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Abstract The Anaerobic Digestion Model ADM1 is a

complex model which is widely accepted as a common

platform for anaerobic process modeling and simula-

tion. However, it has a large number of parameters and

states that hinder its analytic study. Here, we consider

the two-step simple model of anaerobic digestion named

AM2, which is a four-dimensional system of ordinary

differential equations. The AM2 model is able to ade-

quately capture the main dynamical behavior of the full

anaerobic digestion model ADM1 and has the advan-

tage that a complete analysis for the existence and local

stability of its steady states is available. We describe

its operating diagram, which is the bifurcation diagram

giving the behavior of the system with respect to the

operating parameters, represented by the dilution rate

and the input concentrations of the substrates. This
diagram, is very useful to understand the model from

both the mathematical and biological points of view. It

is shown that six types of behavior can be obtained for

the long-term dynamics of the AM2 model, concerning

the coexistence or extinction of one or both bacterial

populations.
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1 Introduction

The anaerobic digestion is a complex process in which

organic material is converted into biogas, mainly com-

posed of methane, in an environment without oxygen

[4,8,26,32]. Anaerobic digestion enables the water in-

dustry to treat waste water as a resource for generat-

ing energy and recovering valuable by-products. The

methane gas can be used as a renewable energy instead

of fossil fuels. The complexity of the anaerobic diges-

tion process has motivated the development of complex

mathematical models, such as the widely used Anaer-

obic Digestion Model No. 1 (ADM1) [4]. The ADM1

system is a differential-algebraic equation system with

44 state variables (29 variables are of dynamic nature,

and 15 variables are algebraic states) and more than

80 parameters. Since ADM1 is strongly non-linear and

highly complex, it is impossible to obtain an analytical

characterization of the steady states and to describe the

operating diagram, that is to say, to identify the asymp-

totic behaviour of existing steady-states as a function

of the operating parameters (substrates inflow concen-

trations and dilution rate). To the author’s knowledge,

for the ADM1 system, only numerical investigations are

available [8].

Due to the analytic intractability of the full ADM1,

work has been made towards the construction of simpler

models that preserve biological meaning whilst reduc-

ing the computational effort required to find mathemat-

ical solutions of the model equations, to obtain a better

understanding of the anaerobic digestion process. The

simplest model of the chemostat with only one biolog-

ical reaction, where one substrate is consumed by one

microorganism is well understood [14,19,27]. However a

one-step model is too simple to encapsulate the essence

of the anaerobic digestion process.
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More realistic models of anaerobic digestion are two-

step models. An important contribution on the mod-

elling of anaerobic digestion as a two-step is the model

presented in [7], hereafter denoted as AM2 model, and

studied in [6,25]. It has been shown that under some

circumstances, this very simple two-step model is able

to adequately capture the main dynamical behavior of

the full anaerobic digestion model ADM1 [3,12]. More-

over, it has been shown that the simple AM2 model

can support on-line control, optimization and supervi-

sion strategies, through the synthesis of state observers

and control feedback laws [1,2].

Another simple two-step model of anaerobic diges-

tion is the model presented in [35], where the product

of the first microorganism, that serves as the substrate

for the second microorganism, inhibits the growth of the

first microorganism. The model incorporates a Monod

with product inhibition kinetics for the first reaction

and Monod kinetics alone for the second reaction term,

and was extended with general growth functions char-

acterized by qualitative properties in [10,23].

The two-step models studied in [6,7,25] present a

commensalistic relationship between the microorgan-

isms. According to [28], the commensalism is character-

ized by the fact that the second population (the com-

mensal population) benefits for its growth from the first

population (the host population) while the host popu-

lation is not affected by the growth of the commensal

population and hence, the first population can grow

without the second one. On the contrary, the two-step

models studied in [10,23,35] present a syntrophic rela-

tionship between the microorganisms: the first popula-

tion is affected by the growth of the second population.

For more details and information on commensalism and

syntrophy, the reader is referred to [9,11,21,22,23,28,

30] and the references therein.

Another interesting simple anaerobic digestion mod-

els are the two-step models studied in [26,29], and the

model with five state variables considered in [8,18]. We

mention also the mathematical model, with eight state

variables, which include syntrophy and substrate inhibi-

tion, considered in [33,34] and the mathematical model,

with six state variables, which introduces an additional

microorganism and substrate in a two-step syntrophic

model, considered in [24,31].

In this paper we will consider the two-step AM2

model [6,7,25], and we describe its operating diagram.

The operating diagram has the operating parameters as

its coordinates and the various regions defined within

it correspond to qualitatively different asymptotic be-

haviors. A two-step model has three operating param-

eters that are the input concentration of substrate for

each reaction and the dilution rate. These parameters

are control parameters since they are under the control

of the experimenter. Apart from these three parame-

ters, that can vary, all other parameters have biological

meaning and are fitted using experimental data from

ecological and/or biological observations of organisms

and substrates.

Therefore the operating diagram is the bifurcation

diagram that shows how the system behaves when we

vary the control parameters. This diagram shows how

extensive the parameter region is, where some asymp-

totic behaviors occur. This bifurcation diagram is very

useful to understand the model from both the math-

ematical and biological points of view. Its importance

for bioreactors was emphasized in [20], who attributed

its introduction to [16], where the dynamics of preda-

tor and prey interactions is studied in a chemostat. This

diagram is often constructed both in the biological liter-

ature [16,20,25,35,31] and the mathematical literature

[8,10,17,23,24,29,33,34].

AM2 model can have up to six steady states. Its op-

erating diagram was only partially described in [25], in

the case α = 1. In this paper we give a complete de-

scription of the diagram and, we show that it presents

nine regions according to the number of steady states

that can exist in each region, and the nature of their

stability. The operating diagram summarizes the effect

of the operating conditions on the long-term dynamics

of the AM2 model and shows six types of behavior visu-

alized in the figures by six different colors. Since AM2

model has three operating parameters, and it is not easy

to visualize regions in the three-dimensional operating

parameter space, two of the operating parameters are

used as coordinates of the operating diagram and the

effects of the third parameter are shown in a series of

operating diagrams.

This paper is organized as follows: in section 2, we

present the mathematical model and recall the neces-

sary and sufficient conditions of existence of its steady

states and their local, and global stability. Next, in

section 3, we describe the operating diagram in the

three-dimensional operating parameters space. In sec-

tions 4 and 5, we describe the operating diagrams in

two-dimensional operating parameters space when the

third operating parameter is kept fixed. In section 6, we

present some bifurcation diagrams, with the dilution

rate as the bifurcation parameter. Then, we conclude

by discussing our results in section 7, before conclusions

are formulated in the last section. Proofs, a Maple code

to plot some figures of the paper, and Tables are given

in the appendix.
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Table 1 Auxiliary functions

S∗
1 (D)

S∗
1 (D) is the unique solution of equation µ1 (S1) = αD

It is defined for 0 ≤ D < D1, where D1 = m1/α
If D ≥ D1, by convention we let S∗

1 (D) = +∞

Si∗2 (D),
i = 1, 2

S1∗
2 (D) < S2∗

2 (D) are the solutions of equation µ2 (S2) = αD
They are defined for 0 ≤ D ≤ D2, where D2 = µ2

(
SM2

)
/α

If D = D2, one has S1∗
2 (D) = S2∗

2 (D)
If D > D2, by convention we let S1∗

2 (D) = +∞
Hi(D),
i = 1, 2

Hi(D) = Si∗2 (D) + k2

k1
S∗
1 (D)

It is defined for 0 ≤ D < min(D1, D2)

S∗
2in (D,S1in, S2in)

S∗
2in (D,S1in, S2in) = S2in + k2

k1
(S1in − S∗

1 (D))

It is defined for 0 ≤ D < D1 and S1in > S∗
1 (D)

X∗
1 (D,S1in)

X∗
1 (D,S1in) = 1

k1α
(S1in − S∗

1 (D))

It is defined for 0 ≤ D < D1 and S1in > S∗
1 (D)

Xi2 (D,S2in),
i = 1, 2

Xi2 (D,S2in) = 1
k3α

(
S2in − Si∗2 (D)

)
It is defined for 0 ≤ D < D2 and S2in > Si∗2 (D)

Xi∗2 (D,S1in, S2in),
i = 1, 2

Xi∗2 (D,S1in, S2in) = 1
k3α

(
S∗
2in (D,S1in, S2in)− Si∗2 (D)

)
It is defined for 0 ≤ D < min(D1, D2), S1in > S∗

1 (D) and S2in + k2

k1
S1in > Hi(D)

2 Mathematical model

We consider the AM2 model of anaerobic digestion given

in [7], with a cascade of two biological reactions, where

one substrate S1 is degraded by one microorganism X1

into a product S2, that serves as the main limiting sub-

strate for a second microorganism X2

k1S1
µ1−→ X1 + k2S2 + k4CO2,

k3S2
µ2−→ X2 + k5CO2 + k6CH4,

(1)

where µ1 and µ2 are the kinetics of the reactions and

ki are pseudo-stoichiometric coefficients associated to

the bioreactions. In the first step, the organic substrate

S1 is consumed by the acidogenic bacteria X1 and pro-

duces a substrate S2 (Volatile Fatty Acids), while, in

the second step, the methanogenic population X2 con-

sumes S2 and produces biogas. Let D be the dilution

rate, S1in and S2in the concentrations of input sub-

strates S1 and S2, respectively. The dynamical equa-

tions of the model take the form:

Ṡ1 = D (S1in − S1)− k1µ1 (S1)X1,

Ẋ1 = (µ1 (S1)− αD)X1,

Ṡ2 = D (S2in − S2)+k2µ1 (S1)X1−k3µ2 (S2)X2,

Ẋ2 = (µ2 (S2)− αD)X2,

(2)

where α ∈ [0, 1] is a parameter allowing us to decou-

ple the HRT (Hydraulic Retention Time) and the SRT

(Solid Retention Time). In [7], the kinetics µ1 and µ2

are of Monod and Haldane type, respectively:

µ1 (S1) =
m1S1

K1 + S1
, µ2 (S2) =

m2S2

K2 + S2 +
S2
2

KI

. (3)

The carbon dioxide and methane in (1) are outputs

of the system, and have no feedback on the dynami-

cal equations (2). In [3,26] this feedback, together with

growth decay terms, are taken into consideration. Due

to the cascade structure of the model (2), without added

difficulty in the mathematical analysis, we can intro-

duce decay terms in the removal rates of the bacteria,

that is to say, we can replace αD by αD+ ai, where ai
is the decay term for Xi, i = 1, 2.

