier, Bernard Longdoz, Patrick Gross, Jean-Baptiste Lily, and Pascal Courtois 345 for their support with the data from the Hesse forest experimental station. This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the "Investissements 346 347 d'Avenir" program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE), and by funding from the "Conseil 348 *Régional Grand Est*" within the program "soutien aux jeunes chercheurs". Funding was also provided by the ForRISK project (ERA-NET Sumforest). Sumforest was funded by the European Union under Grant 349 Agreement No. 606803. The ERA-NET Sumforest project ForRISK was funded in France through the 350 351 French National Research Agency ANR (Grant No. ANR-16-SUMF-0001-01).

352

353 Competing interests

354 Declarations of interest: none.

355 References

- 356 Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto-frontier differential evolution approach for multi-
- 357 objective optimization problems. In: Proceedings of the Congress on Evolutionary Computation,
- 358 2001. IEEE, pp 971-978. doi:10.1109/CEC.2001.934295
- Aranda I et al. (2014) Variation in photosynthetic performance and hydraulic architecture across
 European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water
 stress. Tree Physiology 35:34-46.
- Arend M, Sever K, Pflug E, Gessler A, Schaub M (2016) Seasonal photosynthetic response of European
 beech to severe summer drought: Limitation, recovery and post-drought stimulation.
 Agricultural and Forest Meteorology 220:83-89.
- Asadieh B, Krakauer N (2015) Global trends in extreme precipitation: climate models versus
 observations. Hydrology and Earth System Sciences 19:877-891.
- Bader MKF, Leuzinger S, Keel SG, Siegwolf RT, Hagedorn F, Schleppi P, Körner C (2013) Central European
 hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment
 project. Journal of Ecology 101:1509-1519.
- Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo MF (2013) Elevated
 CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope
 analyses in tree rings across three forest FACE sites. New Phytologist 197:544-554.
 doi:10.1111/nph.12044
- Betsch P, Bonal D, Breda N, Montpied P, Peiffer M, Tuzet A, Granier A (2011) Drought effects on water
 relations in beech: the contribution of exchangeable water reservoirs. Agricultural and Forest
 Meteorology 151:531-543.
- Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: The challenge to predict life in
 Earth system models. Science 359:eaam8328.

- 379 Braud I, Dantas-Antonino AC, Vauclin M, Thony JL, Ruelle P (1995) A simple soil-plant-atmosphere
- transfer model (SiSPAT) development and field verification. Journal of hydrology 166:213-250.

381 doi:https://doi.org/10.1016/0022-1694(94)05085-C

- Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species.
 Data in Brief 12:662-666. doi:https://doi.org/10.1016/j.dib.2017.05.007
- Ciais P et al. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in
 2003. Nature 437:529.
- Clark JS et al. (2011) Inferential ecosystem models, from network data to prediction. Ecological
 Applications 21:1523-1536. doi:10.1890/09-1212.1
- Cuntz M et al. (2015) Computationally inexpensive identification of noninformative model parameters
 by sequential screening. Water Resources Research 51:6417-6441.
- D'orangeville L et al. (2018) Drought timing and local climate determine the sensitivity of eastern
 temperate forests to drought. Global Change Biology 24:2339-2351.
- 392 Davi H et al. (2006) Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in
 393 European forest ecosystems. Agricultural and Forest Meteorology 141:35-56.
- 394 Domec J-C et al. (2012) Interactive effects of nocturnal transpiration and climate change on the root
- hydraulic redistribution and carbon and water budgets of southern United States pine
 plantations. Tree Physiology 32:707-723.
- 397 Dufrêne E, Davi H, François C, Maire Gl, Dantec VL, Granier A (2005) Modelling carbon and water cycles
 398 in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE. Ecological
- 399 Modelling 185:407-436. doi:http://dx.doi.org/10.1016/j.ecolmodel.2005.01.004
- 400 Duquesnay A, Breda N, Stievenard M, Dupouey J (1998) Changes of tree-ring δ13C and water-use
 401 efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant,
 402 Cell & Environment 21:565-572.

