F. Barbier, Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida, J. Exp. Bot, vol.66, pp.2569-2582, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168798

M. Spiller, Towards a unified genetic map for diploid roses, Theor. Appl Genet, vol.122, pp.489-500, 2011.

N. Nakamura, Genome structure of Rosa multiflora, a wild ancestor of cultivated roses, DNA Res, vol.25, pp.113-121, 2018.

O. Raymond, The Rosa genome provides new insights into the domestication of modern roses, Nat. Genet, vol.50, pp.772-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01798003

H. Saint-oyant and L. , A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits, Nat. Plants, vol.4, pp.473-484, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02516576

A. Roccia, Biosynthesis of 2-phenylethanol in rose petals is linked to the expression of one allele of RhPAAS, Plant Physiol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02110096

C. F. Koning-boucoiran, Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Front, Plant Sci, vol.6, p.249, 2015.

P. M. Bourke, Partial preferential chromosome pairing is genotype dependent in tetraploid rose, Plant J, vol.90, pp.330-343, 2017.

M. Vukosavljev, High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array, Hortic. Res, vol.3, p.16052, 2016.

P. M. Bourke, R. E. Voorrips, R. G. Visser, and C. Maliepaard, Tools for genetic studies in experimental populations of polyploids, Front. Plant Sci, vol.9, p.513, 2018.

H. N. Nguyen, D. Schulz, T. Winkelmann, and T. Debener, Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies, Plant Cell Rep, vol.36, pp.1493-1505, 2017.

D. F. Schulz, Genome-wide association analysis of the anthocyanin and carotenoid contents of rose petals, Front. Plant Sci, vol.7, p.1798, 2016.

S. Jung, 15 years of GDR: new data and functionality in the Genome Database for Rosaceae, Nucleic Acids Res, vol.47, pp.1137-1145, 2019.

J. Meng, M. Fougère-danezan, L. Zhang, D. Li, and T. Yi, Untangling the hybrid origin of the Chinese tea roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes, Plant Syst. Evol, vol.297, pp.157-170, 2011.

A. C. Dubois, Transcriptome database resource and gene expression atlas for the rose, BMC Genom, vol.13, p.638, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841830

X. Liu, Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection, BMC Genet, vol.19, p.62, 2018.

X. Tian, Genome-wide transcriptome analysis of the salt stress tolerance mechanism in Rosa chinensis, PLoS ONE, vol.13, p.200938, 2018.

E. Neu, Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation, Plant Mol. Biol, 2019.

M. J. Smulders and P. Arens, Handbook of Plant Breeding, vol.11, pp.213-230, 2018.

S. Li, Comparative transcriptomics identifies patterns of selection in roses, BMC Plant Biol, vol.18, p.371, 2018.

P. A. Morin, K. K. Martien, and B. L. Taylor, Assessing statistical power of SNPs for population structure and conservation studies, Mol. Ecol. Resour, vol.9, pp.66-73, 2009.

E. Motazedi, R. Finkers, C. Maliepaard, and D. De-ridder, Exploiting nextgeneration sequencing to solve the haplotyping puzzle in polyploids: a simulation study, Brief Bioinform, vol.19, pp.387-403, 2018.

A. Mckenna, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

D. Gerard, L. F. Ferrão, A. A. Garcia, and M. Stephens, Genotyping polyploids from Messy sequencing data, Genetics, vol.210, pp.789-807, 2018.

H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, Bioinformatics, vol.27, pp.2987-2993, 2011.

J. W. Davey, Genome-wide genetic marker discovery and genotyping using next-generation sequencing, Nat. Rev. Genet, vol.12, pp.499-510, 2011.

M. Yan, Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map, Hortic. Res, vol.5, p.17, 2018.

M. Heo, Development of SNP markers using genotyping-bysequencing for cultivar identification in rose (Rosa hybrida), Hortic. Environ. Biotechnol, vol.58, pp.292-302, 2017.

