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France, 5 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany,

6 Spatial Epidemiology Lab (SpELL), University of Brussels, Brussels, Belgium, 7 INRAE-VetAgro Sup,

UMR Epidemiology of Animal and Zoonotic Diseases, Saint Genès-Champanelle, France, 8 Infectious

Diseases in Animals, Exotic and Particular Diseases, Sciensano, Brussels, Belgium, 9 Section for Veterinary

Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen,

Copenhagen, Denmark, 10 Department of Virus and Microbiological Special Diagnostics, Statens Serum

Institut, Copenhagen, Denmark, 11 The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom,

12 Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy, 13 Istituto

Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Teramo, Italy, 14 Department of Virology,

Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands, 15 Department of Biochemistry,

Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa

☯ These authors contributed equally to this work.

‡ These authors are joint senior authors on this work.

* massimo.palmarini@glasgow.ac.uk (MP); roman.biek@glasgow.ac.uk (RB)

Abstract

The mechanisms underlying virus emergence are rarely well understood, making the appear-

ance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-

borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most

European countries by 2009 and causing losses of billions of euros. Although the outbreak

was successfully controlled through vaccination by early 2010, puzzlingly, a closely related

BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing.

The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here,

we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the

two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics

but found negligible evolutionary change between them. We estimate that the ancestor of the

second outbreak dates from the height of the first outbreak in 2008. This implies that the

virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the

absence of any known natural mechanism that could explain BTV-8 persistence over this

long period without replication, we hypothesise that the second outbreak could have been ini-

tiated by accidental exposure of livestock to frozen material contaminated with virus from
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approximately 2008. Our work highlights new targets for pathogen surveillance programmes

in livestock and illustrates the power of genomic epidemiology to identify pathways of infec-

tious disease emergence.

Introduction

Infectious disease outbreaks are a major burden on human and animal health. They can dra-

matically reduce the productivity of entire countries due to direct losses, control measures,

trade bans, or public fear [1]. Diseases caused by arthropod-borne viruses (arboviruses) in par-

ticular have increased substantially in recent decades [2–4], and there is an urgent need to bet-

ter understand the causes of their emergence in order to devise better control and prevention

strategies. The factors leading to disease emergence are often unclear, and case studies of

intensely studied outbreaks can therefore provide important wider lessons.

Bluetongue is a major disease of domestic ruminants caused by the bluetongue virus

(BTV); an arbovirus transmitted by Culicoides midges. BTV is the type species of the genus

Orbivirus, within the family Reoviridae, and possesses 10 double-stranded RNA genome seg-

ments encoding for 7 structural and 4 or 5 nonstructural proteins [5–8]. BTV infection in

sheep can induce a variety of clinical outcomes, which in the most extreme cases include a

lethal haemorrhagic fever [9–11]. Infection in cows and goats results instead in milder and

often subclinical signs [9,10]. BTV can also infect wild ruminants and, more rarely, other

mammal species [12–16].

Like many other arboviruses, the geographical spread of BTV has increased significantly in

the last 20 years [17–19]. In August 2006, BTV serotype 8 (BTV-8) emerged for the first time

in the Netherlands [20–25], leading to dramatic losses of sheep and causing extensive eco-

nomic damage to farming communities, costing on the order of billions of euros [26–29]. The

virus quickly spread across the continent, with confirmed infections in 16 countries by 2008

(Fig 1). The outbreak was ultimately controlled through a pan-European vaccination cam-

paign, using inactivated vaccines, with a few last cases detected in Europe in 2010 [30]. How-

ever, after a five-year period with no BTV-8 cases recorded throughout Europe, the virus re-

emerged in France [31] and has since continued to spread. France was declared enzootic in

2018 and recent cases reported in adjacent countries, including Germany, Switzerland, and

Belgium [32].

The source and mechanism of BTV-8 re-emergence in France remains obscure. Initial

genetic data from one isolate suggested the re-emerging virus in France to be a close relative

of the lineage causing the 2006–2010 outbreak [31,33,34]. The prevailing theory was that the

virus had continued to be transmitted subclinically but remained unrecorded in livestock or

wild ruminants after it had been declared absent from Europe in 2011 [31]. However, there is

currently little evidence to support this hypothesis. Based on serological evidence, wild ungu-

lates do not appear to have sustained transmission [35,36]. Similarly, serological testing of cat-

tle sampled in 2014 indicated a rapid decline of seropositivity after vaccination ceased in

France in 2010, consistent with a new (re-)introduction of the virus in, or just before, 2015

[35,37,38].

We describe the use of phylogenetic and evolutionary analyses of BTV-8 virus samples,

collected during the first and second European outbreaks, to gain insights into the mecha-

nisms that allowed BTV-8 to re-emerge in France in 2015. For this, we generated a novel data-

set of full genome sequences for more than 150 viruses sampled throughout both outbreaks.
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Results

Viruses from the first and second European BTV-8 outbreaks form a single

monophyletic clade

We analysed newly sequenced full genomes of 153 BTV-8 samples collected from infected

sheep and cattle throughout the BTV-8 outbreaks in Europe along with 11 BTV-8 isolates pre-

viously published. Samples from the first outbreak were collected from infected animals in 10

different countries between 2006 and 2009, while samples from the second outbreak were col-

lected from France between 2015 and 2018 (S1 Table). To minimise or exclude the possibility

Fig 1. Emergence and re-emergence of BTV-8 in Europe. Location and number of premises housing livestock infected with BTV-8 collected from “immediate

reports” to the OIE (World Organisation for Animal Health). Data were accessed from the WAHIS database on 12 July 2019. Immediate report data were provided

by the OIE. Each point corresponds to one infected premise, with total counts for each year (n), with the first outbreak shown in purple and the second outbreak

shown in orange. Please note that points on the maps reflect only immediate notification to the OIE, resulting in a smaller number than the totality of affected

premises during the outbreaks. In addition, France is shaded in 2009 and 2018 as France stopped providing immediate reporting, requiring location data, to the