Following [6,25], we will consider (2) with general

C1 kinetics functions µ1 and µ2 satisfying the following

qualitative properties:

Hypothesis 1 µ1(0) = 0, µ1(+∞) = m1 and µ′1 (S1) >

0 for S1 > 0.

Hypothesis 2 µ2 (0) = 0, µ2(+∞) = 0 and there ex-

ists SM2 > 0 such that µ′2 (S2) > 0 for 0 < S2 < SM2 ,

and µ′2 (S2) < 0 for S2 > SM2 .

Table 2 The steady states of (2). S∗
1 , Si∗2 , i = 1, 2, S∗

2in,
X∗

1 , Xi2, i = 1, 2, and Xi∗2 , i = 1, 2 are defined in Table 1.

E0
1 S1 = S1in S2 = S2in X1 = 0 X2 = 0

Ei1 S1 = S1in S2 = Si∗2 X1 = 0 X2 = Xi2
E0

2 S1 = S∗
1 S2 = S∗

2in X1 = X∗
1 X2 = 0

Ei2 S1 = S∗
1 S2 = Si∗2 X1 = X∗

1 X2 = Xi∗2

The system (2) can have at most six steady states,

given in Table 2. For more details, the reader is re-

ferred to [6] and Appendix A. For the description of the

steady states, we need to define the auxiliary functions

S∗1 , S∗2in, X∗1 , Si∗2 and Xi∗
2 , i = 1, 2, that are given in

Table 1. For the particular case of Monod and Haldane

functions (3), the auxiliary functions can be computed

analytically and are given in Table 12. We have the

following result.
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Table 3 Necessary and sufficient conditions of existence and local stability of steady states of (2). S∗
1 (D), Si∗2 (D), i = 1, 2,

and Hi(D), i = 1, 2, are defined in Table 1.

Existence conditions Stability conditions
E0

1 Always exists S1in < S∗
1 (D) and S2in /∈ [S1∗

2 (D), S2∗
2 (D)]

E1
1 S2in > S1∗

2 (D) S1in < S∗
1 (D)

E2
1 S2in > S2∗

2 (D) Unstable if it exists

E0
2 S1in > S∗

1 (D) S2in + k2

k1
S1in /∈ [H1(D), H2(D)]

E1
2 S1in > S∗

1 (D) and S2in + k2

k1
S1in > H1(D) Stable if it exists

E2
2 S1in > S∗

1 (D) and S2in + k2

k1
S1in > H2(D) Unstable if it exists

Proposition 1 Assume that Hypotheses 1 and 2 hold.

The steady states E0
1 , Ei1 (i = 1, 2), E0

2 and Ei2 (i =

1, 2) are given in Table 2. Their conditions of existence

and stability are given in Table 3.

Proof The proof is given in Appendix B.1. ut

It should be noted that the steady states E0
1 and E0

2 ,

where the methanogenic bacteria are washed out, pro-

duce no methane. The methane is produced when the

system is functioning at the stable steady states E1
1 or

E1
2 , where the methanogenic bacteria are maintained.

Although methane is produced by E1
1 , this requires ex-

traneous addition of VFAs (the condition S2in > 0 is

necessary for the existence of E1
1). Therefore, the steady

state condition one would aim to achieve for stable op-

eration is E1
2 , where all species survive and no extrane-

ous addition of VFAs is required (the condition S2in = 0

is compatible with the existence of E1
2). However, it was

shown that surprisingly, E1
1 can be more productive in

biogas than E1
2 [5,34]. Therefore it is important for the

experimenter to have a description of the regions of ex-

istence and stability of the steady states, given by the
operating diagrams.

3 Operating diagram

The conditions S1in = S∗1 (D), S2in = Si∗2 (D), i = 1, 2,

and S1in + k2
k1
S2in = Hi(D), i = 1, 2, in Table 3 de-

fine the boundaries in the operating parameter space

where one of the steady states becomes positive or be-

comes stable. This suggests to define the surfaces Γi,

i = 1, · · · , 6, of Table 4. We have

Γ1 = {(D,S1in, S2in) : S1in > 0 and αD = µ1 (S1in)}

Γ2∪Γ3 = {(D,S1in, S2in) : S2in>0 and αD=µ2 (S2in)}

Notice that S1∗
2 (D) < S2∗

2 (D) for 0 < D < D2

and equality holds for D = D2. Similarly H1(D) <

H2(D) for 0 < D < min(D1, D2), and equality holds for

D = min(D1, D2). Therefore, the Γi surfaces separate

Table 4 The surfaces Γi, i = 1, · · · , 6.

Γ1 = {(D,S1in, S2in) : 0 < D < D1 and S1in = S∗
1 (D)}

Γ2 = {(D,S1in, S2in) : 0 < D < D2 and S2in = S1∗
2 (D)}

Γ3 = {(D,S1in, S2in) : 0 < D < D2 and S2in = S2∗
2 (D)}

Γ4 = {(D,S1in, S2in) : 0 < D < min(D1, D2), S1in > S∗
1 (D)

and S2in + k2

k1
S1in = H1(D)}

Γ5 = {(D,S1in, S2in) : 0 < D < min(D1, D2), S1in > S∗
1 (D)

and S2in + k2

k1
S1in = H2(D)}

Γ6 =
{
(D,S1in, S2in) : D = D2 and S2in ≥ SM2

}

Table 5 Definitions of the regions Ik, k = 0, · · · , 8.

Region Definition
I0 S1in<S∗

1 (D) and S2in < S1∗
2 (D)

I1 S1in<S∗
1 (D) and S1∗

2 (D)<S2in≤S2∗
2 (D)

I2 S1in<S∗
1 (D) and S2in > S2∗

2 (D)

I3 S1in>S∗
1 (D) and S2in + k2

k1
S1in < H1(D)

I4

{
S1in>S∗

1 (D), S2in≤S1∗
2 (D)

and H1(D)< S2in+ k2

k1
S1in≤H2(D)

I5

{
S1in>S∗

1 (D), S2in≤S1∗
2 (D)

and S2in+ k2

k1
S1in>H2(D)

I6

{
S1in>S∗

1 (D), S2in>S1∗
2 (D)

and S2in+ k2

k1
S1in≤H2(D)

I7

{
S1in>S∗

1 (D), S1∗
2 (D) < S2in≤S2∗

2 (D)

and S2in+ k2

k1
S1in>H2(D)

I8 S1in>S∗
1 (D) and S2in>S2∗

2 (D)

the operating space (D,S1in, S2in) into nine regions, de-

noted Ik, k = 0, · · · , 8, and defined in Table 5. These re-

gions of the operating parameters space (D,S1in, S2in)

correspond to different system behaviors, as stated in

the following result.

Proposition 2 Assume that Hypotheses 1 and 2 hold.

The existence and stability properties of the steady states

of (2) are given in Table 6, where the regions Ik, k =

0, · · · , 8 are defined in Table 5.

Proof The proof is given in Appendix B.2. ut

Remark 1 In Figs. 2, 3, 4, 5, 6 and 7 presenting op-

erating diagrams, a region is colored according to the
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(a) D1 > D2, dH2/dD < 0 (b) D1 > D2, H2 non monotonous (c) D1 < D2

D D D

S S S

S1∗
2

S2∗
2 S∗

1

H1

H2

S1∗
2

S2∗
2 S∗

1

H1

H2

S1∗
2

S2∗
2 S∗

1

H1

H2

Fig. 1 The graphs of functions S = S∗
1 (D) (in Blue), S = Si∗2 (D), i = 1, 2 (in Green) and S = Hi(D), i = 1, 2 (in Red). (a):

m1 = 0.6; (b): m1 = 0.5; (c): m1 = 0.4. Other biological parameter values are given in Table 15. Compare with Fig. 4 of [25]

Table 6 Existence and stability of steady states of (2) in
the nine regions of the operating space. GAS, S and U stand
for Globally asymptotically stable, Stable (i.e. is Locally expo-
nentially stable) and Unstable respectively. The last column
shows the color in which the region is depiced in Figs. 2, 3,
4, 6, 7 and 8.

E0
1 E1

1 E2
1 E0

2 E1
2 E2

2 Color
I0 GAS Red
I1 U GAS Blue
I2 S S U Cyan
I3 U GAS Yellow
I4 U U GAS Green
I5 U S S U Pink
I6 U U U GAS Green
I7 U U S S U Pink
I8 U U U S S U Pink

color in Table 6. Each color corresponds to different

asymptotic behavior:

– Red for the washout of both species, that is, the steady

state E0
1 is Globally asymptotically stable (GAS),

which occurs in region I0.

– Blue for the washout of acidogenic bacteria while

methanogenic bacteria are maintained, that is, the

steady state E1
1 is GAS, which occurs in region I1.

– Cyan for the bistability of E0
1 and E1

1 which are both

(locally) stable. This behavior occurs in region I2.

Depending on the initial condition the system, can

go to the washout of both species or the washout of

only the acidogenic bacteria.

– Yellow for the washout of methanogenic bacteria while

acidogenic bacteria are maintained, that is the steady

state E0
2 is GAS, which occurs in region I3.

– Green for the global asymptotic stability of the pos-

itive steady state E1
2 , which occur in I4 and I6.

These regions differ only by the existence, in the

second region, of the unstable boundary steady state

E1
1 .

– Pink for the bistability of E0
2 and E1

2 which are both

locally asymptotically stable. This behavior occurs

in regions I5, I7 and I8. These regions differ only

by the possible existence of the unstable boundary

steady states E1
1 or E2

1 . Depending on the initial

condition, the system can go to the washout of metha-

nogenic bacteria or the coexistence of both species.

It is worth noting that, from an experimental point of

view, it is necessary to operate the bio-reactor in order

to avoid the red region (E0
1 is GAS) and the yellow re-

gion (E0
2 is GAS). Green regions (E1

2 is GAS) are the

“target” operating regions, as they correspond to the

global stability of the steady state, where all species sur-

vive, even if no addition of VFAs is provided (S2in = 0

is permitted). Pink regions correspond to the bistability

of E0
2 (no biogas production) and E1

2 (with biogas pro-

duction). If the in-flowing concentration of the organic

substrate (S1in) is large enough, these regions necessar-

ily appear. In these cases, for a good operation of the

anaerobic digestion system, its state at start up should

correspond to the convergence toward E1
2 rather than

E0
2 . The system can be operated in the blue and cyan

region only if extraneous VFAs are added in the bio-

reactor (S2in > 0 is required).