18

403	Farquhar	GD,	von	Caemmerer	S,	Berry	JA	(1980)	A	biochemical	model	of	photosynthetic	CO2
404	as	simila	ation	in leaves of C	:3 s	pecies.	Plai	nta 149:	78-	90. doi:10.10	07/bf00	386	231	

- Gea-Izquierdo G, Nicault A, Battipaglia G, Dorado-Liñán I, Gutiérrez E, Ribas M, Guiot J (2017) Risky
 future for Mediterranean forests unless they undergo extreme carbon fertilization. Global
 Change Biology 23:2915-2927.
- Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for
 European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1-11.

410 Giuggiola A, Ogée J, Rigling A, Gessler A, Bugmann H, Treydte K (2016) Improvement of water and light

411 availability after thinning at a xeric site: which matters more? A dual isotope approach. New

412 Phytologist 210:108-121. doi:10.1111/nph.13748

- Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two
 beech stands. Agricultural and Forest Meteorology 100:291-308.
- Granier A, Bréda N, Longdoz B, Gross P, Ngao J (2008) Ten years of fluxes and stand growth in a young
 beech forest at Hesse, North-eastern France. Annals of Forest Science 65:704.
- Granier A et al. (2007) Evidence for soil water control on carbon and water dynamics in European forests
 during the extremely dry year: 2003. Agricultural and Forest Meteorology 143:123-145.
- Hacket-Pain AJ, Cavin L, Friend AD, Jump A (2016) Consistent limitation of growth by high temperature
 and low precipitation from range core to southern edge of European beech indicates

421 widespread vulnerability to changing climate. European Journal of Forest Research 135:897-909.

- Jacob D et al. (2014) EURO-CORDEX: new high-resolution climate change projections for European
 impact research. Regional environmental change 14:563-578.
- Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a
 reanalysis of data from 36 species. Plant, Cell & Environment 30:1176-1190.

- 426 Klein T et al. (2014) Quantifying transpirable soil water and its relations to tree water use dynamics in a
- 427 water-limited pine forest. Ecohydrology 7:409-419.
- 428 Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections.
- 429 Nature Climate Change 3:369.
- 430 Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant,
- 431 Cell & Environment 18:339-355. doi:10.1111/j.1365-3040.1995.tb00370.x
- 432 Lindner M et al. (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest
- 433 ecosystems. Forest Ecology and Management 259:698-709.
- 434 Luo Y et al. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon
 435 dioxide. BioScience 54:731-739.
- 436 Mauder M et al. (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance
 437 measurements. Agricultural and Forest Meteorology 169:122-135.
- 438 Mier PR (2017, August 25) pablormier/yabox: v1.0.3 (Version v1.0.3). Zenodo.
 439 doi:http://doi.org/10.5281/zenodo.848679
- 440 Mo KC (2011) Drought onset and recovery over the United States. Journal of Geophysical Research:
 441 Atmospheres 116:D20106.
- 442 Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics
 443 33:161-174.
- 444 Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest
 445 productivity constrained by limited nitrogen availability. Proceedings of the National Academy of
 446 Sciences 107:19368-19373.
- 447 Ogée J, Brunet Y, Loustau D, Berbigier P, Delzon S (2003) MuSICA, a CO2, water and energy multilayer,
- 448 multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis.
- 449 Global Change Biology 9:697-717. doi:10.1046/j.1365-2486.2003.00628.x

- Ogée J et al. (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration
 with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and
 CO180 data. Global Biogeochemical Cycles 18:GB2019.
- Peñuelas J, Ogaya R, Boada M, S. Jump A (2007) Migration, invasion and decline: changes in recruitment
 and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain).
 Ecography 30:829-837.
- 456 Prudhomme C et al. (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a
 457 global multimodel ensemble experiment. Proceedings of the National Academy of Sciences
 458 111:3262-3267.
- Raupach M (1989) A practical Lagrangian method for relating scalar concentrations to source
 distributions in vegetation canopies. Quarterly Journal of the Royal Meteorological Society
 115:609-632.
- 462 Reichstein M et al. (2007) Reduction of ecosystem productivity and respiration during the European 463 summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global