OIE during those years. As such, the counts of infected premises from 2009 and 2018 are not comparable to previous years as they exclude France, where the virus

was widespread. Data are available from the WAHIS database at https://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home. BTV-8, bluetongue virus

serotype 8. Map adapted from tiles by Stamen Design, under Creative Commons (CC BY 3.0) using data by OpenStreetMap, under the Open Database Licence.

https://doi.org/10.1371/journal.pbio.3000673.g001
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of including genome mutations acquired during extensive passage of the virus in culture, we

sequenced the great majority of samples directly from clinical samples (blood) of infected ani-

mals or from isolates kept in culture for a minimum number of passages (S1 Table).

A maximum likelihood (ML) tree revealed considerable genetic diversity both within the

first (2006–2010) and the second outbreak (2015–2018) (Fig 2 and S1 Fig). The tree showed

that all sequences from the second European outbreak form a well-supported monophyletic

clade that is nested within the virus lineages circulating during the first outbreak in 2006–2010

(Fig 2 and S1 Fig). Specifically, the clade of the second outbreak derives from a clade from the

first outbreak including predominantly viruses from France and Germany collected in 2007

and 2008. The viruses from the second French outbreak can be distinguished into two further

clades, one including viruses from 2015 and 2016, the other including samples spanning the

entire outbreak (2015–2018). Interestingly, both clades were already present among the eight

samples from the farm in France (in Auvergne-Allier) from which the first diagnosis of re-

emerged BTV-8 was made in August/September of 2015. Surprisingly, the branch leading to

Fig 2. Phylogenetic tree of 164 BTV-8 samples collected during the European outbreaks between 2006 and 2018. ML tree estimated in PhyML. The scale bar

shows substitutions per site. Internal nodes represented 700 or more times within 1,000 bootstraps are indicated by a white circle. Samples from the first outbreak

are shown as purple circles, while samples from the second outbreak are shown as orange circles. Note that an identical tree with labels corresponding to the

individual samples is shown as S1 Fig. The tree is available in S3 Data as PhyMLTreeFinal.tree. BTV-8, bluetongue virus serotype 8; ML, maximum likelihood.

https://doi.org/10.1371/journal.pbio.3000673.g002
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the re-emerging virus appeared short, given the five-year period between the outbreaks, imply-

ing a low rate of evolution during this period (Fig 2 and S1 Fig).

BTV-8 re-emergence associated with exceptionally slow evolution

To test if the lower amount of divergence along the branch separating the two outbreaks was

unusual, we estimated the evolutionary rate of BTV-8 from the set of 164 genomes. For this,

we applied a lognormal relaxed clock model that allows for branch-specific heterogeneity in

clock rates, implemented in the Bayesian phylogenetic software BEAST (Fig 3 and S2 Fig). The

mean evolutionary rate estimate was 4.04 × 10−4 substitutions per site per year (95% highest

posterior density [HPD]: 3.37 × 10−4, 4.72 × 10−4), corresponding to an expected 7.76 substitu-

tions per year (95% HPD: 6.47, 9.06) across the entire BTV-8 genome. In contrast, the

Fig 3. Timescaled phylogenetic tree of BTV-8 samples collected during the European outbreaks between 2006 and 2018. Maximum clade credibility time-

calibrated phylogenetic tree generated in BEAST. The tree is scaled in years, with the final sampling date being October 2018. Clades with posterior support of 0.9

or higher are indicated by a white circle. Samples from the first and second outbreaks are shown as purple and orange circles, respectively. The branches are

coloured accordingly to their median evolutionary rate across the posterior (see heatmap within the figure). The long branch leading from the first outbreak to the

second (in dark purple) shows the slowest evolutionary rate on the maximum clade credibility tree. The inset shows the posterior distribution of the normalised

rank of the evolutionary rate of the long branch relative the other branches in the tree, as estimated from the lognormal relaxed clock. Relative to the rest of the tree,

values close to 0 represent slow evolution, values close to 1 represent fast evolution, and 0.5 represents the median branch–specific evolutionary rate on the tree.

This analysis reveals an unusually slow evolution of BTV-8 between outbreaks. See the Methods section for the specifics of this calculation. Note that an identical

tree with labels corresponding to the individual samples is shown as S2 Fig. The tree is available in S3 Data as MCC.tree; other presented data can be extracted

using code in S1 Data from the trees in S3 Data as AllGMRF_reduced.trees. BTV-8, bluetongue virus serotype 8.

https://doi.org/10.1371/journal.pbio.3000673.g003
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emerging branch had an estimated mean evolutionary rate that was nearly an order of magni-

tude slower, at 8.24 × 10−5 substitutions per site per year (95% HPD: 3.93 × 10−5, 1.32 × 10−4).

Indeed, of the branches within the presented maximum clade credibility tree, this branch had

the lowest median rate across the posterior distribution of trees.

Using BEAST, we reconstructed the sequence of the most recent common ancestor of the

viruses sequenced from the second outbreak. This ancestral sequence displayed only 7 nucleo-

tide substitutions (of which 6 were synonymous or in the untranslated regions [UTRs] of the

viral genome) compared to BTV-8FRA2007-3673, the genetically closest virus within the dataset,

which was collected in France in August 2007 (Fig 4A). In comparison, BTV-8FRA2007-3673 dis-

played 23 nucleotide substitutions (of which 16 were synonymous or in the UTR) compared to

the first sequence available from the first outbreak and collected in August 2006 in the Nether-

lands (BTV-8NET2006-04) (Fig 4A). The number of mutations of BTV-8FRA2007-3673 compared to

the BTV-8 sequences in the dataset in 2006 (n = 23) ranges between 15 and 23, while those

compared to the virus sequences collected in 2008 (n = 37) varies between 2 and 56. Hence,

sequence variation between BTV-8 samples collected only a year apart during the first out-

break is, in general, far higher than that between the ancestor of the re-emerged BTV-8 strain

and its closest relative in the first outbreak.