The operating diagram highly depends on the shape

of Γ4 and Γ5 surfaces, that is to say, on the behaviors

of functions Hi, i = 1, 2, defined in Table 1. Notice

that these functions are defined on (0,min(D1, D2)) and

H1 is increasing, since it is the sum of two increasing

functions. We have :

lim
D→0

H1(D) = 0, lim
D→0

H2(D) = +∞,
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and

lim
D→0

dH2

dD
(D) = −∞.

For the limits at right of the domain of definition of

these functions, we must distinguish two cases:

– When D1 < D2, the functions Hi, i = 1, 2 are de-

fined on (0, D1) and

lim
D→D1

H1(D) = lim
D→D1

H2(D) = +∞.

– When D2 < D1, the functions Hi, i = 1, 2 are de-

fined on (0, D2) and

lim
D→D2

H1(D) = lim
D→D2

H2(D) = SM2 +
k2
k1
S∗1 (D2),

lim
D→D2

dH1

dD
(D) = +∞, lim

D→D2

dH2

dD
(D) = −∞.

Two qualitatively different sub-cases can be distin-

guished: either H2 is decreasing on (0, D2) or it is

not monotonous. Since H2 is decreasing near the ex-

tremities of its definition interval, a typical example

is where it is decreasing, then increasing and then

decreasing.

Table 7 Three behaviors for functions Hi, i = 1, 2

Case (A), where D1 > D2 and dH2/dD < 0.
Case (B), where D1 > D2 and H2 non monotonous.
Case (C), where where D1 < D2.

Therefore there are three cases summarized in Ta-

ble 7 and illustrated in Fig. 1. Since the surfaces Γi,

i = 1, · · · , 6, which are the boundaries of the various

regions have been derived analytically, the operating

diagrams can be drawn qualitatively in each of these

cases. Instead of giving a general qualitative description

of the operating diagram, and without loss of general-

ity, we present the specific examples shown in Fig. 1.

These examples are obtained with the Monod and Hal-

dane functions 3. Notice that these functions satisfy

Hypotheses 1 and 2. Therefore, the results of Proposi-

tions 1 and 2 apply. The analytical expressions of the

auxiliary functions defined in Table 1 and needed in the

defintions of the regions Ik of the operating diagrams

are given in Table 12, in the particular case of functions

3. The biological parameter values used in the figures

are given in Table 15. For the sake of practical appli-

cability, these parameter values were chosen in a range

that can be found in the literature [6,7]. Case (A) of

Table 7, illustrated in Fig. 1(a), is obtained with the

value m1 = 0.6 of the maximum growth rate of aci-

dogenic bacteria, while case (B) of Table 7, illustrated

in Fig. 1(b), corresponds to m1 = 0.5. Both values of

m1 are greater than the maximum growth rate µ2(SM2 )

of methanogenic bacteria. These values are occurring

in reality, because acidogenic reaction should be faster

than the methanogenic one and, acidogenic bacteria are

not be rapidly saturated compared with methanogenic

bacteria. On the other hand, case (C) of Table 7, il-

lustrated in Fig. 1(c), is obtained for m1 = 0.4, which

becomes slightly lower than µ2(SM2 ). Although this case

cannot be realistic, it is considered here to have a com-

plete mathematical description of all possible scenarios.

Moreover, it should be noted that the estimation of the

kinetic parameters from experimental data have shown

large values for the standard deviations, see Tables III

and V in [7]. The values used in our simulations are in

the limits given by the standard deviations.

For the biological parameter values corresponding

to Fig. 1(a), the surfaces Γi, i = 1, · · · , 6 are shown

in Fig. 13. It is difficult to visualize the regions Ik,

k = 0, · · · , 8 of the three-dimensional operating dia-

gram. We can have a better understanding of these re-

gions by showing cuts along 2 dimensional planes where

one of the operating parameters is kept constant. For

instance, if D is kept constant, we obtain then the op-

erating diagram in the 2-dimensional plane (S1in, S2in).

These operating diagrams are described in section 4.

If S2in is kept constant, we obtain then the operating

diagram in the 2-dimensional plane (D,S1in). These op-

erating diagrams are described in section 5.

4 Operating diagram in (S1in, S2in) where D is

kept constant

The intersections of the surfaces Γi, i = 1, · · · , 5 with a

plane where D is kept constant are straight lines: verti-

cal line for Γ1, horizontal lines for Γ2 and Γ3 and oblique

lines for Γ4 and Γ5, see Table 13. These straight lines

separate the operating parameter plane (S1in, S2in) in

up to nine regions Ik, k = 0, · · · , 8. Since the curves are

straight lines, the regions of the operating diagram are

very easy to picture. We begin by considering the case

where D2 < D1 corresponding to Figs. 1(a) and 1(b).

4.1 Operating diagram when D2 < D1

The cuts at D constant of the 3-dimensional operat-

ing diagram shown in Fig. 13 and corresponding to

Fig. 1(a), are shown in Fig. 2. The regions are colored

according to the colors in Table 6. For the clarity of the

picture all straight lines Γi are plotted in black. Fig. 2

shows the following features.
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(a) (b)

(c) (d)

S2in S2in

S2in S2in

S1in S1in

S1in S1in

I0

I0

I0 I0

I1

I2

I2

I3

I3

I3 I3

I4 I5

I5

I6 I7

I8

I8

Γ1 Γ1

Γ1 Γ1

Γ2

Γ3

Γ2≈Γ3

SM2

Γ4

Γ4≈Γ5

Γ5

Fig. 2 The 2-dimensional operating diagram (S1in, S2in) obtained by cuts at D constant of the 3-dimensional operating
diagram shown in Fig. 13. (a): D = 0.7; (b): D = 0.818557 < D2; (c): D = 0.82 > D2; (d): D = 1 < D1. Here D1 = 1.2,
D2 ≈ 0.818557467 and SM2 ≈ 36.332.

For 0 < D < D2 all regions exist, see Fig. 2(a).

For increasing D, the vertical line Γ1 defined by S1in =

S∗1 (D) moves to the right and tends towards the vertical

line defined by S1in = S∗1 (D2). At the same time, the

horizontal lines Γ2 and Γ3, defined by S2in = S1∗
2 (D)

and S2in = S2∗
2 (D), respectively, move towards each

other and tend toward the horizontal line defined by

S2in = SM2 , so that the regions I1, I4, I6 and I7 shrink

and disappear, see Fig. 2(b).

For D = D2 the operating diagram changes dramat-

ically, since regions I1, I4, I6, I7 shrink and disappear,

see Fig. 2(b) obtained for D = 0.818557 < D2, where

D2 ≈ 0.818557467. At the same time regions I0, I3
invade the whole operating plane, so that regions I2,

I5 and I8 also disappear, see Fig. 2(c) obtained for

D = 0.82 > D2.

For D2 < D < D1 only regions I0 and I3 appear,

see Figs. 2(c) and 2(d). For increasing D, the vertical

line Γ1 defined by S1in = S∗1 (D) moves to the right

and tends towards infinity. For D ≥ D1 only region I0
appears.

The cuts D constant of the 3-dimensional operat-

ing diagram corresponding to Fig. 1(b), are shown in

Fig. 3. This figure has the same qualitative characteris-

tics as Fig. 2: presence of all regions when 0 < D < D2

as shown in Fig. 3(a); disappearance of all regions ex-

cept regions I0 and I3, when D = D2, as shown in the

transition from Fig. 3(b) to Fig. 3(c); disappearance of

region I3, when D ≥ D1, as shown in Fig. 3(d).

It is worth noting that the results shown in Figs. 2

and 3 are confirmatory of the expected behaviour in the

anaerobic digestion process: Increasing D would expect

to washout the species according to their existence con-

ditions as a function of D. The methanogenic popula-

tion cannot survive D > D2, whereas the acidogenic

does survive at higher dilution rates until D ≥ D1. Re-
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(a) (b)

(c) (d)

S2in S2in

S2in S2in

S1in S1in
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I0

I0

I0 I0

I1

I2

I2

I3

I3

I3

I4 I5

I5

I6 I7

I8

I8

Γ1 Γ1

Γ1

Γ2

Γ3

Γ2≈Γ3
SM2

Γ4

Γ4≈Γ5

Γ5

Fig. 3 The 2-dimensional operating diagram (S1in, S2in) with D constant, corresponding to Fig. 1(b). (a): D = 0.7; (b):
D = 0.818557 < D2; (c): D = 0.82 > D2; (d): D = 1 ≥ D1. Here D1 = 1, D2 ≈ 0.818557467 and SM2 ≈ 36.332.

ducing the acidogenic bacteria growth rate results in

washout of the acidogenic population at lower dilution

rates: D1 = 1.2 in Fig. 2, where m1 = 0.6, while D1 = 1

in Fig. 3, where m1 = 0.5.

4.2 Operating diagram when D1 < D2

The cuts D constant of the 3-dimensional operating

corresponding to Fig. 1(c), are shown in Fig. 4. The

regions are colored according to the colors in Table 6.

Fig. 4 shows the following features.

For 0 < D < D1 all regions appear, see Fig. 4(a).

For increasing D, the vertical line Γ1 defined by S1in =

S∗1 (D) moves to the right and tends towards infinity. At

the same time, the horizontal lines Γ2 and Γ3, defined

by S2in = S1∗
2 (D) and S2in = S2∗

2 (D), respectively,

move towards each other, as depicted in Fig. 4(b), and

tend towards the horizontal lines defined by S2in =

S1∗
2 (D1) and S2in = S2∗

2 (D1), respectively, as depicted

in Fig. 4(c).

For D = D1, the operating diagram changes dra-

matically: all regions I3, I4 and I5, I6, I7 and I8 have

disappeared since they are located to the right of the

vertical Γ1 which tends toward infinity, when D tends

to D1, as depicted in Fig. 4(c).

For D1 ≤ D < D2 only regions I0, I1, and I2 ap-

pear. For increasing D, the horizontal lines Γ2 and Γ3,

defined by S2in = S1∗
2 (D) and S2in = S2∗

2 (D), respec-

tively, move towards each other and tend toward the

horizontal line defined by S2in = SM2 , so that region I1
shrinks, as D → D2, and disappears when D = D2, see

Fig. 4(d). For D > D2, the region I0 invades the whole

operating plane, as in Fig. 3(d).