N. O. Therkildsen and S. R. Palumbi, Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species, Mol. Ecol. Resour, vol.17, pp.194-208, 2017.

A. García-lor, F. Luro, L. Navarro, and P. Ollitrault, Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies, Mol. Genet. Genom, vol.287, pp.77-94, 2012.

C. A. Hackett, B. Boskamp, and A. Vogogias, TetraploidSNPMap: Software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage data, J. Hered, vol.108, pp.438-442, 2017.

P. M. Bourke, PolymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids, Bioinformatics, vol.34, pp.3496-3502, 2018.

J. D. Zurn, Mapping a novel black spot resistance locus in the Climbing Rose Brite Eyes?, RADbrite'). Front. Plant Sci, vol.9, p.1730, 2018.

P. M. Bourke, Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose, Theor. Appl. Genet, vol.131, pp.2055-2069, 2018.

A. Wylie, The history of garden roses, J. R. Hortic. Soc, vol.79, pp.555-571, 1954.

N. Maia, P. Venard, and . Vénard, Cytotaxonomie du genre Rosa et origine des rosiers cultivés? Travaux sur le rosier de serre menés au C.R.A. d'Antibes. Fédération Nationale des Producteurs de l'Horticulture et des Pépinières, pp.7-20, 1976.

M. A. Young, P. Schorr, and R. Baer, Modern Roses, vol.12, 2007.

M. Akond, S. Jin, and X. Wang, Molecular characterization of selected wild species and miniature roses based on SSR markers, Sci. Hortic, vol.147, pp.89-97, 2012.

J. Tan, Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity, Sci. Rep, vol.7, p.15437, 2017.

M. Vukosavljev, Genetic diversity and differentiation in roses: a garden rose perspective, Sci. Hortic, vol.162, pp.320-332, 2013.

A. Farooq, Microsatellite analysis of Rosa damascena from Pakistan and Iran, Hortic. Environ. Biotechnol, vol.54, pp.141-147, 2013.

M. Liorzou, Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background, J. Exp. Bot, vol.67, pp.4711-4725, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399109

L. Leus, Molecular evaluation of a collection of rose species and cultivars by AFLP, ITS, rbc L, mat K, Acta Hortic, vol.651, pp.141-147, 2004.

W. J. Koopman, AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae), Am. J. Bot, vol.95, pp.353-366, 2008.

M. D. Fernández-romero, in Cytological and Molecular Characterisation of a Collection of wild and cultivated roses, Roses, vol.3, pp.28-39, 2009.

X. Q. Qiu, Genetic relationships of wild roses, old garden roses, and modern roses based on internal transcribed spacers and matK sequences, Hortscience, vol.48, pp.1445-1451, 2013.

S. Valentina, A. Aziz, and B. Roberto, Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis, J. Am. Soc. Hortic. Sci, vol.131, pp.66-73, 2006.

M. Vukosavljev, Genetic diversity and differentiation in roses: A garden rose perspective, Sci. Hortic. (Amsterdam), vol.162, pp.320-332, 2013.

L. Gardes, P. Heizmann, and F. Joyaux, Molecular typing and history of the provins roses horticultural group, Eur. J. Hortic. Sci, vol.70, pp.162-172, 2005.

G. A. Wu, Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication, Nat. Biotechnol, vol.32, p.656, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02285484

A. Cornille, New Insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties, PLOS Genet, vol.8, p.1002703, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209929

G. Besnard, Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early generations of admixture, Ann. Bot, vol.112, pp.1293-1302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268461

U. R. Rosyara, Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry, Mol. Breed, vol.32, pp.875-887, 2013.

W. E. Van-de-weg, Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining by exploiting breeding material, Acta Hortic, vol.708, pp.483-488, 2006.

J. Fresnedo-rami?rez, T. J. Frett, and P. J. Sandefur, QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs, Tree Genet. Genom, vol.12, p.25, 2016.