“Frozen evolution”: Clock-like evolution of BTV-8 during, but not in

between, outbreaks

Next, we included the reconstructed ancestral sequence in our dataset and re-estimated the

ML tree to get measures of genetic distance from the root of the tree. Consistent with clock-

like evolution, the genetic distance between virus sample and the root increased linearly with

time during both the first (TempEst: slope = 7.2708 × 10−4 subs/site/year, r2 = 0.8113) and the

Fig 4. Lack of evolution of BTV-8 between the two European outbreaks. (A) Graphic representation of nucleotide substitutions between the genomes of the

earliest BTV-8 collected from the first European outbreak (BTV-8NET2006-04), the reconstructed ancestor of the second BTV-8 outbreak (BTV-8FRA2015), and the

most similar virus to the latter sequence present in our dataset (BTV-8FRA2007-3673). Substitutions are shown as a blue circle, with numbers indicating the genomic

position for each of the 10 genomic segments. Asterisks indicate those mutations inducing also an amino acid substitution. (B) Genetic divergence of 164 BTV-8

samples collected from the two European outbreaks against their sampling date (circles). The regression lines corresponding to the posterior mean estimate from

the best fitting linear model for each outbreak are shown in black. Credible intervals are omitted because nonindependence of points would have made

conventional estimate of standard errors invalid. When the day was unknown, the date was fixed to the 16th of the month, and when the month was unknown, the

date was fixed to the midpoint of the year. The inferred age of the ancestor of the second outbreak is shown as a square, with a 95% HPD error. The dashed line

indicates that the inferred ancestor of the second outbreak has a degree of divergence that is equivalent to a virus from the first outbreak circulating in 2008.

Mutations can be derived from the raw sequence data deposited on GenBank under the IDs listed in S1 Table. Distances to the root can be extracted from the tree

in S3 Data as MlincludingAncestor.tree, and dates are available in dateswithuncertainty.txt in S3 Data. BTV-8, bluetongue virus serotype 8; HPD, highest posterior

density; Seg, virus genome segment.

https://doi.org/10.1371/journal.pbio.3000673.g004
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second outbreak (TempEst: slope = 6.9291 × 10−4, r2 = 0.9605). There was no evidence that

the evolutionary rate of the virus differed between the two outbreaks (p-value for Date:Out-

break interaction = 0.194). However, there is a clear discontinuity in the accumulation of

mutations between the two outbreaks, consistent with a period during which clock-like evolu-

tion had essentially ceased. Consequently, the reconstructed sequence of the ancestor of the

second outbreak, when included in the ML tree, has an inferred distance from the tree root

that is consistent with a virus from late March 2008, according to the root-to-tip regression

(Fig 4B).

Discussion

Diseases of livestock can be exceedingly interesting models to study virus emergence, given

that harmonised international surveillance systems and regulatory frameworks provide oppor-

tunities to access field samples with associated metadata across national borders. Here, the

BTV-8 European outbreaks provided us with the opportunity to investigate the mechanisms

surrounding arbovirus emergence based on a uniquely rich dataset. Our results indicate that

the re-emergence of BTV-8 in France in 2015 was caused by a virus that exhibits a lack of evo-

lutionary changes since the first outbreak. This is inconsistent with the prevalent view of unde-

tected low-level circulation of the virus in wild or domestic ruminants between 2010 and 2015,

and instead points to another mechanism of emergence.

We showed a large discontinuity in the number of mutations accumulated by BTV-8

between 2010 and 2015, even though the evolutionary rates of the virus during the first and sec-

ond outbreak were indistinguishable and of the same order as rates reported in previous BTV

studies [39,40]. If the virus had been replicating consistently in an undetected population from

2010 to 2015, we would expect the genetic distance of the isolates from the second European

outbreak to continue the trend of increased divergence after the first outbreak. However, the

sequences from the second outbreak exhibit genetic divergences that fall considerably below

what would be expected if the trend line from the first outbreak was extended, illustrating a

paucity of mutations (Fig 4B). Indeed, the divergence of the reconstructed ancestor of the sec-

ond bluetongue outbreak is consistent with the virus stopping replication in March 2008. The

lack of divergence is also illustrated by the fact that the reconstructed ancestor of the BTV-8

outbreak has only 7 mutations separating it from its closest relative in the analysed dataset, a

French sample collected in August 2007 (BTV-8FRA2007-3673), despite putatively having been

replicating for at least half a decade after that sample’s collection. In comparison, BTV-

8FRA2007-3673 showed 23 mutations compared to the genome of the earliest BTV-8 sample

obtained from the Netherlands in August 2006, only a year earlier. The corresponding rate of

evolution estimated for the emerging branch was almost an order of magnitude slower than the

mean clock rate, highlighting it as exceptionally low (Fig 3). Moreover, we hypothesise that

some or all of the estimated seven mutations on this branch might have accumulated during

the first outbreak, given that the emerging branch connects to an internal node in the time-

scaled phylogeny with a date of early 2007, at the height of the first outbreak. The subsequent

accumulation of seven mutations is consistent with the idea that this virus continued to circu-

late until early 2008 (the inferred date from the root-to-tip regression) and then ceased to

change altogether until its re-emergence in 2015. While previous studies have found apparent

evolutionary stasis to be the result of mislabelling [41], this can be ruled out in our case due to

the discontinuity applying to all samples from the second outbreak, not just a single isolate.