It is worth noting that the results shown in Fig. 4

show now an unexpected behavior for the anaerobic

digestion process: increasing D, we now have the phe-



The operating diagram for a two-step anaerobic digestion model 9

(a) (b)

(c) (d)
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S2in S2in

S1in S1in

S1in S1in

I0 I0

I0
I0

I1
I1

I1

I2

I2

I2 I2
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Γ1 Γ1
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Γ2

Γ2

Γ3

Γ3

Γ3

Γ2≈Γ3
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Γ4
Γ4

Γ5

Γ5

Fig. 4 The 2-dimensional operating diagram (S1in, S2in) with D constant, corresponding to Fig. 1(c). (a): D = 0.65; (b):
D = 0.73; (c): D = D1 = 0.8; (d): D = 0.818557 < D2. Here D2 ≈ 0.818557467 and S2

M ≈ 36.332.

nomenon where the acidogenic population washout first,

but this is unrealistic in practice. As mentioned be-

fore, we consider this important case from mathemati-

cal point of view, in order to deeply analyze the operat-

ing diagrams for a generic two-step system, and to show

its predictions from the technological point of view. It

it is possible that for another two-step system, the ki-

netic parameters are such that the second population

X2 will washout first.

The results shown in Fig. 2, 3 and 4 are confirmatory

of another expected behaviour of the anaerobic diges-

tion process. It is seen in these operating diagrams that

when D < min(D1, D2) is kept constant, and S1in in-

creases, there is a loss of GAS, since the system goes

from the Green region to the Pink region. This behavior

also occurs as S2in increases and S1in > S∗1 (D) is kept

constant, i.e. by increasing the supply of extraneous

substrates, we allow for bistability, essentially moving

from unstable (in the green region) to stable (in the

pink region) steady state E0
2 .

5 Operating diagram in (D,S1in) where S2in is

kept constant

The intersections of Γ2 and Γ3 and Γ6 surfaces with

a plane where S2in is kept constant are vertical lines,

and the intersections of Γ1, Γ4 and Γ5 surface with this

plane are curves of functions of D, as shown in Table 14.

Curves Γ1 and Γ6 do not depend on S2in while curves

Γ2, Γ3, Γ4 and Γ5 depend on S2in. Note that curves Γ4

and Γ5 simply consist of translating downwards the H1

and H2 function curves, shown in Fig. 1, and multiply-

ing by k1/k2. For details on how to plot these curves,

the reader is referred to Appendix C. The curves Γk,

k = 1, · · · , 6, separate the operating parameter plane

(D,S1in) in up to nine regions Ik, k = 0, · · · , 8. We
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(c) (d)
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I1 I1 I2
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Γ1 Γ1

Γ2

Γ3

Γ4

Γ4

Γ5 Γ5

Γ5 Γ5

Γ6 Γ6

Γ2 Γ6

Fig. 5 The 2-dimensional operating diagram (D,S1in) obtained by cuts at S2in constant of the 3-dimensional operating
diagram shown in Fig. 13 and corresponding to Fig. 1(a). (a): S2in = 0, (b): S2in = 15, (c): S2in = SM2 ' 36.332 and (d):
S2in = 100.

begin by considering the case where D2 < D1 corre-

sponding to Figs. 1(a) and 1(b).

5.1 Operating diagram when D2 < D1

The cuts at S2in constant of the 3-dimensional oper-

ating diagram shown in Fig. 13 and corresponding to

Fig. 1(a), are shown in Fig. 5. The regions are colored

according to the colors in Table 6. Fig. 5 shows the

following features.

For S2in = 0, only the regions I0, I3, I4 and I5 exist,

see Fig. 5(a). For 0 < S2in < SM2 , Γ2 curve appears,

giving birth to I1, I6 and I7 regions, see Fig. 5(b).

For increasing S2in, Γ4 and Γ5 curves are translated

downwards, while the vertical line Γ2 moves to the right

and tends towards the vertical line Γ6, as S2in tends to

SM2 .

For S2in = SM2 , Γ4 curve disappears, while Γ2 be-

comes equal to Γ6, so that I4 and I5 regions have disap-

peared, see Fig. 5(c). For S2in > SM2 , Γ3 curve appears,

giving birth to I2 and I8 regions, see Fig. 5(d). For

increasing S2in, the vertical line Γ3 moves to the left,

while Γ5 curve is translated downwards.

The cuts S2in constant of the 3-dimensional oper-

ating diagram corresponding to Fig. 1(b), are shown

in Fig. 6. This figure has the same qualitative charac-

teristics as Fig. 5: presence of only I0, I3, I4 and I5
regions when S2in = 0, see Fig. 6(a); appearance of I1,

I6 and I7 regions when 0 < S2in < SM2 , see Fig. 6(b);

disappearance of I4 and I5 regions when S2in = SM2 ,

see Fig. 6(c); appearance of I2 and I8 regions when

S2in > SM2 , see Fig. 6(d).

It is worth noting that the results shown in Figs. 5

and 6 are confirmatory of the expected behaviour in the
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(a) (b)

(c) (d)

S1in S1in

S1in S1in
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Γ1 Γ1
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Γ6 Γ6

Γ2 Γ6

Fig. 6 The 2-dimensional operating diagram (D,S1in) obtained by cuts at S2in constant of the 3-dimensional operating
diagram corresponding to Fig. 1(b). (a): S2in = 0, (b): S2in = 15, (c): S2in = SM2 ≈ 36.332 and (d): S2in = 100.

anaerobic digestion process. First, the addition of extra-

neous VFAs is not required in the system: Figs. 5(a) and

6(a) show that even with S2in = 0, the bio-reactor can

be properly operated. Second, decreasing D would ex-

pect to stabilize the system. For instance, if for any rea-

son, the system is operated in the red region (washout

out of all species) or yellow region (washout of the

methanogenic bacteria) we need only to reduce the di-

lution rate, to attain the Pink, Blue or Green region,

where the methanogenic bacteria are maintained. In-

deed, decreasing D allows a higher retention time for

bacteria to growth into the bio-reactor. Moreover, low-

ering the dilution rate leads from the bistability Pink re-

gion to the Green region of global stability of the steady

state stability, where both populations are maintained.

However, in Fig. 6, the model presents the very sur-

prising property where the bio-reactor can go from the

bistability region (the pink region I5 or I7), to global

asymptotic stability of the positive steady state E1
2 (the

green regions I4 or I6), when the dilution rate D in-

creases. Indeed, the common boundary Γ5 of Green and

Pink regions has an increasing part, with respect to pa-

rameter D. Therefore, near this part of Γ5, as S1in and

S2in are kept constant and D increases the system goes

from I5 to I4, see Fig. 6(a) and 6(b), or goes from I7
to I6, see Fig. 6(c).

This possibility of globally stabilizing the system,

which presents bistability, is surprising since the global

stability of the positive steady state is more likely ob-

tained by decreasing D rather than increasing it. This

unespecated behavior was first observed in a slightly

different two-step model, where the first kinetics is of

Contois type [13].

It is worth-noting that this unexpected behavior can

occur only for suitable values of the biological param-

eters. For instance, in Fig. 5, where all biological pa-
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Fig. 7 The 2-dimensional operating diagram (D,S1in) obtained by cuts at S2in constant of the 3-dimensional operating
diagram corresponding to Fig. 1(c). (a): S2in = 0, (b): S2in = 7, (c): S2in = SM2 ' 36.3 and (d): S2in = 100.

rameters are the same as in Fig. 6, excepted that m1 is

changed from m1 = 0.5 to m1 = 0.6, the behavior does

not occur and a transition from Pink region to Green

region is possible only by decreasing D.

5.2 Operating diagram when D1 < D2

The cuts at S2in constant of the 3-dimensional operat-

ing diagram corresponding to Fig. 1(c), are shown in

Fig. 7. The regions are colored according to the colors

in Table 6. Since D1 < D2 there exists a value S0
2 < SM2

such that µ2(S0
2) = αD1.

Fig. 7 shows the following features. For S2in = 0,

only regions I0, I3, I4 and I5 appear, see Fig. 7(a). For

0 < S2in < S0
2 , Γ2 curve appears, giving birth to I1, I6,

I7 regions, see Fig. 7(b). For increasing S2in, Γ4 and Γ5

curves are translated downwards, while the vertical line

Γ2 moves to the right and tends towards the common

vertical asymptote D = D1 for curves Γ1, Γ4 and Γ5,

as S2in tends to S0
2 . In the limit S2in = S0

2 , the very

tiny region I3 (in Yellow on the figure) located between

curves Γ1 and Γ4, together with I4 and I5 regions have

disappeared.

For S0
2 < S2in ≤ SM2 , only regions I0, I1, I6 and I7

exist. For increasing S2in, the vertical line Γ2 moves to

the right and tends towards Γ6 as S2in tends to SM2 , see

Fig. 7(c). For S2in > SM2 , Γ3 curve appears, giving birth

to I2 and I8 regions, see Fig. 7(d). For increasing S2in,

the vertical line Γ3 moves to the left while Γ5 curve is

translated downwards.

It should be noticed that as in Fig. 6, it is seen in

Fig. 7 that the region of global asymptotic stability of

the positive steady state E1
2 (the Green region I4 ∪I6)

presents the property that there exists a range of val-

ues for the operating parameters S1in and S2in such

that the system can go from the bistability region (the
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Table 8 Codimension-one bifurcations along subsets of surfaces Γk and the corresponding cases in [6]: Transcritical bifurca-
tions (TB) and Saddle Node bifurcations (SNB) occur.

Γk Subset of Γk Bifurcation Case of [6]

Γ1

Γ1 ∩ {0 ≤ S2in < S1∗
2 (D)} TB: E0

1 = E0
2

Γ1 ∩ {S1∗
2 (D) < S2in < S2∗

2 (D)} TB: Ei1 = Ei2, i = 0, 1
Γ1 ∩ {S2in > S2∗

2 (D)} TB: Ei1 = Ei2, i = 0, 1, 2
Γ2 Γ2 TB: E0

1 = E1
1 1.4, 2.8, 2.9

Γ3 Γ3 TB: E0
1 = E2

1 1.5, 2.13
Γ4 Γ4 TB: E0

2 = E1
2 2.7

Γ5 Γ5 TB: E0
2 = E2

2 2.12, 2.15

Γ6

D2 < D1

Γ6 ∩
{
0 ≤ S2in < SM2 and

S1in > S∗
1 (D2) + k1

k2

(
SM2 − S2in

)} SNB: E1
2 = E2

2 2.11

Γ6 ∩
{
S2in > SM2 and S1in > S∗

1 (D2)
}

SNB: E1
j = E2

j , j = 1, 2 2.14

Γ6 ∩
{
S2in > SM2 and S1in < S∗

1 (D2)
}

SNB: E1
1 = E2

1 1.6
Γ6

D1 < D2
Γ6 ∩

{
S2in > SM2 and S1in > 0

}
SNB: E1

1 = E2
1 1.6

Pink region I5 ∪ I7), to the global asymptotic stability

region, when the dilution rate D increases. This behav-

ior, obtained in the case D2 > D1, was investigated in

[15]. Our findings show that this unexpected scenario,

where increasing the dilution rate can globally stabilize

two-step biological systems can occur also in the rather

more realistic case D2 < D1, depicted in Fig. 6, and

not only in the less realistic case D2 > D1 studied in

[15].