N. P. Howard, Two QTL characterized for soft scald and soggy breakdown in apple (Malus × domestica) through pedigree-based analysis of a large population of interconnected families, Tree Genet. Genom, vol.14, 2018.

A. B. Kouassi, Estimation of genetic parameters and prediction of breeding values for apple (Malus × domestica) fruit quality traits using pedigreed plant material in, Eur. Tree Genet. Genom, vol.5, pp.659-672, 2009.

M. C. Bink, Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple, Theor. Appl. Genet, vol.127, pp.1073-1090, 2014.

J. Mangandi, Pedigree-based analysis in a multiparental population of octoploid strawberry reveals QTL alleles conferring resistance to Phytophthora cactorum, G3, vol.7, pp.1707-1719, 2017.

F. Proïa, F. Panloup, C. Trabelsi, and J. Clotault, Probabilistic reconstruction of genealogies for polyploid plant species, J. Theor. Biol, vol.462, pp.537-551, 2019.

M. J. Smulders, D. Esselink, R. E. Voorrips, and B. Vosman, Analysis of a database of DNA profiles of 734 hybrid tea rose varieties, Acta Hortic, vol.836, pp.169-175, 2009.

K. B. Blackburn and J. H. Harrison, The status of the British rose forms as determined by their cytological behaviour, Ann. Bot, vol.35, pp.159-188, 1921.

G. Täckholm, On the cytology of the genus Rosa, Sven. Bot. Tidskr, vol.14, pp.300-311, 1920.

D. C. Zlesak, Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines, Floric. Ornam. Biotechnol, vol.3, pp.53-70, 2009.

H. Nybom, G. D. Esselink, G. Werlemark, and B. Vosman, Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. Sect. Canina DC. Heredity, vol.92, p.139, 2003.

K. Y. Lim, Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L, Heredity, vol.94, pp.501-506, 2005.

K. Yokoya, A. V. Roberts, J. Mottley, R. Lewis, and P. E. Brandham, Nuclear DNA Amounts In Roses, Ann. Bot, vol.85, pp.557-561, 2000.

H. Jian, Nuclear DNA content and 1Cx-value variations in genus Rosa L, Caryologia, vol.67, pp.273-280, 2014.

J. L. Bennetzen, J. Ma, and K. M. Devos, Mechanisms of recent genome size variation in flowering plants, Ann. Bot, vol.95, pp.127-132, 2005.

A. R. Leitch and I. J. Leitch, Genomic plasticity and the diversity of polyploid plants, Science, vol.320, pp.481-483, 2008.

H. Iwata, The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry, Plant J, vol.69, pp.116-125, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209893

S. J. Klein and R. J. O'neill, Transposable elements: genome innovation, chromosome diversity, and centromere conflict, Chromosom. Res, vol.26, p.5, 2018.

V. Shulaev, The genome of woodland strawberry (Fragaria vesca), Nat. Genet, vol.43, pp.109-116, 2011.

J. Zhang, The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat, J. Hortic. Sci. Biotechnol, vol.88, pp.85-92, 2013.

J. Cao, Whole-genome sequencing of multiple Arabidopsis thaliana populations, Nat. Genet, vol.43, pp.956-963, 2011.

W. Yao, G. Li, H. Zhao, G. Wang, X. Lian et al., Exploring the rice dispensable genome using a metagenome-like assembly strategy, Genome Biol, vol.16, p.187, 2015.

C. N. Hirsch, J. M. Foerster, and J. M. Johnson, Insights into the maize pangenome and pan-transcriptome, Plant Cell, vol.26, pp.121-135, 2014.

W. Wang, Genomic variation in 3,010 diverse accessions of Asian cultivated rice, Nature, vol.557, pp.43-49, 2018.

M. A. Hardigan, Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum, Plant Cell, vol.28, p.388, 2016.

W. Wang, High rate of chimeric gene origination by retroposition in plant genomes, Plant Cell, vol.18, p.1791, 2006.

D. Terefe-ayana, Mining disease-resistance genes in roses: functional and molecular characterization of the Rdr1 locus, Front. Plant Sci, vol.2, p.35, 2011.