Another hypothetical scenario could be envisaged if BTV-8 was to remain “latent” in midges’

eggs for a number of years. However, there is no evidence of vertical transmission in BTV-
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infected Culicoides [42–45]. This, in conjunction with the need for infected midge eggs to sur-

vive for years, rather than a single overwintering season, makes this scenario highly unlikely.

Given the unexpectedly low number of mutations observed between the two outbreaks, our

data indicate that the common ancestor of the second European outbreak either ceased or dra-

matically slowed its replication in early 2008. This is inconsistent with current knowledge and

paradigms of the biology of BTV and RNA viruses in general. For example, a potential expla-

nation could be that BTV persistently infected a host for several (5 to 8) years, with little or no

replication, before being reactivated and starting the second outbreak. While this may be pos-

sible with DNA viruses, or RNA viruses with a DNA intermediate [46–51], a mechanism for

this has never been described before for reoviruses such as BTV and in general for other RNA

viruses.

Our findings have interesting parallels to puzzling examples from other RNA viruses, such

as two Ebola virus outbreaks in the Democratic Republic of Congo in 2014 and 2018 [52,53].

Isolates from both outbreaks were minimally divergent from isolates collected about a decade

earlier, resulting in a far lower evolutionary rate than other known lineages. It has been sug-

gested that such slow evolution may be caused by the maintenance of the virus in an animal

reservoir, where infection might be associated with lower replication rates compared to human

hosts [52,53]. Rabies virus may provide an additional peculiar example based on a handful of

reports in human patients of virus reactivation after latency of several years [54], but it has not

been documented whether these cases involved a lack of evolutionary changes. In other cases,

such as foot-and-mouth disease, viral RNA and infectious virus have been shown to persist in

reservoir hosts for multiple years. However, re-isolation of virus (as opposed to detection of

viral RNA) indicates that the virus replicates during persistent infection and accumulates

nucleotide substitutions at a rate comparable to actively replicating viruses [55,56]. Hepatitis C

virus, for example, is also known to persist in a number of patients for a number of years but,

again, with continuing viraemia and thus virus replication [57].

Overall, we judge the possibility of persistence of BTV-8 in a mammalian or invertebrate

host for longer than five years, in the absence of viral replication, followed by viral reactivation

and subsequent onwards spread, to be unlikely given the current understanding of RNA virus

biology. We hypothesise that accidental release of frozen material contaminated with BTV-8

could be the cause of the virus re-emergence in France in 2015. Anthropogenic causes of virus

outbreaks have been described before. Accidental virus release is thought to have been respon-

sible for the 1977 influenza A H1N1 outbreak, caused by a virus that closely matched a variant

circulating in the 1950s [58,59]; likewise, the 1995 Venezuelan equine encephalitis subtype IC

epidemic was caused by a virus closely related to a strain circulating in 1962–1964 [60]. For

livestock pathogens, a localised outbreak of foot-and-mouth disease virus (FMDV) in the

United Kingdom in 2007 was linked to virus escaped from research facilities [61].

Our data cannot reveal the actual source from which BTV-8 was re-introduced in France in

2015. We speculate that laboratory escape of virus preparations, such as the case of FMDV in

the UK in 2007, is unlikely, as BTV needs an insect vector for efficient transmission and we are

unaware of any in vivo insect experiments in France with BTV during that period. However,

due to specific animal husbandry procedures, there are important potential sources of frozen

virus that apply to viruses of livestock and not viruses of most other animals, specifically the

widespread use of bull semen for artificial insemination and embryo transfer in cows [62,63].

BTV has been detected in the semen of viraemic bulls and rams, can initiate infection in the

mother, and can be transmitted vertically to the embryo [64,65]. Additionally, contaminated

embryos can cause transmission on implantation [66]. As such, both semen and embryos may

represent potential sources of BTV infection. Contaminated frozen colostrum may also be a

potential source, considering that oral transmission has been shown to be possible with BTV-8
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[67]. However, it is not normal practice to keep colostrum frozen for a number of years. Inter-

estingly, while international regulations specify that bull donors and semen that are exported

internationally must be screened for various pathogens including BTV [68], this does not

apply to premises trading only locally and carrying out private insemination procedures [69].

Thus, semen from a BTV-8–infected bull could have been collected or an embryo generated

from an infected but asymptomatic animal and used years later without detection.

We stress that the link between bull semen trade and embryo implantation in France and

the BTV-8 re-emergence in 2015 is only speculative. However, we have shown that the re-

emergence of BTV-8 in France in 2015 is unlikely to be due to cryptic continuing transmis-

sion, and we can exclude a reintroduction from another endemic country. Thus, our data are

incompatible with the two current dominant theories for explaining the 2015 outbreak [31].

The lack of accumulated mutations in the virus implies that there was either an ongoing persis-

tent infection in the absence of viral replication for several years, or the virus originated from

material that had been frozen during the first outbreak. We argue the second of these explana-

tions to be more likely. Our findings highlight new areas requiring thorough surveillance pro-

grammes for the control of infectious disease of livestock. In addition, our approach illustrates

how unrecognised pathways of disease emergence can be revealed using pathogen genomic

epidemiology.

Methods

Samples

Blood samples from animals infected with BTV-8 were received from ten European countries

during the bluetongue outbreaks from 2006 to 2018. In some instances, samples analysed were

viruses isolated in tissue culture from blood of infected animals. S1 Table provides the meta-

data related to the dataset used in this study. These include virus strain names, animal species

of origin, geographical location, and date of sampling. In addition, metadata include whether

the viral genome sequence was obtained directly from clinical material (blood) or from an iso-

late in tissue culture, sequencing methods, and GenBank accession numbers.