464 Change Biology 13:634-651. doi:10.1111/j.1365-2486.2006.01224.x

- 465 Reichstein M et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem
 466 respiration: review and improved algorithm. Global Change Biology 11:1424-1439.
- Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing
 scientific models. John Wiley & Sons. doi:10.1002/0470870958
- Schaap MG, Leij FJ, Van Genuchten MT (2001) Rosetta: A computer program for estimating soil hydraulic
 parameters with hierarchical pedotransfer functions. Journal of hydrology 251:163-176.
- 471 Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters-
- 472 declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-
- 473 eastern Germany. Forest Ecology and Management 262:947-961.

- 474 Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature
 475 491:435.
- 476 Sinoquet H, Moulia B, Gastal F, Bonhomme R, Varlet-Grancher C (1990) Modeling the radiative balance
- 477 of the components of a well-mixed canopy: application to a white clover-tall fescue mixture.
- 478 Acta Oecologica 11:469-486.
- Williams KE et al. (2018) Revisiting the First ISLSCP Field Experiment to evaluate water stress in
 JULESv5.0. Geoscientific Model Development 2018:1-47. doi:10.5194/gmd-2018-210
- Wingate L, Ogée J, Burlett R, Bosc A (2010) Strong seasonal disequilibrium measured between the
 oxygen isotope signals of leaf and soil CO2 exchange. Global Change Biology 16:3048-3064.
- Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from
 2000 through 2009. Science 329:940-943.
- 485 Zhao T, Dai A (2017) Uncertainties in historical changes and future projections of drought. Part II: model-
- 486 simulated historical and future drought changes. Climatic Change 144:535-548.

487 Tables

488

Table 1. Local MuSICA simulations at Hesse used in the four experiments.

Experiments*	Simulation name	Monthly temperature	Monthly precipitation	Daily/hourly variability	Temperature/precipitation
1, 2, 3	2003	2003	2003	2003	2003
1, 2	2003 median climate	Median climate (1997-2013)	Median climate (1997-2013)	2003	Median climate
2	2003_only_P_limited	Median climate (1997-2013)	2003	2003	Median climate/2003
2	2003_only_T_limited	2003	Median climate (1997-2013)	2003	2003/Median climate
3	2003_fast_onset	Anomalies added to June-September:	Anomalies of June-September: 10%,	2003	2003
		+2, +1, -1, -2 (°C)	20%, 30%, 40% of total precipitation over the period		
3	2003_slow_onset	Anomalies added to June-September:	Anomalies of June-September: 40%,	2003	2003
		-2, -1, +1, +2 (°C)	30%, 20%, 10% of total precipitation over the period		
4	Xtreme_today	Modified by deltas relative to	Modified by change factors relative	2003	Extreme simulated years
		extreme dry years in CORDEX	to extreme dry years in CORDEX		at the 2006-2026 horizon
		simulations at the 2006-2026 horizon	simulations at the 2006-2026 horizon		
4	Median_futur	Modified by deltas relative to median	Modified by change factors relative	2003	Median simulated years at
		years in CORDEX simulations at the	to median years in CORDEX		the 2080-2100 horizon
		2080-2100 horizon	simulations at the 2080-2100 horizon		
4	Xtreme_futur	Modified by deltas relative to	Modified by change factors relative	2003	Extreme simulated years
		extreme dry years in CORDEX	to extreme dry years in CORDEX		at the 2080-2100 horizon
		simulations at the 2080-2100 horizon	simulations at the 2080-2100 horizon		
* Experiments	are defined in the section	"Local simulation experiments". The sam	e simulation can be used in more than or	ne experiment.	

489

490

Table 2. EURO-CORDEX RCP8.5 simulations used to define the projected climate change.