D. Terefe-ayana, H. Kaufmann, M. Linde, and T. Debener, Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species, BMC Genom, vol.13, p.409, 2012.

T. Debener and M. Linde, Exploring complex ornamental genomes: the rose as a model plant, Crit. Rev. Plant Sci, vol.28, pp.267-280, 2009.

M. Randoux, Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue, J. Exp. Bot, vol.63, pp.6543-6554, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841831

M. Randoux, RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose, N. Phytol, vol.202, pp.161-173, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209973

Z. Wang, The divergence of flowering time modulated by FT/TFL1 is independent to their interaction and binding activities, Front. Plant Sci, vol.8, p.697, 2017.

H. Roman, Genetic analysis of the flowering date and number of petals in rose, Tree Genet. Genom, vol.11, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392106

A. Dubois, Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses, PLoS ONE, vol.5, p.9288, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521642

T. Debener and L. Mattiesch, Construction of a genetic linkage map for roses using RAPD and AFLP markers, Theor. Appl. Genet, vol.99, pp.891-899, 1999.

Y. Han, An APETALA2 Homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Front, Plant Sci, vol.9, p.481, 2018.

L. François, A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses, Sci. Rep, vol.8, p.12912, 2018.

S. Gattolin, Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae, Plant J, vol.96, pp.358-371, 2018.

Y. Han, Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis, Sci. Rep, vol.7, p.43382, 2017.

M. Jay, , pp.248-255, 2003.

J. Ogata, Y. Kanno, Y. Itoh, H. Tsugawa, and M. Suzuki, Anthocyanin biosynthesis in roses, Nature, vol.435, pp.757-758, 2005.

T. A. Holton and Y. Tanaka, Blue roses-a pigment of our imagination?, Trends Biotechnol, vol.12, pp.40-42, 1994.

V. W. Gitonga, Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses, Mol. Breed, vol.36, p.143, 2016.

Y. Ueda, D. Takeshita, and T. Ando, Pollination in Rosa rugosa Thunb. ex Murray, Acta Hortic, vol.424, pp.309-310, 1996.

H. Sassa, Molecular mechanism of the S-RNase-based gametophytic selfincompatibility in fruit trees of Rosaceae, Breed. Sci, vol.66, pp.116-121, 2016.

T. Debener, Genetic and molecular analysis of key loci involved in self incompatibility and floral scent in roses, Acta Hortic, vol.870, pp.183-190, 2010.

V. Bergougnoux, Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds, Planta, vol.226, pp.853-866, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189101

G. Scalliet, Scent evolution in Chinese roses, Proc. Natl Acad. Sci. USA, vol.105, pp.5927-5932, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00277095

I. Guterman, Rose Scent. Genomics approach to discovering novel floral fragrance-related genes, Plant Cell, vol.14, pp.2325-2338, 2002.

Y. Kaminaga, Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation, J. Biol. Chem, vol.281, pp.23357-23366, 2006.

X. Chen, Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol, J. Plant Physiol, vol.168, pp.88-95, 2011.

H. Hirata, Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts, J. Plant Physiol, vol.169, pp.444-451, 2012.

H. Hirata, Seasonal induction of alternative principal pathway for rose flower scent, Sci. Rep, vol.6, p.20234, 2016.

D. Tholl, Biotechnology of Isoprenoids, pp.63-106, 2015.

J. L. Magnard, Biosynthesis of monoterpene scent compounds in roses, Science, vol.349, pp.81-83, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01210018

M. Cherri-martin, F. Jullien, P. Heizmann, and S. Baudino, Fragrance heritability in hybrid Tea roses, Sci. Hortic, vol.113, pp.177-181, 2007.