RNA extraction and Illumina library preparation

Total RNA was extracted from infected blood samples, and virus isolates using Trizol LS (Invi-

trogen, Carlsbad, CA) and purified using Direct-zol RNA MiniPrep (Zymo Research, Irvine,

CA) as per the manufacturer’s protocol. RNA samples were treated with DNase I (Ambion,

Austin, TX) and purified with 3× Agencourt RNAClean XP beads (Beckman Coulter, Brea,

CA). Total RNA concentration was quantified using the Qubit Fluorometer (Life Technolo-

gies, Carlsbad, CA) and Qubit RNA HS Assay (Life Technologies, Carlsbad, CA), while RNA

integrity was assessed using Agilent 4200 TapeStation System (Agilent, Santa Clara, CA). In

order to avoid cross-contamination, RNA extractions from virus isolates were performed sepa-

rately from those of infected blood samples. Similarly, RNA extractions were carried out sepa-

rately on the basis of geographical origin and year of collection of the samples. In addition,

library preparations, target enrichment, and sequencing runs (see below) were carried out also

on separate days, following the same criteria as above. Libraries from low and without measur-

able RNA (low input) were also prepared separately from those with measurable RNA (high

input). Libraries were prepared for Illumina sequencing using the Illumina TruSeq Stranded

mRNA HT kit (Illumina, San Diego, CA) using 5 μL of sample RNA (up to 250 ng of total

RNA) according to the manufacturer’s instructions. Briefly, after RNA was fragmented, it was

reverse transcribed using SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA) and

random hexamers. Single-stranded cDNA was immediately converted to double-stranded
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cDNA, cleaned up with Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA),

quantified using Qubit Fluorometer and Qubit dsDNA HS Assay Kit (Life Technologies,

Carlsbad, CA), and the size distribution was assessed using a 4200 TapeStation System with

High Sensitivity D1000 Screen Tape assay (Agilent, Santa Clara, CA). A-tailing was performed,

followed by indexed adapter ligation. After a purification step, dual indexed libraries were

PCR amplified, and the purified PCR products were pooled in equimolar concentrations and

sequenced using 150 paired-end sequencing on MiSeq or NextSeq500/550 sequencers (Illu-

mina, San Diego, CA).

Targeted enrichment sequencing

We carried out multiplexed viral targeted enrichment followed by Illumina sequencing using

the NimbleGen SeqCap EZ system (Roche, Pleasanton, CA) for improved viral detection from

clinical material. This approach was followed in order to increase the number of BTV-8 sam-

ples from which we could obtain a complete viral genome sequence directly from clinical mate-

rial, including those with very low amounts of viral RNA. Libraries were prepared following

the standard Illumina TruSeq Stranded mRNA protocol, described above. They were quanti-

fied using Qubit Fluorometer and Qubit dsDNA high sensitivity (HS) Assay Kit (Life Technol-

ogies, Carlsbad, CA). Quality and size distribution were validated using the High Sensitivity

D1000 Screen Tape assay (Agilent, Santa Clara, CA) in a 4200 TapeStation System (Agilent,

USA) and were normalised according to BTV viral load and mass. A 1-μg aliquot of the pooled

library was enriched using a SeqCap EZ Developer Probe (Roche/NimbleGen) (see below),

according to the manufacturer’s protocol. After a 14-cycle post-enrichment PCR amplification,

the cleaned PCR products were pooled and were sequenced with a 151-base paired-end reads

on a NexSeq500/550 cartridge (Illumina, San Diego, CA). Probes were designed using all BTV

sequences available on NCBI Genbank, RefSeq, DNA Data Bank of Japan (DDBJ), and EMBL

EBI databases (as accessed by October 2016). The resulting NimbleGen biotinylated soluble

capture probe library (“BTV-Cap”) contains a probe set of more than 500,000 probes, designed

to minimise capture of Culicoides sonorensis, Bos taurus, Ovis aries, Capra hircus, and Mesocri-
cetus auratus genomes.

Consensus calling

All consensus calling was performed on a cluster running Ubuntu v. 14.04.5 LTS. In all cases,

BAM and SAM files were handled using samtools v. 1.3 [70]. The R packages ggplot2 v. 3.2.1

[71], seqinr v. 3.6–1 [72], stringr v.1.4.0 [73], and vcfR v. 1.8.0 [74] were all used in scripts at

various points in the following section. Paired-end raw reads were trimmed with Trim Galore!

v. 0.4.0 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with a quality cut-

off of 30. Any reads below 50 bp were discarded. Following this, any reads that were unpaired

were discarded if they were under 100 bp. Overlapping reads were combined using FLASH v.

1.2.11 [75]. Reads were mapped using bowtie2 v. 2.3.4.2 [76] to a reference database containing

all the segments of all the described strains of BTV in order to manually check for mixed infec-

tions. Reads were allowed to have as many valid maps as could be found. Mapping statistics

were generated with weeSAM v. 1.5 (https://github.com/centre-for-virus-research/weeSAM)

and transcripts per million for each target were then generated using eXpress v. 1.5.1 [77]. Sep-

arately, for the consensus generation, reads were mapped using Tanoti v. 9 July 2018 (https://

github.com/vbsreenu/Tanoti/tree/master/src) against a reference BTV-8 genome from the

European BTV-8 outbreak (GenBank accession numbers: JX680447-JX680456). Different soft-

ware was used for the quality control and consensus building steps, as bowtie2 generates meta-

data required for the downstream quality control steps that Tanoti does not.
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Variants from the BTV-8 reference were then called from the Tanoti alignment with lofreq�

v. 2.1.2 [78], with the minimum coverage of the filtering step set to 5 and all other parameters

at their default values. Any variants from the reference with an allele frequency of greater than

0.5 were replaced into their positions in the reference to build a new reference sequence. Reads

were then remapped to this new reference. This process was then repeated either 5 times or

until the reference generated after the process was identical to the reference at the start of the

last round of mapping. Reads were then mapped again against this new reference, and ambigu-

ities were called. A base was called unambiguously if the allele frequency of the dominant allele

was greater than 0.75; otherwise, the base was called ambiguously over all alleles with a fre-

quency of greater than 0.05 using a bespoke script in R (S1 Data). For both of these consensus

sequences, positions were masked with “N”s if the coverage at the site was less than 5 separate

paired-end reads.