Regional climate model	Driving global climate model	Member
ALADIN53	CNRM-CERFACS-CNRM-CM5	r1i1p1
RCA4	ICHEC-EC-EARTH	r12i1p1
WRF331F	IPSL-IPSL-CM5A-MR	r1i1p1
CCLM4-8-17	MOHC-HadGEM2-ES	r1i1p1
REMO2009	MPI-M-MPI-ESM-LR	r1i1p1
REMO2015	NCC-NorESM1-M	r1i1p1

491 Figures

497

Figure 1. Simulated versus observed daily values of water-related variables and forest productivity at Hesse during the 2002 calibration year and the 2003 dry validation year. From top to bottom: gross primary productivity, evapotranspiration, soil water content in the top 70 cm. For soil water content, red (blue) points correspond to daily values before (after) August 15, which is in the middle of the yearly dry period at Hesse. Grey lines are the one-to-one lines.

Figure 2. Impact of soil water availability on evapotranspiration (2001-2008): daily mean observed (black) and simulated (red) evapotranspiration versus soil water content in the top 70 cm for May to September. The upper envelope lines with larger circles show the 95th percentiles of the evapotranspiration data divided in 15 equally spaced bins of soil water content. Only sunny days with mean daily net radiation greater than 100 W/m² were considered.

504 Figure 3. Quantification of the reduction of gross primary production and evapotranspiration due to 505 heat stress, water limitations and combined effects during the 2003 drought. Lines are cumulative sums 506 of daily gross primary productivity and evapotranspiration in 2003, simulated with the full 2003 dry 507 climate (2003, black), simulated with a median climate but diurnal variations of 2003 508 (2003_median_climate, red), simulated with median climate and the 2003 precipitation anomalies only 509 (2003_P_limited, green), simulated with median climate and the 2003 temperature anomalies only (2003 T limited, blue). Horizontal grey arrows show the time lapse between the start of the drought 510 and the divergence among simulations. Vertical black arrows indicate the 2003 reductions of fluxes 511 512 between simulations with a median climate and the full 2003 dry climate.

513

Figure 4. Quantification of the impact of different hypothetic drought trajectories. Lines are cumulative sums of daily gross primary productivity and evapotranspiration in 2003, simulated with the full 2003 dry climate (2003, black) and with modified versions of the 2003 climate. In the simulations "2003_fast_onset" and "2003_slow_onset ", the 2003 temperature and precipitation values were modified to have a faster or slower drought onset but same overall anomalies over the growing season (see Table 1).

520

521 Figure 5. Comparison of annual gross primary productivity, evapotranspiration and water use efficiency 522 (net assimilation divided by transpiration) at the Hesse beech forest under current and future (2080-523 2100) climate from six EURO-CORDEX simulations; future MuSICA simulations use either current 524 atmospheric CO₂ levels or projected, increased atmospheric CO₂ concentrations (2.17-time increase). 525 Each point represents the percent change (Eq. 3) of MuSICA input climate (May-September mean 526 temperature and precipitation) from Regional Climate Models (Table 2) and of MuSICA simulated fluxes. 527 The points for the simulation with driest projected climate are surrounded by circles. Horizontal bars represent the median of the six simulations. The specific MuSICA simulations are given in Table 1. 528 529 Xtreme_future vs. 2003_median_climate, for example, means the percent change in the annual sum if 530 MuSICA is driven by the most extreme year of specific CORDEX simulations over 2080-2100 compared to MuSICA driven by the median climate of 1997-2013. Black dots, showing the estimated impact of the 531 532 observed 2003 drought at Hesse, are given for comparison.

Figure 6. Comparison of gross primary productivity and evapotranspiration of potential European beech forests under current and future (2080-2100) extreme dry years over the species distributional range. Forcing temperature and precipitation used to drive MuSICA simulations are derived from the median of six extreme years, one pear each EURO-CORDEX simulation. Percent changes are computed as described in Eq. 3. The top row uses current atmospheric CO₂ concentration and the bottom row uses future CO₂ levels (2.17 current CO₂). The grey cross in Eastern France is the location of the Hesse forest experimental station.

541

29