It is worth noting that the results shown in Figs. 5,

6 and 7 are confirmatory of the expected behaviour in

the anaerobic digestion process. As was depicted also in

Figs. 2, 3 and 4, it is seen that when D < min(D1, D2)

is kept constant, and S1in increases, there is a loss of

GAS, since the system goes from the Green region to

the Pink region.

6 Bifurcations

The surfaces Γk, k = 1, · · · , 6, are the borders of the re-

gions in the operating parameters space (D,S1in, S2in)

on which bifurcations occur, while the steady states

change their stability. In codimension-one bifurcations,

only transcritical and saddle node bifurcations can be

encountered, as stated in the following result.

Proposition 3 The bifurcations of the steady states

of (2) arising on the boundaries of regions Ik, k =

0, · · · , 8, are listed in Table 8.

Proof The proof is given in Appendix B.3. ut

Remark 2 The last column of Table 8 shows the corre-

sponding cases with non hyperbolic steady states given

in Theorem 1 of [6]. The case labeled 2.10 in this theo-

rem, where E0
1 = E1

1 and E0
2 = E2

2 , does not appear in

Table 8, since it is a codimension-two bifurcation aris-

ing along Γ2∩Γ5. The bifurcations along Γ1, correspond-

ing to the condition S1in = S∗1 (D) were not analyzed in

[6]. In Theorem 1 of [6] only the cases S1in < S∗1 (D)

and S1in > S∗1 (D) were considered.

To have a better understanding of the nature of the

bifurcations of steady states, let us consider the dilu-

tion rate D as the bifurcation parameter. Throughout

this section, we assume that biological parameters are

fixed as in Fig. 6(a), corresponding to case (b) of Fig. 1

and S2in = 0. We now fix the operating parameter S1in

at various typical values, as depicted in the horizontal

lines shown in Fig. 8, and plot one-parameter bifurca-

tion diagrams in D, with Xi, i = 1, 2, on the y-axis, see

Fig. 9, 10 and 11.

Recall that the curve Γ5 separating the Pink and
Green regions is the curve of the function S1in = k1

k2
H2(D).

Case (B) corresponds to a function H2 which is decreas-

ing, then increasing, then decreasing. For the consid-

ered biological parameters values, the function H2(D)

attains its minimum for Dmin ' 0.72 and its maxi-

mum for Dmax = 0.81 and satisfies H2(D2) = SM2 +
k2
k1
S∗1 (D2) ' 131.1, where D2 = 1

αµ2

(
SM2

)
' 0.82.

Therefore, the variations of k1
k2
H2(D) are as shown in

the following table

D 0 0.72 0.81 0.82
k1
k2
H2(D) +∞ ↘ 12.57 ↗ 13.37 ↘ 13.11

We fix three typical values S1in = 13, S1in = 13.3

and S1in = 14, corresponding to the three horizontal

lines shown in Fig. 8. The corresponding bifurcation

values Dk, k = 2, · · · , 10, of D are defined in Table 9.

We begin with the case where S1in = 14. Since

S1in > 13.37, as it is seen in Fig. 8, with increasing

D, there is a transition from I4 to I5 for D = D5,

then from I5 to I3 for D = D2, then from I3 to I0
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Fig. 8 Operating diagram where S2in = 0 corresponding to Fig. 6(a). (a): Cuts where S1in is kept constant and D is the
bifurcation parameter. (b): Magnification of the operating diagram showing the bifurcation values Dk, defined in Table 9.
Notice that there are three different values of D4 corresponding to the three different values S1in = 13, S1in = 13.3 and
S1in = 14. (c) : Magnification showing the values D = D9, D = D8 and D = D2.
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2
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Fig. 9 Bifurcation diagram with D as the bifurcation parameter, corresponding to Fig. 6(a) and S1in = 14. (a): The X1-
components and (b): the X2-components, of the steady states E0

1 (in Black), E0
2 (in Green), E1

2 (in Red) and E2
2 (in Blue).

(c): A magnification showing the bifurcation values D2, D4 and D5. Solid lines and dotted lines correspond to stable and
unstable steady states respectively.

Table 9 The bifurcation values Dk, k = 2, · · · , 10, corresponding to S2in = 0 and S1in = 13, S1in = 13.3 or S1in = 14.

S1in D2 =
µ2(S

M
2

)

α
D4 = µ1(S1in)

α

D3 is the solution of Dk, k = 5, · · · , 10 are the solutions of

S1in = k1

k2
H1(D) S1in = k1

k2
H2(D)

14 D2 ≈ 0.8186 D4 ≈ 0.8696 D5 ≈ 0.5917
13 D4 ≈ 0.8609 D3 ≈ 0.8184 D6 ≈ 0.7844, D7 ≈ 0.6526
13.3 D2 ≈ 0.8186 D4 ≈ 0.8636 D8 ≈ 0.8173, D9 ≈ 0.8050, D10 ≈ 0.6304

for D = D4. The bifurcation values D2, D4 and D5 are

given in Table 9. The bifurcation value D4 corresponds

to a transcritical bifurcation of E0
2 and E0

1 ; D2 corre-

sponds to a saddle node bifurcation of E1
2 and E2

2 and

D5 corresponds to a transcritical bifurcation of E0
2 and

E2
2 . The plot of X1 and X2 components of all exist-

ing steady states with respect of D is shown in Fig. 9.

Solid lines and dotted lines correspond to stable and

unstable steady states respectively. Since S2in = 0, the

steady states E1
1 and E2

1 cannot exist. On Fig. 9(a),

for 0 < D < D5, the X1-component of Ei2, i = 0, 2, is

colored in Red, with Green dots, showing the stability

of E1
2 and the instability of E0

2 . For D5 < D < D2, the

X1-component of Ei2, i = 0, 1, 2, is colored in Red and

Green, with Blue dots, showing the bistability of E0
2 and

E1
2 and the instability of E1

2 . For D2 < D < D4, the

X1-component of E0
2 is colored in Green, showing the

stability of E0
2 . On Fig. 9(b) and 9(c), for 0 < D < D2,
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Fig. 10 Bifurcation diagram with D as the bifurcation parameter, corresponding to Fig. 6(a) and S1in = 13. (a): The X1-
components and (b): the X2-components, of the steady states E0

1 (in Black), E0
2 (in Green), E1

2 (in Red) and E2
2 (in Blue).

(c): A magnification showing the bifurcation values D3, D4, D6 and D7. Solid lines and dotted lines correspond to stable and
unstable steady states respectively.
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Fig. 11 Bifurcation diagram with D as the bifurcation parameter, corresponding to Fig. 6(a) and S1in = 13.3. (a): The
X2-components of the steady states E0

1 (in Black), E0
2 (in Green), E1

2 (in Red) and E2
2 (in Blue). (b): A magnification showing

the bifurcation values D9 and D10, where D2 and D8 are indistinguishable. (c): A larger magnification showing the bifurcation
values D2, D8 and D9. Solid lines and dotted lines correspond to stable and unstable steady states respectively.

the X2 = 0-component of E0
j , j = 1, 2, is colored with

Green and Black dots, showing the instability of E0
2

and E0
1 . For D2 < D < D4 it is colored in Green, with

Black dots, showing the stability of E0
2 and the insta-

bility of E0
1 . For D > D4 it is colored in Black showing

the stability of E0
1 .

Consider now the case where S1in = 13. This case

corresponds to the surprising situation where we can

go from the bistability region (colored in Pink) to the

global asymptotic stability region (colored in Green),

when the dilution rateD increases. Since 12.57 < S1in <

13.11, as it is seen in Fig. 8, with increasing D, there

is a transition from I4 to I5 for D = D7, then from

I5 to I4 for D = D6, then from I4 to I3 for D = D3,

then from I3 to I0 for D = D4. The bifurcation values

D3, D4, D6 and D7 are given in Table 9. The bifur-

cation value D4 corresponds to a transcritical bifurca-

tion of E0
2 and E0

1 ; D3 corresponds to a transcritical

bifurcation of E1
2 and E0

2 and D6 and D7 correspond

to transcritical bifurcations of E0
2 and E2

2 . The plot

of X1 and X2 components of all existing steady states

with respect of D is shown in Fig. 10. Solid lines and

dotted lines correspond to stable and unstable steady

states respectively. On Fig. 10(a), for 0 < D < D7 and

D6 < D < D5 the X1-component of Ei2, i = 0, 2, is

colored in Red, with Green dots, showing the stability

of E1
2 and the instability of E0

2 . For D7 < D < D6, the

X1-component of Ei2, i = 0, 1, 2, is colored in Red and

Green, with Blue dots, showing the bistability of E0
2 and

E1
2 and the instability of E1

2 . For D3 < D < D4, the

X1-component of E0
2 is colored in Green, showing the

stability of E0
2 . On Fig. 10(b) and 10(c), for 0 < D < D7
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and D6 < D < D3, the X2 = 0-component of E0
j ,

j = 1, 2, is colored with Green and Black dots, showing

the instability of E0
2 and E0

1 . For D7 < D < D6 and

D3 < D < D4 it is colored in Green, with Black dots,

showing the stability of E0
2 and the instability of E0

1 .

For D > D4 it is colored in Black showing the stability

of E0
1 .

Consider now the case where S1in = 13.3. This case

corresponds also to the situation where we can go from

the bistability region (colored in Pink) to the global

asymptotic stability region (colored in Green), when the

dilution rate D increases. Since 13.11 < S1in < 13.37,

as it is seen in Fig. 8, with increasing D, there is a tran-

sition from I4 to I5 for D = D10, then from I5 to I4 for

D = D9, then from I4 to I5 for D = D8, then from I5
to I3 for D = D2, then from I3 to I0 for D = D4. The

bifurcation values D2, D4, D8, D9 and D10 are given

in Table 9. The bifurcation value D4 corresponds to a

transcritical bifurcation of E0
2 and E0

1 ; D2 corresponds

to a saddle node bifurcation of E1
2 and E2

2 and D8, D9

and D10 correspond to transcritical bifurcations of E0
2

and E2
2 . The plot of the X2 component of all existing

steady states with respect of D is shown in Fig. 11.