Final sequences were processed and annotated for submission to GenBank using an exten-

sion to the BTV-GLUE resource (http://btv-glue.cvr.gla.ac.uk). GenBank accession numbers

for each sample are in S1 Table.

Quality control

A sequence showing evidence of mixed infection or contamination was discarded. Potential

contamination and/or mixed infection were detected by finding sequences that met the follow-

ing two criteria: (i) visible numbers of reads mapping to serotypes other than BTV-8 or the

closely related BTV-18 in segments 2 and 6; and (ii) the presence of regions that, when aligned,

showed large numbers of unique SNPs and ambiguous nucleotides. In total, 8 samples were

discarded due to mixed infection with different BTV strains and/or contamination (7 samples

form the first outbreak and 1 from the second). During quality control, segment 7 from the

sample FRA2008-28 was also removed, as it represented an obvious reassortment from a dis-

tinct BTV strain, but the rest of the sample was preserved. We used GiRaF v. 1.02 [79] and

MrBayes v 3.2.7a [80] on all the samples to test for the presence of less obvious reassortments

between serotypes. Within the GiRaF algorithm, per-segment trees were run for 1,000,000

iterations, with 500,000 iterations discarded as burn-in. All other parameters were left at their

default values. No reassortment was detected, so we opted to use all segments in a single

concatenated phylogenetic tree. However, it should be noted that, as there is little variation in

many segments, our ability to detect reassortment between two distinct but phylogenetically

related strains is correspondingly low.

Phylogenetics

Two separate phylogenetic analyses were performed, a ML analysis performed in PhyML v.

20120412 [81] and a Bayesian analysis performed in BEAST v. 1.10 [82].

ML analysis

To explore the diversity of the outbreaks, we generated a ML tree. All segments were

concatenated into a single sequence, and a phylogeny using the GTR+G+I nucleotide model

was run in PhyML v. 20120412 [83]. All parameters were optimised by ML. The algorithm was

the best of NNI and SPR moves with 10 random starts, with 1,000 bootstraps being performed

on the best tree found. A ML tree containing all sequences was then run using the same set-

tings as the first, and 1,000 bootstraps were performed on the best tree found in those 12 starts.

Given the observed short branch between the first and second outbreaks, this tree was then

rooted at the optimal root found from the tree containing only the sequences from the first
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outbreak, generated under the same settings, as calculated by TempEst v. 1.5.1 [84]. The Tem-

pEst rooting procedure also confirmed clock-like evolution for this dataset.

BEAST analysis

Using known break points, the sequence for each segment was split into the UTR and the first,

second, and third codon positions of the coding sequence. In the ninth and tenth segments,

there are regions with overlapping open reading frames; these were also placed together in their

own partition. Separate evolutionary models, linked across segments, were applied to each of

these partitions. The segments shared a lognormal relaxed molecular clock [85]. Given the diffi-

culty, caused by combinatorial explosion, of model selection when there are multiple partitions,

we performed a pre-analysis model selection protocol. Each segment was concatenated and a

model was chosen for each partition using jModelTest v 2.1.10 [86]. The best model that was

implemented in BEAST v. 1.10 was selected based on Akaike’s Information Criterion corrected

for small sample size (AICc). This was a GTR model for the first codon position, an HKY for

the second, GTR+G with 4 gamma categories for the third, K80 for the UTR, and JC for the

regions with overlapping ORFs. We used a GRMF skyride model for the tree prior [87]. When

the sampling date was not exactly known, the age of the tip was estimated in the MCMC with a

uniform prior over the period of uncertainty. This meant that the sampling date was correctly

controlled for despite the observed discontinuity [88]. All priors were left at their default values

except for the mean of the lognormal distribution for the relaxed molecular clock, which was

given a lognormal (−7.6, 3) prior. In all cases, ambiguous nucleotides were used in the tree like-

lihood. Two trees were run, one containing only the sequences from the 2015 outbreak and

one containing all sequences. The tree containing all sequences was used to reconstruct the

sequence of the ancestor of all the viruses in the second outbreak. BEAST will reconstruct the

sequence even in locations where the majority of sequences show gaps in the alignment. As

such, there were three nucleotides that we removed from the final reconstructed sequence, cor-

responding to locations in the original multiple sequence alignment where all sequences but

one had gaps. The BEAST XMLs for the two analyses described above are available as S2 Data.

Downstream statistical analysis and figure generation

Observed genetic distances from the full ML tree and sampling date were combined in R.

When the exact sampling date was unknown, if the day within the sampling month was

unknown, the date was fixed to the 16th of the month, and when the month was unknown, the

date was fixed to the midpoint of the year. General linear models in base R (glm function) were

fitted to test if the evolutionary rate of the virus was the same between two outbreaks. The mod-

els used a gamma distribution with an identity link. The regression equation for the first model

was as follows: Genetic distance from root ~ Date + Outbreak. The regression equation for the

second model was as follows: Genetic distance from root ~ Date + Outbreak + Date:Outbreak.