N. Ma, Petal senescence: a hormone view, J. Exp. Bot, vol.69, pp.719-732, 2018.

T. Debener and D. H. Byrne, Disease resistance breeding in rose: current status and potential of biotechnological tools, Plant Sci, vol.228, pp.107-117, 2014.

V. Malek, B. Debener, and T. , Genetic analysis of resistance to blackspot (Diplocarpon rosae) in tetraploid roses, Theor. Appl. Genet, vol.96, pp.228-231, 1998.

V. W. Whitaker, Rdr3, a novel locus conferring black spot disease resistance in tetraploid rose: genetic analysis, LRR profiling, and SCAR marker development, Theor. Appl. Genet, vol.120, pp.573-585, 2010.

M. Linde and T. Debener, solation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr:Fr) de Bary and the genetic analysis of the resistance gene Rpp 1, Theor. Appl. Genet, vol.107, pp.256-262, 2003.

M. Linde, A. Hattendorf, H. Kaufmann, and T. Debener, Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping, Theor. Appl. Genet, vol.113, pp.1081-1092, 2006.

H. Hosseini-moghaddam, Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotypespecific powdery mildew resistance in diploid roses, Euphytica, vol.184, pp.413-427, 2012.

F. Jupe, Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations, Plant J, vol.76, pp.530-544, 2013.

M. R. Armstrong, Tracking disease resistance deployment in potato breeding by enrichment sequencing, Plant Biotechnol. J, vol.17, pp.540-549, 2019.

V. W. Gitonga, Genetic variation, heritability and genotype by environment interaction of morphological traits in a tetraploid rose population, BMC Genet, vol.15, p.1, 2014.

K. Kawamura, Inheritance of garden rose architecture and its association with flowering behaviour, Tree Genet. Genom, vol.11, p.22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392651

K. Kawamura, Quantitative trait loci for flowering time and inflorescence architecture in rose, Theor. Appl. Genet, vol.122, pp.661-675, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00729329

C. Li-marchetti, 3D phenotyping and QTL analysis of a complex character: rose bush architecture, Tree Genet. Genom, vol.13, p.112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02516661

A. Biber, Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses, Theor. Appl. Genet, vol.120, pp.765-773, 2010.

O. Sosnowski, A. Charcosset, and J. Joets, BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms, Bioinformatics, vol.28, pp.2082-2083, 2012.

K. V. Krasileva, Uncovering hidden variation in polyploid wheat, Proc. Natl Acad. Sci. USA, vol.114, pp.913-921, 2017.

B. Steuernagel, Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture, Nat. Biotechnol, vol.34, pp.652-655, 2016.

W. Li, Whole-genome resequencing reveals candidate mutations for pig prolificacy, Proc. R. Soc. B, vol.284, p.20172437, 2017.

E. Firoozabady, Y. Moy, N. Courtney-gutterson, and K. Robinson, Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue, Nat. Biotechnol, vol.12, pp.609-613, 1994.

T. H. Nguyen, T. Winkelmann, and T. Debener, Development of markers for shoot organogenesis in roses, Acta Hortic, vol.1232, pp.7-14, 2019.

S. Xing, Expression vector construction and genetic transformation of Rosa rugosa beta-1,3-glucanase gene (RrGlu), Am. J. Plant Sci, vol.8, p.7, 2017.

L. Hamama, Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants, Plant Cell Rep, vol.31, pp.2015-2029, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01455962

K. D. Xu, A MADS-box gene associated with protocorm-like body formation in Rosa canina alters floral organ development in Arabidopsis, Can. J. Plant Sci, vol.98, pp.309-317, 2018.

G. M. Jiang, The Rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in Rose and Arabidopsis, PLos ONE, vol.9, 2014.

X. Q. Jiang, The novel rose MYB transcription factor RhMYB96 enhances salt tolerance in transgenic Arabidopsis, Plant Mol. Biol. Rep, vol.36, pp.406-417, 2018.

A. Yasmin and T. Debener, Transient gene expression in rose petals via Agrobacterium infiltration, Plant Cell Tiss. Org. Cult, vol.102, pp.245-250, 2010.