Solid lines and dotted lines correspond to stable and

unstable steady states respectively. Since two magnifi-

cations are necessary to represent all bifurcations, the

plot of the X1 component is omitted in Fig. 11. How-

ever, it is similar to those plots given in Figs. 9(a) and

10(a). On Fig. 11 for 0 < D < D10 and D9 < D < D8,

the X2 = 0-component of E0
j , j = 1, 2, is colored with

Green and Black dots, showing the instability of E0
2 and

E0
1 ; For D10 < D < D9 and D8 < D < D4 it is col-

ored in Green, with Black dots, showing the stability of

E0
2 and the instability of E0

1 . For D > D4 it is colored

in Black showing the stability of E0
1 . Notice that for

D10 < D < D9 and D8 < D < D2 both steady states

E0
2 and E1

2 are stable.

7 Discussion

The parameter space of model (2), where µ1 and µ2

are given by (3) is twelve dimensional: nine biological

and physical parameters (m1, m2, K1, K2,KI , k1, k2,

k3 and α) and three operating parameters (D, S1in and

S2in). The former parameters are called biological pa-

rameters since they depend on the organisms, and sub-

strate considered. These parameters are measurable in

the laboratory, using ecological and biological observa-

tions. In contrast, the later parameters are called op-

erating parameters since they are under the control of

the experimenter.

Exploring all of the twelve dimensional parameter

space is almost possible. Fixing the biological parame-

ters and constructing the operating diagram is a pow-

erful answer for the discussion of the behavior of the

model with respect of the parameters. Therefore our

approach to handle the question of the dependence with

respect of the parameters of the model is to split the

question in two intermediary questions. First, we fix

the biological parameters and present the operating di-

agram. Second, we explore how the operating diagram

varies when the biological parameters are changed. For

instance, Figs. 5, 6 and 7 show how the operating di-

agram changes when the biological parameter m1 is

changed.

The operating diagrams shown in the figures sum-

marize the effect of the operating conditions on the

long-term dynamics of the AM2 model and shows six

type of behavior: 1) the washout of the two popula-

tions (regions colored in Red); 2) the washout of the

first population while the second population is main-

tained (regions colored in Blue); 3) the occurrence of

these two behaviors, according to initial conditions (re-

gions colored in Cyan); 4) the washout of the second

population while the first is maintained (regions col-

ored in Yellow); 5) the persistence of both populations

(regions colored in Green); 6) the occurrence of these

two behaviors according to initial conditions (regions

colored in Pink).

In the operating diagrams shown in Figs. 5(a), 6(a)

and 7(a), obtained for S2in = 0, only regions I0, I3,

I4 and I5 exist, that is to say, the steady states Ei1,

i = 1, 2 without acidogenic bacteria, cannot exist. This

property is in accordance with the fact that the system

being commensalistic, and without input concentration

S2in, it is impossible for the commensal population (the

methanogenic bacteria) to survive if the host popula-

tion (the acidogenic bacteria) is washed out.

The operating diagram shows how robust or how

extensive is the parameter region where coexistence oc-

curs, where the corresponding steady state is GAS, where

the steady states, with extinction of one or both popu-

lations, is stable and where it is unstable.

Our main contribution is to investigate the operat-

ing diagram and to show how it depends on the biolog-

ical parameters. We have represented the three dimen-

sional operating diagram in a series of two dimensional

operating parameters space where the third parame-

ter is kept fixed: In section 4, we presented operating

diagrams in (S1in, S2in) plane, while D is fixed and in

section 5, we fixed S2in and we gave operating diagrams

in (D,S1in) plane.

There are two other types of operating diagram rep-

resentations that may be interesting for applications

and will be the subject of a future article. We can also

present the operating diagram in a series of diagrams
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in (D,S2in) with S1in fixed. This type of representa-

tion can be useful to the experimenter when the op-

erating parameters S2in and D are those on which he

can actually act, while the operating parameter S1in is

more or less fixed. Another way of constructing the op-

erating diagram is to consider a single input substrate

Sin = αS1in + (1− α)S2in, with 0 ≤ α ≤ 1, and then to

represent the operating diagram in the (Sin, D) plane

by fixing α. This type of representation is used in the

ADM1 model [8] or in the MAD model [17].

8 Conclusion

The two-step anaerobic digestion model, denoted AM2,

was developed on the basis of macroscopic observations

of anaerobic digestion processes and, widely fitted on

experimental data and used for processes control by en-

gineers. This model, when fitted accurately with exper-

imental data, can be used by mathematicians to best

understand and analyze the dynamics of the physical

system (anaerobic digester) and, by biologists to pre-

dict future behavior of the system. The advantage of

the mathematical analysis, compared to numerical sim-

ulation, is that the system can be studied in a generic

way without specifying the values of the biological pa-

rameters. Therefore, the prediction of the mathematical

analysis are true for a large class of values of the kinetic

parameters. So, it is useful to build some roots for di-

alogue and discussion between the mathematical and

biology communities. This paper proposed a powerful

tool which can establish dialogue between the two com-

munities: the operating diagram for two-step models

similar to the AM2 model. We established a complete

description of operating diagrams for the system with

respect of the three operating parameters which are un-

der the control of the experimenter: dilution rate (D)

and substrates inflow concentrations (S1in and S2in).

We have represented the three dimensional operating

diagram in a series of two dimensional operating pa-

rameters space where the third parameter is kept fixed.

We have highlighted that this diagram, is very useful

to describe the model from both the mathematical and

biological points of view and to predict biological and

ecological phenomena as coexistence of bacteria popu-

lation or extinction of one or both of them. For instance,

to know the behaviour of the system for a set of operat-

ing parameters (D,S1in, S2in), we can construct the op-

erating diagram (S1in, S2in), with D fixed at the value

we are interested in, and see to which region Ik, the

operating parameter point (S1in, S2in) belongs. We can

also construct the operating plane (D,S1in), with S2in

fixed at the value we are interested in, and see to which

region Ik, the operating parameter point (D,S1in) be-

longs.

Biologists and experimenters can use the operating

diagram to predict the long-term dynamics of the sys-

tem and concentrations for bacteria and substrates at

steady-state. Also when they act on the value of one

operating parameter where the value of the other pa-

rameter is kept fixed, they can also explain and under-

stand how the system goes from an operating region

with two possible stable steady-states (bistability) to

a region when the system has only one global stable

steady-state, this is what the mathematicians call bifur-

cation. Another application showing why the presented

operating diagrams are so important for experimenters

is the system control. Indeed, by acting on the oper-

ating parameters D, S1in and S2in, experimenters can

control the behavior of the biological system and force

it to converge towards a desired steady-state.

A Relationship to previous work

The two-step system (2) has been often consodered in the
literature. As it is usual in the mathematical theory of the
chemostat, see for instance [22], in this type of models, we can
use a change of variables that reduces the pseudo-stoichiometric
coefficients ki to 1. Indeed, the linear change of variables

s1 = (k2/k1)S1, x1 = k2X1, s2 = S2, x2 = k3X2,

transforms (2) into

ṡ1 = D (s1in − s1)− f1 (s1)x1,
ẋ1 = (f1 (s1)− αD)x1,
ṡ2 = D (s2in − s2) + f1 (s1)x1 − f2 (s2)x2,
ẋ2 = (f2 (s2)− αD)x2,

(4)

where
s1in = (k2/k1)S1in, s2in = S2in,

f1(s1) = µ1 ((k1/k2)s1) , f2(s2) = µ2(s2).

However, since the stoichiometric coefficients have their own
importance for the biologist and since we are interested in
giving these later a useful tool for the understanding of the
role of the operating parameters, following [6], we do not make
this reduction and we present the results in the original model
(2). This model can have at most six steady states, labeled
below as in [6]:

– E0
1 , where X1 = 0 and X2 = 0: the washout steady state

where acidogenic and methanogenic bacteria are extinct.
– Ei1 (i = 1, 2), where X1 = 0 and X2 > 0: acidogenic

bacteria are washed out, while methanogenic bacteria are
maintained.

– E0
2 , where X1 > 0 and X2 = 0: methanogenic bacteria

are washed out, while acidogenic bacteria are maintained.
– Ei2 (i = 1, 2), where X1 > 0 and X2 > 0: both acidogenic

and methanogenic bacteria are maintained.

As shown in Proposition 1 of [6], the components of the steady
states E0

1 , Ei1 (i = 1, 2), E0
2 and Ei2 (i = 1, 2) are given in

Table 2, where S∗
1 , Si∗2 , S∗

2in, X∗
1 , Xi2, and Xi∗2 , for i = 1, 2,

are defined in Table1. The necessary and sufficient conditions
of existence of the steady states, given in Proposition 1 of
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Table 10 Necessary and sufficient conditions of existence and local stability of the steady states of (2) obtained in [6]. S∗
1 (D),

Si∗2 (D) and S∗
2in (D,S1in, S2in) are defined in Table 1.

Existence conditions Stability conditions
E0

1 Always exists S1in < S∗
1 (D) and S2in /∈ [S1∗

2 (D), S2∗
2 (D)]

E1
1 S2in > S1∗

2 (D) S1in < S∗
1 (D)

E2
1 S2in > S2∗

2 (D) Unstable if it exists
E0

2 S1in > S∗
1 (D) S∗

2in (D,S1in, S2in) /∈ [S1∗
2 (D), S2∗

2 (D)]
E1

2 S1in > S∗
1 (D) and S∗

2in (D,S1in, S2in) > S1∗
2 (D) Stable if it exists

E2
2 S1in > S∗

1 (D) and S∗
2in (D,S1in, S2in) > S2∗

2 (D) Unstable if it exists

Table 11 The 9 cases of existence and stability of steady states of (2) obtained in [6], and the corresponding regions defined
in Table 5.

Condition 1 Condition 2 Case Region E0
1 E1

1 E2
1 E0

2 E1
2 E2

2

S1in<S∗
1 (D)

S2in < S1∗
2 (D) 1.1 I0 S

S1∗
2 (D)<S2in≤S2∗

2 (D) 1.2 I1 U S
S2∗
2 (D) < S2in 1.3 I2 S S U

S1in>S∗
1 (D)

S2in < S∗
2in < S1∗

2 < S2∗
2 2.1 I3 U S

S2in ≤ S1∗
2 < S∗

2in ≤ S2∗
2 2.2 I4 U U S

S2in ≤ S1∗
2 < S2∗

2 < S∗
2in 2.3 I5 U S S U

S1∗
2 < S2in < S∗

2in ≤ S2∗
2 2.4 I6 U U U S

S1∗
2 < S2in ≤ S2∗

2 < S∗
2in 2.5 I7 U U S S U

S1∗
2 < S2∗

2 < S2in < S∗
2in 2.6 I8 U U U S S U

[6], are summarized in the second column of Table 10. The
necessary and sufficient conditions of local stability of these
steady states, obtained in Table A.1 of [6], are summarized
in the third column of Table 10.

