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Abstract: Until recently, the roles of plant MADS-box genes have mainly been characterized during
inflorescence and flower differentiation. In order to precise the roles of AGAMOUS-LIKE 12, one of the
few MADS-box genes preferentially expressed in roots, we placed its cDNA under the control of the
double 35S CaMV promoter to produce transgenic walnut tree and Arabidopsis plants. In Juglans sp.,
transgenic somatic embryos showed significantly higher germination rates but abnormal development
of their shoot apex prevented their conversion into plants. In addition, a wide range of developmental
abnormalities corresponding to ectopic root-like structures affected the transgenic lines suggesting
partial reorientations of the embryonic program toward root differentiation. In Arabidopsis, AtAGL12
overexpression lead to the production of faster growing plants presenting dramatically wider and
shorter root phenotypes linked to increased meristematic cell numbers within the root apex. In the
upper part of the roots, abnormal cell divisions patterns within the pericycle layer generated large
ectopic cell masses that did not prevent plants to grow. Taken together, our results confirm in both
species that AGL12 positively regulates root meristem cell division and promotes overall root vascular
tissue formation. Genetic engineering of AGL12 expression levels could be useful to modulate root
architecture and development.

Keywords: transgenic plant; root meristem; cell division; cell differentiation; transcription factor

1. Introduction

Since the discovery in the early nineties of floral homeotic mutants characterized by drastic
developmental changes (i.e., ectopic organ formation), MADS-box genes whose mutations generated
such variants during floral organ differentiation in model species like Arabidopsis, Petunia or Antirrhinum
have become one of the most studied gene family in the plant kingdom [1–3]. Found in every eukaryote
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from yeasts to animals, expression and phylogenetic studies revealed a prominent expansion of the
MADS-box gene family in plant genomes but also highlighted several clades of these transcription
factor (TF) as being preferentially expressed in vegetative structures, widening the range of their
roles during plant development [4–7]. Northern-blots performed with a small set of MADS-box
cDNAs showed that AGL12, AGL14 and AGL17 were preferentially expressed in Arabidopsis roots
suggesting possible roles for these transcription factors in the development of this organ [8]. ANR1
was the first MADS-box gene shown to be involved in root development by mediating lateral root
formation in response to nitrate presence [9]. Later, AGL14 was reported to regulate auxin transport in
the root through direct regulation of PIN1 and PIN4 auxin transporter genes and AGL21 shown to
integrate various stress-related nutritional and hormonal stimuli into auxin signals required for lateral
root primordium initiation and outgrowth [10,11]. Hence, MADS-box genes may be, through their
diversity and redundancy, one the primary TF family to regulate various plant organogenesis programs,
plant stress responses and plasticity by integrating environmental and hormonal signals [12–14].
Deciphering the gene regulatory networks (GRN) controlled by such master genes should provide
a better understanding of various developmental programs of great importance not only in model
species but also in cultivated species and trees.

According to the current climate change predictions, the adaptation and survival abilities of
long living trees are clearly expected to be challenged by increasing numbers of threats (drought
periods, floods, storms, exogenous pest invasions . . . ). As flower and seed sets seem to be already
affected in currently harvested seed orchards by recurrent heat wave and/or drought periods [15,16],
the genetic cues controlling root development and root architecture could represent important factors
to consider in tree breeding and selection programs. Within this framework, AGL12/Xal1 appeared as a
candidate of choice to initiate such transfer from Arabidopsis to one of our species of interest (walnut
tree) in order to evaluate its potential usefulness as starting point for molecular physiology studies
of root development in trees. Indeed, the AGL12 clade is one of the rare single gene branch of the
complete Arabidopsis thaliana MADS-box genes phylogenetic tree [17,18]. In situ mRNA hybridization
and promoter::reporter gene fusions showed that AGL12 was mainly expressed in the central cylinder
of mature roots and in the lateral root primordia but also presented punctual expression patterns in
the primary root meristem, the atrichoblasts of the root epidermis as well as in developing embryos
and flowers [19,20]. Mutant allele phenotype observations and computational analysis of microarray
datasets highlighted some roles of this TF in the regulation of root development, flowering time and
secondary cell wall formation [21]. Finally, AGL12/XAL1 was recently shown to be an important
regulator of cell proliferation within the Arabidopsis root meristem. Xal1 mutants presented lower
cell division rates, abnormal periclinal divisions in the quiescent center and deformed columella
cells leading to short-root phenotypes. Conversely, XAL1 overexpression under the 35S promoter
complemented xal1 mutants and resulted in an increase of both root meristem size and meristematic
cell number in transgenic plants through a positive regulation of PLETHORA 1 (PLT1) and other
important cell cycle genes [22].