M. Zeinipour, Agroinfiltration: a rapid and reliable method to select suitable rose cultivars for blue flower production, Physiol. Mol. Biol. Plants, vol.24, pp.503-511, 2018.

J. Tian, TRVGFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function, J. Exp. Bot, vol.65, pp.311-322, 2014.

F. W. Dai, RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals, Plant Physiol, vol.160, pp.2064-2082, 2012.

L. A. Dubois and D. P. De-vries, On the inheritance of the dwarf character in Polyantha × Rosa chinensis minima (Sims) Voss F1-populations, Euphytica, vol.36, pp.535-539, 1987.

W. E. Lammerts, The Scientific Basis of Rose Breeding, 1945.

M. J. Smulders, Some thoughts on how to use markers in tetraploid rose breeding, Acta Hortic, vol.1232, pp.1-9, 2019.

C. A. Hackett, J. E. Bradshaw, and G. J. Bryan, QTL mapping in autotetraploids using SNP dosage information, Theor. Appl. Genet, vol.127, pp.1885-1904, 2014.

C. C. Mundt, Pyramiding for resistance durability: theory and practice, Phytopathology, vol.108, pp.792-802, 2018.

T. Koller, S. Brunner, G. Herren, S. Hurn, and B. Keller, Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field, Theor. Appl. Genet, vol.131, pp.861-871, 2018.

I. Menz, J. Straube, M. Linde, and T. Debener, The TNL gene Rdr1 confers broad-spectrum resistance to Diplocarpon rosae, Mol. Plant Pathol, vol.19, pp.1104-1113, 2018.

G. Van-geest, Breeding for postharvest performance in chrysanthemum by selection against storage-induced degreening of disk florets, Postharvest Biol. Technol, vol.124, pp.45-53, 2017.

R. Bernardo, Bandwagons I, too, have known, Theor. Appl. Genet, vol.129, pp.2323-2332, 2016.

L. Leus, L. Van-laere, J. De-riek, and J. Van-huylenbroeck, Handbook of Plant Breeding, vol.11, pp.719-767, 2018.

T. M. Waliczek, D. H. Byrne, and D. J. Holeman, Growers' and consumers' knowledge, attitudes and opinions regarding roses available for purchase, Acta Hortic, vol.1064, pp.235-239, 2015.

P. K. Ingvarsson and N. R. Street, Association genetics of complex traits in plants, N. Phytol, vol.189, pp.909-922, 2011.

S. S. Nadakuduti, Genome editing for crop improvement-applications in clonally propagated polyploids with a focus on potato (Solanum tuberosum L.). Front, Plant Sci, vol.9, p.1607, 2018.

J. G. Schaart, C. C. Van-de-wiel, L. A. Lotz, and M. J. Smulders, Opportunities for products of new plant breeding techniques, Trends Plant Sci, vol.21, pp.438-449, 2016.

J. Cheng, Detection of induced mutations in CaFAD2 genes by nextgeneration sequencing leading to the production of improved oil composition in Crambe abyssinica, Plant Biotechnol. J, vol.13, pp.471-481, 2015.

A. Jouanin, L. A. Boyd, R. G. Visser, and M. J. Smulders, Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in, Europe. Front. Plant Sci, vol.9, p.1523, 2018.

A. Scheben and D. Edwards, Bottlenecks for genome-edited crops on the road from lab to farm, Genome Biol, vol.19, p.178, 2018.

F. Laurens, An integrated approach for increasing breeding efficiency in apple and peach in Europe, Hortic. Res, vol.5, p.11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01905289

X. Yang, Poplar genomics: state of the science, Crit. Rev. Plant Sci, vol.28, pp.285-308, 2009.

A. L. Delcher, S. L. Salzberg, and A. M. Phillippy, Using MUMmer to identify similar regions in large sequence sets, Curr. Protoc. Bioinform, vol.10, p.3, 2003.