After no evidence was found of differential rates between the two outbreaks, the general linear

model without the interaction was run in brms v. 2.10.0 [89]. A normal (0, 10) prior was placed

over the intercept, standard normal priors were placed over all regression coefficients, and a

gamma (0.01, 0.01) prior was placed over the shape parameter. The normalised rank of the evo-

lutionary rate of the long branch was calculated as follows: for each tree in the posterior, rank-

ing the estimated evolutionary rate of each branch from slowest to fastest, extracting the rank

for the long branch, subtracting 1 so that the minimum was 0, then dividing by the number of

branches minus 1, so that a number between 0 and 1 was generated. Figures were generated

using the following R packages: ggplot2 v. 3.2.1 [71], ggtree v. 1.16.6 [90], ggthemes v. 4.2.0

[91], cowplot v. 1.0.0 [92], ggmap v. 3.0.0 [93], viridis v. 0.5.1 [94], tidybayes v. 1.1.0 [95],
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lubridate v. 1.7.4 [96], sp v. 1.3–1 [97], raster v. 3.0–7 [98], maptools v. 0.9–8 [99], rgeos v. 0.5–

2 [100], rgdal v. 1.4–6 [101], sf v. 0.8–0 [102], and PBSmapping v. 2.72.1 [103].

Supporting information

S1 Data. Scripts for the analyses performed in the paper in a zipped folder. BTV8analy-

sis_gz.sh, BTV8analysis.sh, consensusfinal.R, consensusinitial.R, figure.R, finaldepthcorrec-

tion.R, namecorrection.R, and sequencecomparison.R are all used in the consensus sequence

generation. Splits.R breaks fasta files into separate fasta files for codons 1, 2, and 3, the UTR,

and regions of overlapping ORFs in segments 9 and 10. Reconstruction.R puts the recon-

structed ancestor back together again. HockeyStickFInal.R, Map.R, MLTree.R, and BEAST-

Tree.R all generate figures. ORF, open reading frame; UTR, untranslated region.

(CPGZ)

S2 Data. BEAST 1.10 XMLs for the two Bayesian analyses in a zipped folder.

(CPGZ)

S3 Data. Data files used in the analyses in this paper in a zipped folder. AllGMRF_reduced.

trees is the tree posterior for all 164 samples downsampled to 500 trees. MCC.tree is the maxi-

mum clade credibility tree for all 164 samples. PhyMLTreeFinal.tree is the ML tree of all 164

samples. dateswithuncertainty.txt contains the sampling date for each sample. ML, maximum

likelihood.

(CPGZ)

S1 Fig. Phylogenetic tree of 164 BTV-8 samples collected during the European outbreak

between 2006 and 2018 with tip labels. ML tree estimated in PhyML. The scale shows substi-

tutions per site. Clades represented 700 or more times within 1,000 bootstraps are indicated by

a white circle. Samples from the first outbreak are shown with purple circles, while samples

form the second outbreak are shown with an orange circle. BTV-8, bluetongue virus serotype

8; ML, maximum likelihood.

(TIF)

S2 Fig. Timescaled phylogenetic tree of BTV-8 samples collected during the European out-

breaks between 2006 and 2018 with tip labels. Maximum clade credibility time-calibrated

phylogenetic tree generated in BEAST. The tree is scaled in years, with the final sampling date

being October 2018. Clades with posterior support of 0.9 or higher are indicated by a white cir-

cle. Samples from the first outbreak are shown with a purple circle, while samples from the sec-

ond are shown with orange circles. The branches are coloured accordingly to their median

evolutionary rate across the posterior (see heatmap within the figure). BTV-8, bluetongue

virus serotype 8.

(TIF)

S1 Table. Table of all sample IDs and their associated metadata. Metadata corresponds to

sampling time and location, species of isolation, tissue of isolation, whether the sample was

cultured or not, passage history, sequencing method, and GenBank accession numbers.

(XLSX)
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38. Bournez L, Cavalerie L, Sailleau C, Bréard E, Zanella G, Servan de Almeida R, et al. Estimation of

French cattle herd immunity against bluetongue serotype 8 at the time of its re-emergence in 2015.

BMC Veterinary Research. 2018; 14:65. https://doi.org/10.1186/s12917-018-1388-1 PMID: 29499711

39. Nomikou K, Hughes J, Wash R, Kellam P, Breard E, Zientara S, et al. Widespread Reassortment

Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion. PLoS

Pathog. 2015; 11(8):e1005056. https://doi.org/10.1371/journal.ppat.1005056 PMID: 26252219

40. Carpi G, Holmes E, Kitchen A. The evolutionary dynamics of bluetongue virus. Journal of Molecular

Evolution. 2010; 70:583–92. https://doi.org/10.1007/s00239-010-9354-y PMID: 20526713

41. Worobey M. Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influ-

enza A virus. J Virol. 2008; 82(7):3769–74. https://doi.org/10.1128/JVI.02207-07 PMID: 18234791

42. Osborne C, Mayo C, Mullens B, McDermott E, Gerry A, Reisen W, et al. Lack of Evidence for Labora-

tory and Natural Vertical Transmission of Bluetongue Virus in Culicoides sonorensis (Diptera: Cerato-

pogonidae). J Med Entomol. 2015; 52(2):274–7. https://doi.org/10.1093/jme/tju063 PMID: 26336312

43. Nunamaker R, Sieburth P, Dean V, Wigington J, Nunamaker C, Mecham J. Absence of transovarial

transmission of bluetongue virus in Culicoides variipennis: immunogold labelling of bluetongue virus

antigen in developing oocytes from Culicoides variipennis (Coquillett). Comp Biochem Physiol A

Comp Physiol. 1990; 96(1):19–31. https://doi.org/10.1016/0300-9629(90)90036-r PMID: 1975536

44. White D, Wilson W, Blair C, Beaty B. Studies on overwintering of bluetongue viruses in insects. J Gen

Virol. 2005; 86(Pt 2):453–62. https://doi.org/10.1099/vir.0.80290-0 PMID: 15659765