Remark 3 In Table 10, since the function S∗
1 is defined on

(0, D1), the condition S1in > S∗
1 (D) means 0 < D < D1

and S1in > S∗
1 (D). Conversely, since by convention S∗

1 (D) =
+∞ for D ≥ D1, the condition S1in < S∗

1 (D) means D ≥ D1

and S1in > 0 or 0 < D < D1 and 0 < S1in < S∗
1 (D). On

the other hand, since the function Si∗2 is defined on (0, D2),
the condition S2in > Si∗2 (D) means 0 < D < D2 and S2in >
Si∗2 (D) and, conversely, since by convention S1∗

2 (D) = +∞
for D > D2, the condition S2in /∈ [S1∗

2 (D), S2∗
2 (D)] means

D ≥ D2 and S2in > 0 or 0 < D < D2 and

S2in /∈
[
S1∗
2 (D), S2∗

2 (D)
]
.

The existence and stability conditions of the steady states
of (2) given in Table 10 depend only on the relative positions
of the values of S1in and S∗

1 (D) and of the values of

S1∗
2 (D), S2∗

2 (D), S2in and S∗
2in (D,S1in, S2in) .

Actually, as stated in Theorem 1 of [6], we can distinguish
nine cases, according to the relative positions of these num-
bers. These cases are summarized in Table 11, together with
the corresponding regions Ik, k = 0, · · · , 8 of Table 5.

Remark 4 Note that Table 10 is identical to Table 3, except
for the stability condition of E0

2 , and the existence conditions
of Ei∗2 , i = 1, 2, which are expressed in Table 3 using the Hi,
i = 1, 2, functions, defined in Table 1.

Let us prove the following lemma which shows that the ex-
istence conditions of Ei∗2 , i = 1, 2, given in Table 10, can be
stated using the functions Hi(D), defined in Table 1.

Lemma 1 The conditions S∗
2in (D,S1in, S2in) = Si∗2 (D) and

S∗
2in (D,S1in, S2in) < Si∗2 (D), for i = 1, 2, are equivalent to

the conditions S2in + k2

k1
S1in = Hi(D) and S2in + k2

k1
S1in <

Hi(D), for i = 1, 2, respectively.

Proof The result follows from the definitions of the functions
S∗
2in (D,S1in, S2in) and Hi(D), given in Table 1. Indeed, the

condition S∗
2in (D,S1in, S2in) = Si∗2 (D) is equivalent to:

S2in +
k2

k1
(S1in − S∗

1 (D)) = Si∗2 (D),

which is itself equivalent to :

S2in +
k2

k1
S1in = Si∗2 (D) +

k2

k1
S∗
1 (D).

That is to say S2in + k2

k1
S1in = Hi(D). The proof for the

inequality is the same.

The role of Hi-functions, in the description of the operat-
ing diagram, has already been highlighted, see Fig. 4 in [25],
where cases D2 < D1 and D1 < D2 are distinguished.

B Proofs

B.1 Proof of Proposition 1

It is seen from Proposition 1 of [6] that the steady states are
given by Table 2, where S∗

1 , Si∗2 , S∗
2in, X∗

1 , Xi2 and Xi∗2 are
defined in Table 1. Their conditions of existence and stability
are given in Table 10. Using Lemma 1 it is seen that the
results in Table 10 are equivalent to those in Table 3 which
completes the proof of Proposition 1.
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B.2 Proof of Proposition 2

The cases 1.1, 1.2 and 1.3 correspond to the regions I0, I1
and I2 respectively, defined in Table 5. Now we use Lemma
1 to show that the remaining six cases 2.1 to 2.6 correspond
to the six regions I3 to I8 defined in Table 5.

Since S2in < S∗
2in the case 2.1 corresponds to the condi-

tion S∗
2in < S1∗

2 which is equivalent, using Lemma 1, to

S2in +
k2

k1
S1in < H1(D).

Therefore the case 2.1 corresponds to the region I3 defined in
Table 5. Using again Lemma 1, the condition S1∗

2 < S∗
2in <

S2∗
2 in the case 2.2 is equivalent to

H1(D) < S2in +
k2

k1
S1in < H2(D)

and the condition S∗
2in > S2∗

2 in the case 2.3 is equivalent to

S2in +
k2

k1
S1in > H2(D).

Therefore the cases 2.2 and 2.3 correspond to the regions I4
and I5 respectively, defined in Table 5. Using similar argu-
ments we show that the cases 2.4, 2.5 and 2.6 correspond to
the regions I6, I7 and I8 respectively, defined in Table 5.

Excepted for cases 1.3, 2.3, 2.5 and 2.6 of bistability, the
system (2) has a unique globally asymptotically stable (GAS)
steady state. Therefore, in the case 1.1, E0

1 is GAS; in the case
1.2, E1

1 is GAS, in the case 2.1, E0
2 is GAS, and in the cases

2.2 and 2.4, E1
2 is GAS. In the case 1.3, E2

1 is a saddle point
whose attractive manifold is a 3-dimensional hyper-surface
surface which separates the phase space of (2) into the basins
of attractions of the stable steady states E0

1 and E1
1 . In the

cases 2.3, 2.5 and 2.6, E2
2 is a saddle point whose stable

manifold is a 3-dimensional hyper-surface which separates the
phase space of (2) into the basins of attractions of the stable
steady states E0

2 and E1
2 . For details and complements on

the global behaviour, see section 2.4 of [6]. This completes
the proof of Proposition 2.

B.3 Proof of Proposition 3

Part of the proof follows from [6]. It is seen from Theo-
rem 1 of [6] that non hyperbolic steady states, that corre-
spond to coalescence of some of the steady state, occur when
two (or more) of the values of S1∗

2 (D), S2∗
2 (D), S2in, and

S∗
2in (D,S1in, S2in) are equal. Notice that the condition

S1∗
2 (D) = S2∗

2 (D),

arising in cases 1.6, 2.11 and 2.14 of Theorem 1 of [6],
corresponds of the saddle node bifurcations of E1

1 = E2
1 or

E1
2 = E2

2 . This condition holds on Γ6,
Notice the condition S2in = S1∗

2 (D), arising in cases 1.4,
2.8 and 2.9 of Theorem 1 of [6], corresponds of the tran-
scritical bifurcation E0

1 = E1
1 . This condition holds on Γ2.

Similarly, the condition S2in = S2∗
2 (D), arising in cases 1.5

and 2.13 of Theorem 1 of [6], corresponds of the transcritical
bifurcation E0

1 = E2
1 . This condition holds on Γ3.

On the other hand the condition S∗
2in = S1∗

2 (D), arising
in cases 2.7 of Theorem 1 of [6], corresponds of the trans-
critical bifurcation E0

2 = E1
2 . Using Lemma 1, this condition

holds on Γ4. Similarly, the condition S∗
2in = S2∗

2 (D), arising

in cases 2.12 and 2.15 of Theorem 1 of [6], corresponds of
the transcritical bifurcation E0

2 = E2
2 . Using Lemma 1, this

condition holds on Γ5.
Finally we consider the bifurcations occurring when S1in =

S∗
1 (D). These bifurcations were not considered in Theorem 1

of [6]. The condition S1in = S∗
1 (D) holds on Γ1 and corre-

sponds to the transcritical bifurcations E0
1 = E0

2 , E1
1 = E1

2

and E2
1 = E2

2 . This completes the proof of Proposition 3.

C Maple code

All plots in this paper were performed with Maple. For the
convenience of the reader we give hereafter the Maple instruc-
tions to plot Figs. 5, 6 and 7. The table 12 gives explicitly
the functions used in the definitions of the Γi curves in 14.
The plots of these curves is obtained as follows.

restart;#How to plot Figs. 5, 6 and 7

with(plots):

S1star:= alpha*D*K1/(m1-alpha*D):

Delta:=(m2-alpha*D)^2*Ki^2-4*(alpha*D)^2*K2*Ki:

S21star:=(Ki*(m2-alpha*D)-sqrt(Delta))/(2*alpha*D):

S22star:=(Ki*(m2-alpha*D)+sqrt(Delta))/(2*alpha*D):

H1:=S21star+k2*S1star/k1:

H2:=S22star+k2*S1star/k1:

S2M:=sqrt(K2*Ki): mu2M:=m2/(1+2*sqrt(K2/Ki)):

D1:=m1/alpha: D2:=mu2M/alpha:

C:=subs(D=D2,S1star)+k1*(S2M-S2in)/k2:

#Parameter values;

K1:=2.1: m2:=0.95: K2:=24: Ki:=55: alpha:=0.5:

k1:=25: k2:=250: k3:=268:

m1:=0.6:# Corresponds to Fig. 5

Dm:=1.2: Sm:=15: # Range of plot

#Plot of Fig. 12(a)

S2in:=0;

Gamma1:=plot(S1star,D=0..Dm,0..Sm,color=blue):

Gamma4:=plot(k1*(H1-S2in)/k2,D=0..D2,0..Sm,color=red):

Gamma5:=plot(k1*(H2-S2in)/k2,D=0..D2,0..Sm,color=red):

Gamma6:=plot([D2,S,S=C..Sm],D=0..Dm,0..Sm,color=black):

display(Gamma1,Gamma4,Gamma5,Gamma6);

#Plot of Fig. 12(b)

S2in:=15;

D0:=solve(S21star=S2in):

Gamma2:=plot([D0,S,S=0..Sm],0..Dm,0..Sm,color=green):

Gamma1:=plot(S1star,D=0..Dm,0..Sm,color=blue):

Gamma4:=plot(k1*(H1-S2in)/k2,D=D0..D2,0..Sm,color=red):

Gamma5:=plot(k1*(H2-S2in)/k2,D=0..D2,0..Sm,color=red):

Gamma6:=plot([D2,S,S=C..Sm],D=0..Dm,0..Sm,color=black):

display(Gamma2,Gamma1,Gamma4,Gamma5,Gamma6);

#Plot of Fig. 12(c)

S2in:=S2M;

Gamma2:=plot([D2,S,S=0..Sm],0..Dm,0..Sm,color=green):