Since the functions of the MADS-box genes controlling flower development had mainly been
determined through the study of loss or gain of function mutants, we used the same strategy to
investigate the roles of AGL12 in root development and potentially modify the development and/or
architecture of this organ. In the present study, we placed the Arabidopsis thaliana AGL12 cDNA
(AtAGL12) sequence under the control of the double 35S Cauliflower Mosaic Virus constitutive
promoter (d35S) in order to transform walnut tree and Arabidopsis thaliana. Using both sense and
antisense construct associated to this stronger promoter well-adapted to the study of transgenic
T1 in poplar and walnut tree [23–25], we show here that up and down modifications of AGL12
expression have significant developmental effects in both of these heterologous and homologous
recipient species. In Juglans sp., overexpression of AtAGL12 increased significantly the germination
rates of the transgenic somatic embryos. In addition, morphological aberrations corresponding to early
and partial stages of ectopic root development were regularly observed among the transgenic lines
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overexpressing the transgene. In Arabidopsis, shorter but thicker roots were systematically observed in
T1 plantlets overexpressing AtAGL12. These phenotypes were linked to increased cell division and cell
differentiation patterns within the root apical meristem (RAM) and other reactive parts of the roots
while shoot apical development was positively affected. Taken together, our results suggest that AGL12
represents an interesting candidate to study and engineer root architecture in trees whose root systems
remain very difficult to access for developmental studies and phenotyping.

2. Results

2.1. Walnut Tree Transformation

2.1.1. Walnut Tree Somatic Embryo Transformation

In our hands, up to 75% of false positives had been routinely observed in previous walnut
transformation experiments [25]. We first used the d35S::GUS-intron construct to optimize hybrid
walnut tree transformation and visualize the expression patterns of the d35S promoter used to drive
AtAGL12 expression in walnut somatic embryos. Sixty to 110 kanR secondary embryos could be
isolated from each batch of primary somatic embryos subjected to agrobacteria infection. Addition
of sand during the inoculation step increased by 10% the proportion of GUS+ secondary embryos.
The number of false positives was also significantly reduced by increasing the number of subcultures
on selection medium from three to five. In the end, 45% of the established GIN embryonic lines showed
intense β-glucuronidase activities in every part of the developing embryos (Figure 1a). In mature
embryos, the root apical poles of the embryos were intensively colored (Figure 1b).
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somatic embryo transformation and transgenic line selection results are summarized in Table 1. Out 
of about one hundred transgenic lines analyzed, a great majority presented 1 to 5 T-DNA insertion 
events revealed by Southern-dot- and Southern- blot analysis. Only a few lines showed more complex 
patterns involving ten or more insertions (not shown). 
  

Figure 1. Walnut tree somatic embryo transformation. (a) Expression of d35S::GUS in a transgenic early
cotyledonary stage walnut somatic embryo (GIN5 line). (b) Expression of d35S::GUS in a mature GIN1
somatic embryo. (c) Patchy expression of pAtAGL12::GUS in the cotyledons of mature somatic embryo
(PAG75 line). (d) Expression of pAtAGL12::GUS in the root of a germinated somatic embryo (PAG15
line). Scale bars: 2.5 mm in (a); 5 mm in (b–d).

PAG, S, and AS embryonic lines were obtained through this optimized protocol. Walnut tree
somatic embryo transformation and transgenic line selection results are summarized in Table 1. Out of
about one hundred transgenic lines analyzed, a great majority presented 1 to 5 T-DNA insertion events
revealed by Southern-dot- and Southern- blot analysis. Only a few lines showed more complex patterns
involving ten or more insertions (not shown).
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Table 1. Walnut tree transformation and transgenic line selection. The kanamycin resistant (KanR)
Juglans sp. embryogenic lines growing after 5 subcultures on selective medium were further analyzed
by molecular means to confirm their transgenic status. Only the lines showing two positive PCR
amplifications of different T-DNA targets (nptII and GUS or AtAGL12) from their genomic DNA were
further considered (PCR+ lines). When relevant, the numbers of line showing positive GUS staining
are given (GUS+). In the end, the transgenic lines selected for phenotypic analysis are listed.

Transformation
Constructs

KanR Line
Number

PCR+ Line
Number

GUS+ Line
Number

Transgenic Lines Selected
for Phenotypic Analysis

d35S::GUS Intron 60 27 (45%) 26 (96%) GIN: 1, 4, 5
pAtAGL12::GUS 70 27 (38%) 15 (55%) PAG: 1, 15, 16, 46, 48, 75

d35S::AtAGL12S 109 45 (41%) NA 1 S: 53, 55, 59, 64, 69, 76, 77,
101, 105, 109

d35S::AtAGL12AS 59 30 (51%) NA 1 AS: 20, 27, 29, 45
1 Not applicable.