45. Wilson A, Darpel K, Mellor P. Where does bluetongue virus sleep in the winter? PLoS Biol. 2008; 6(8):

e210. https://doi.org/10.1371/journal.pbio.0060210 PMID: 18752350

46. Nowak M, Bonhoeffer S, Hill A, Boehme R, Thomas H, McDade H. Viral dynamics in hepatitis B virus

infection. Proc Natl Acad Sci U S A. 1996; 93(9):4398–402. https://doi.org/10.1073/pnas.93.9.4398

PMID: 8633078

47. Koyuncu O, MacGibeny M, Enquist L. Latent versus productive infection: the alpha herpesvirus

switch. Future Virol. 2018; 13(6):431–43. https://doi.org/10.2217/fvl-2018-0023 PMID: 29967651

48. Cohrs R, Gilden D. Human herpesvirus latency. Brain Pathol. 2001; 11(4):465–74. https://doi.org/10.

1111/j.1750-3639.2001.tb00415.x PMID: 11556692

PLOS BIOLOGY "Frozen evolution": Re-emergence of BTV-8 in Europe potentially caused by accidental release

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000673 April 28, 2020 16 / 19

https://doi.org/10.1016/j.prevetmed.2011.09.013
http://www.ncbi.nlm.nih.gov/pubmed/22018548
https://doi.org/10.1016/j.tvjl.2015.07.032
http://www.ncbi.nlm.nih.gov/pubmed/26371833
https://doi.org/10.1016/j.vetmic.2013.01.010
http://www.ncbi.nlm.nih.gov/pubmed/23462519
https://doi.org/10.1111/tbed.12453
http://www.ncbi.nlm.nih.gov/pubmed/26617414
https://www.gov.uk/government/collections/animal-diseases-international-monitoring
https://www.gov.uk/government/collections/animal-diseases-international-monitoring
https://doi.org/10.1111/tbed.12652
http://www.ncbi.nlm.nih.gov/pubmed/28464486
https://doi.org/10.3390/v11100903
https://doi.org/10.3390/v11100903
http://www.ncbi.nlm.nih.gov/pubmed/31569721
https://doi.org/10.1016/j.vetmic.2014.09.015
https://doi.org/10.1016/j.vetmic.2014.09.015
http://www.ncbi.nlm.nih.gov/pubmed/25306211
https://doi.org/10.1186/s13567-019-0651-1
https://doi.org/10.1186/s13567-019-0651-1
http://www.ncbi.nlm.nih.gov/pubmed/31088555
https://doi.org/10.1186/s12917-018-1388-1
http://www.ncbi.nlm.nih.gov/pubmed/29499711
https://doi.org/10.1371/journal.ppat.1005056
http://www.ncbi.nlm.nih.gov/pubmed/26252219
https://doi.org/10.1007/s00239-010-9354-y
http://www.ncbi.nlm.nih.gov/pubmed/20526713
https://doi.org/10.1128/JVI.02207-07
http://www.ncbi.nlm.nih.gov/pubmed/18234791
https://doi.org/10.1093/jme/tju063
http://www.ncbi.nlm.nih.gov/pubmed/26336312
https://doi.org/10.1016/0300-9629(90)90036-r
http://www.ncbi.nlm.nih.gov/pubmed/1975536
https://doi.org/10.1099/vir.0.80290-0
http://www.ncbi.nlm.nih.gov/pubmed/15659765
https://doi.org/10.1371/journal.pbio.0060210
http://www.ncbi.nlm.nih.gov/pubmed/18752350
https://doi.org/10.1073/pnas.93.9.4398
http://www.ncbi.nlm.nih.gov/pubmed/8633078
https://doi.org/10.2217/fvl-2018-0023
http://www.ncbi.nlm.nih.gov/pubmed/29967651
https://doi.org/10.1111/j.1750-3639.2001.tb00415.x
https://doi.org/10.1111/j.1750-3639.2001.tb00415.x
http://www.ncbi.nlm.nih.gov/pubmed/11556692
https://doi.org/10.1371/journal.pbio.3000673


49. Bangham C. Human T Cell Leukemia Virus Type 1: Persistence and Pathogenesis. Annu Rev Immu-

nol. 2018; 36:43–71. https://doi.org/10.1146/annurev-immunol-042617-053222 PMID: 29144838

50. Kulkarni A, Bangham C. HTLV-1: Regulating the Balance Between Proviral Latency and Reactivation.

Front Microbiol. 2018; 9:449. https://doi.org/10.3389/fmicb.2018.00449 PMID: 29615991

51. Coffin J, Swanstrom R. HIV pathogenesis: dynamics and genetics of viral populations and infected

cells. Cold Spring Harbor perspectives in medicine. 2013; 3(1):a012526. https://doi.org/10.1101/

cshperspect.a012526 PMID: 23284080

52. Mbala-Kingebeni P, Pratt C, Wiley M, Diagne M, Makiala-Mandanda S, Aziza A, et al. 2018 Ebola

virus disease outbreak in Equateur Province, Democratic Republic of the Congo: a retrospective geno-

mic characterisation. Lancet Infect Dis. 2019; 19(6):641–7. https://doi.org/10.1016/S1473-3099(19)

30124-0 PMID: 31000465

53. Lam T, Zhu H, Chong Y, Holmes E, Guan Y. Puzzling Origins of the Ebola Outbreak in the Democratic

Republic of the Congo, 2014. J Virol. 2015; 89(19):10130–2. https://doi.org/10.1128/JVI.01226-15

PMID: 26202242

54. Gautret P, Carrara P, Parola P. Long incubation in imported human rabies. Annals of Neurology.

2014; 75:324–5.
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