Gamma1:=plot(S1star,D=0..Dm,0..Sm,color=blue):

Gamma5:=plot(k1*(H2-S2in)/k2,D=0..D2,0..Sm,color=red):

display(Gamma2,Gamma1,Gamma5);

#Plot of Fig. 12(d)

S2in:=100;

D0:=solve(S22star=S2in):

Gamma2:=plot([D0,S,S=0..Sm],0..Dm,0..Sm,color=green):

Gamma1:=plot(S1star,D=0..Dm,0..Sm,color=blue):

Gamma5:=plot(k1*(H2-S2in)/k2,D=0..D0,0..Sm,color=red):

Gamma6:=plot([D2,S,S=0..Sm],D=0..Dm,0..Sm,color=black):

display(Gamma2,Gamma1,Gamma5,Gamma6);

The Γi curves and the Ik regions they delimit are shown
in Fig. 12. This figure is identical to Fig. 5, except that in
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(a) (b)

(c) (d)

S1in S1in

S1in S1in

D D

D D

I0 I0

I0 I0

I1

I1 I1 I2

I3 I3

I3 I3

I4 I4

I5 I5

I6

I6 I6

I7

I7 I7 I8

Γ1 Γ1

Γ1 Γ1

Γ2

Γ3

Γ4

Γ4

Γ5 Γ5

Γ5 Γ5

Γ6 Γ6

Γ2 Γ6

Fig. 12 The curves Γ1 (in Blue), Γ2 and Γ3 (in Green), Γ4 and Γ5 (in Red) and Γ6 (in Black), corresponding to the operating
diagrams in Fig. 5. (a): S2in = 0, (b): S2in = 15, (c): S2in = SM2 ' 36.332 and (d): S2in = 100.

Fig. 5, the regions Ik have been colored using the colors of
Table 6.

D Tables and three dimensional operating

diagram

In this section, we give several tables that are used in the
paper. In the table 12, we present the functions defined in
the table 1, in the particular case of the growth functions of
Monod and Haldane (3). Tables 13 and 14, give the descrip-
tion of the intersections with a two dimensional operating
plane, where D or S2in is kept constant, respectively, of the
Γi surfaces that separate the operating parameter space in
several regions, which are defined in Table 4. In Table 15,
we provide the biological parameter values of the Monod and
Haldane growth functions (3) used in the figures.

For the biological parameter values given in Table 15, and
m1 = 0.6, we give in Fig. 13 front, rear, left and right views
of the surfaces Γi, i = 1, · · · , 6, in the three dimensional op-
erating space, showing the various regions of the three dimen-
sional operating diagram. In this three-dimensional view, the

surfaces Γi are colored as in Fig. 12, except that, for clarity,
Γ6 is colored yellow, rather than black.
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Table 12 Auxiliary functions in the case given by (3).

µ1 (S1) =
m1S1

K1 + S1
, µ1(+∞) = m1

S∗
1 (D) =

αDK1

m1 − αD
. It is defined for 0 < D < D1, where D1 =

m1

α

µ2 (S2) =
m2S2

K2 + S2 +
S2

2

KI

, SM2 =
√
K2KI , µ2

(
SM2

)
=

m2

1 + 2
√
K2/KI

S1∗
2 (D) =

(m2 − αD)KI −
√

(m2 − αD)2K2
I − 4(αD)2K2KI

2αD

S2∗
2 (D) =

(m2 − αD)KI +
√

(m2 − αD)2K2
I − 4(αD)2K2KI

2αD

S1∗
2 (D) and S2∗

2 (D) are defined for 0 < D < D2, where D2 =
µ2

(
SM2

)
α

Hi(D) = Si∗2 (D) + k2

k1
S∗
1 (D), i = 1, 2, defined for 0 < D < min(D1, D2)

S∗
2in (D,S1in, S2in) = S2in + k2

k1
S1in − k2

k1
S∗
1 (D), defined for 0 < D < D1

Xi2 (D,S2in) = 1
k3α

(
S2in − Si∗2 (D)

)
, i = 1, 2, defined for 0 < D < D2

Xi∗2 (D,S1in, S2in) = 1
k3α

(
S2in + k2

k1
S1in − k2

k1
Hi(D)

)
, i = 1, 2, defined for 0 < D < min(D1, D2)

Table 13 Intersections of the Γk surfaces, k = 0, · · · , 8 with a (S1in, S2in) plane, where D is kept constant.

Γk Γk ∩ {D = constant}

Γ1
Vertical line S1in = S∗

1 (D) if D < D1

Empty if D ≥ D1

Γ2
Horizontal line S2in = S1∗

2 (D) if D ≤ D2

Empty if D > D2

Γ3
Horizontal line S2in = S2∗

2 (D) if D ≤ D2

Empty if D > D2

Γ4
Oblique line S2in + k2

k1
S1in = H1(D) if D < min(D1, D2)

Empty if D ≥ min(D1, D2)

Γ5
Oblique line S2in + k2

k1
S1in = H2(D) if D < min(D1, D2)

Empty if D ≥ min(D1, D2)

Γ6
The whole plane if D = D2

Empty if D 6= D2

Table 14 The intersections of the Γk surfaces, k = 0, · · · , 8 with a (D,S1in) plane, where S2in is kept constant.

Γk Γk ∩ {S2in = constant}
Γ1 Curve of function S1in = S∗

1 (D)

Γ2
Vertical line D = 1

α
µ2 (S2in) if S2in ≤ SM2

Empty if S2in > SM2

Γ3
Vertical line D = 1

α
µ2 (S2in) if S2in ≥ SM2

Empty if S2in < SM2
Γ4 Curve of function S1in = k1

k2
(H1(D)− S2in) restricted to the domain S1in > S∗

1 (D)

Γ5 Curve of function S1in = k1

k2
(H2(D)− S2in) restricted to the domain S1in > S∗

1 (D)

Γ6 Vertical line D = D2
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applications. Annales de l’Institut Pasteur 79, 390–410
(1950). DOI 10.1016/B978-0-12-460482-7.50023-3

20. Pavlou, S.: Computing operating diagrams of bioreac-
tors. J. Biotechnol. 71, 7–16 (1999). DOI 10.1016/
s0168-1656(99)00011-5

21. Reilly, P.: Stability of commensalistic systems. Biotech-
nology and Bioengineering 16, 1373–1392 (1974). DOI
10.1002/bit.260161006

22. Sari, T., El-Hajji, M., Harmand, J.: The mathematical
analysis of a syntrophic relationship between two micro-
bial species in a chemostat. Math. Biosci. Eng. 9, 627–645
(2012). DOI 10.3934/mbe.2012.9.627

23. Sari, T., Harmand, J.: A model of a syntrophic relation-
ship between two microbial species in a chemostat in-
cluding maintenance. Mathematical Biosciences 275, 1–9
(2016). DOI 10.1016/j.mbs.2016.02.008

24. Sari, T., M.Wade: Generalised approach to modelling a
three-tiered microbial food-web. Math. Biosci. 291, 21–
37 (2017). DOI 10.1016/j.mbs.2017.07.005

25. Sbarciog, M., Loccufier, M., Noldus, E.: Determination of
appropriate operating strategies for anaerobic digestion
systems. Biochemical Engineering Journal 51, 80–188
(2010). DOI 10.1016/j.bej.2010.06.016

26. Shen, S., Premier, G., Guwy, A., Dinsdale, R.: Bifur-
cation and stability analysis of an anaerobic digestion
model. Nonlinear Dynamics 48, 465–489 (2007). DOI
10.1007/s11071-006-9093-1

27. Smith, H., Waltman, P.: The theory of the chemostat:
Dynamics of microbial competition. Cambridge Univer-
sity Press (1995)

28. Stephanopoulos, G.: The dynamics of commensalism.
Biotechnology and Bioengineering 23, 2243–2255 (1981).
DOI 10.1002/bit.260231008

29. Volcke, E.I.P., Sbarciog, M., Noldus, E.J.L., Baets, B.D.,
Loccufier, M.: Steady state multiplicity of two-step bio-
logical conversion systems with general kinetics. Mathe-
matical Biosciences 228, 160–170 (2010). DOI 10.1016/
j.mbs.2010.09.004

30. Wade, M., Harmand, J., Benyahia, B., Bouchez, T.,
Chaillou, S., Cloez, B., Godon, J.J., Moussa-Boudjemaa,
B., Rapaport, A., Sari, T., Arditi, R., Lobry, C.: Per-
spectives in mathematical modelling for microbial ecol-
ogy. Ecological Modelling 321, 64–74 (2016). DOI
10.1016/j.ecolmodel.2015.11.002

31. Wade, M., Pattinson, R., Parker, N., Dolfing, J.: Emer-
gent behaviour in a chlorophenol-mineralising three-
tiered microbial ‘food web’. J. Theor. Biol. 389, 171–186
(2016). DOI 0.1016/j.jtbi.2015.10.032

32. Wade, M.J.: Not just numbers: Mathematical modelling
and its contribution to anaerobic digestion processes.
Processes 8(8) (2020). DOI 10.3390/pr8080888. URL
https://www.mdpi.com/2227-9717/8/8/888

33. Weedermann, M., Seo, G., Wolkowics, G.S.K.: Mathe-
matical model of anaerobic digestion in a chemostat: Ef-
fects of syntrophy and inhibition. Journal of Biological
Dynamics 7, 59–85 (2013). DOI 10.1080/17513758.2012.
755573

34. Weedermann, M., Wolkowicz, G.S.K., Sasara, J.: Opti-
mal biogas production in a model for anaerobic diges-
tion. Nonlinear Dynamics 81, 1097–1112 (2015). DOI
10.1007/s11071-015-2051-z

35. Xu, A., Dolfing, J., Curtis, T., Montague, G., Martin, E.:
Maintenance affects the stability of a two-tiered microbial
‘food chain’? J. Theor. Biol. 276, 35–41 (2011). DOI
10.1016/j.jtbi.2011.01.026

https://hal.archives-ouvertes.fr/hal-02531141v2
https://hal.archives-ouvertes.fr/hal-02531141v2
https://europepmc.org/article/pmc/pmc285298
https://europepmc.org/article/pmc/pmc285298
https://www.mdpi.com/2227-9717/8/8/888

	Introduction
	Mathematical model
	Operating diagram
	Operating diagram in (S1in,S2in) where D is kept constant
	Operating diagram in (D,S1in) where S2in is kept constant
	Bifurcations
	Discussion
	Conclusion
	Relationship to previous work
	Proofs
	Maple code
	Tables and three dimensional operating diagram