2.1.2. The Promoter of AtAGL12 is Functional in Walnut Tree Somatic Embryos

The activity of the Arabidopsis thaliana AGL12 promoter fused to the GUS reporter gene was
investigated during walnut tree somatic embryo development (PAG lines). In well-developed transgenic
embryos, only punctual β-glucuronidase activities were regularly observed in the cotyledons and the
outer tissues of the embryonic root (Figure 1b,c). Once converted into plantlets, GUS activities could
not be observed due to instant and massive darkening of the root tissues in the reaction solution (not
shown). These strong oxidation reactions could be linked to important flavonoid and naphtoquinone
accumulation in developing roots in this species [26,27].

2.1.3. AtAGL12 Activates the Germination of Walnut Tree Somatic Embryos

We then addressed the roles of AGL12 on root development by overexpressing its cDNA in sense (S)
or antisense (AS) orientations in walnut tree. The AtAGL12 S and AS constructs were used to generate
transgenic walnut tree somatic embryo lines (Figure 2). About 30 S and AS kanR lines were initially
selected in order to be sub-cultured along with the wild-type I1C line and the other controls (GIN and
PAG lines). Observations performed on these lines over a six months period (10 to 12 subcultures)
revealed that somatic embryos of the S55, S59, S69, S77, S101 and S105 lines (Figure 2a) presented
relatively higher spontaneous germination rates than those of the GIN, PAG AS and WT embryos
(Figure 2b). Hence, ten representative S lines (Table 1) presenting high, medium and low germination
abilities were selected for further analysis and confirm the effects of AtAGL12 overexpression on the
development of the embryonic root.
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Figure 2. AtAGL12 overexpression in walnut somatic embryos and plantlets. (a) Accelerated
spontaneous germination of S101 somatic embryos overexpressing AtAGL12 in sense orientation
after 3 weeks of horizontal culture. (b) Wild-type I1C embryos sampled at the same time as control.
Note the earlier initiation of lateral root development among the S embryos; (c) conversion of walnut
somatic embryos into plantlets. S109 transgenic plantlets (left) and wild type I1C control (right) were
photographed after 5 weeks of development in individual tubes. Note the much more important root
to shoot ratios for the S plantlets; (d) variable micropropagation and shoot development abilities of
the transgenic S lines: the S69 line (left) presenting high AtAGL12 expression levels is characterized
by poor shoot apical development and important callus development. Conversely, the S64 line (right)
characterized by a low transgene expression levels presents a normal shoot apical development;
(e) spontaneous germination rates of representative walnut somatic embryo S, AS, PAG, GIN and wild
type I1C lines were scored after 3 weeks of culture. For each line, the numbers of germinated somatic
embryos were determined twice (experiment 1 and 2, n = 3 × 10). (f) Induced germination rates were
scored after the ablation of the cotyledons and 2 additional weeks of vertical culture (for a total of five
weeks of culture). The average germination percentages observed for each S (closed triangles, bold
characters), transgenic control (AS, GIN and PAG lines, open triangles) and the wild-type I1C lines
(open circle, bold characters) are reported for both experimental repeats and culture times; (g) relative
expression levels of AtAGL12 detected in mature non-germinated embryos of the selected walnut
transgenic S lines revealed by northern-blot. A walnut Rib60S cDNA probe was used as reference.
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In vitro spontaneous and induced germination abilities of these lines were determined after 3 and 5
weeks of culture and compared to those of the WT, GIN, PAG and AS control lines (Figure 2e,f). At both
stages, the germination and development abilities of the AS embryos did not differ significantly from
those of the I1C, GIN and PAG lines (Student’s test, 0.15 < p < 0.94) suggesting no evident interferences
between the AS AtAGL12 and the endogenous AGL12 mRNAs in this recipient species (Supplemental
Figure S1). After 3 weeks of culture, the S lines showed significantly higher germination rates visualized
by the spontaneous development of primary embryonic roots (Figure 2e–g). At this stage, the embryos
of the S lines had germinated at an average of 33.5% ± 5.2% compared to 12.5% ± 11.6% and 15.7 ± 3.2%
for the I1C and the other transgenic control lines (AS, PAG and GIN) (Student’s test, p = 0.007 and
2.6 × 10−7, respectively). Higher germination rates were also observed for the S embryos after being
submitted for 2 additional weeks to a standard germination induction protocol including the excision
of the cotyledons and vertical growth of the embryonic axis (Figure 2f). At the end of the fifth week of
culture, 59.2% ± 5.8% of the embryos of the S lines germinated whereas only 22.5% ± 16.0% of the I1C
embryos and 39.0% ± 6.9% of the transgenic controls developed roots (Student’s test, p = 7.1 × 10−5

and 2.3 × 10−5, respectively). Among the S lines, S64 and S53 presented systematically the lowest
germination rates whereas S77 and S105 peaked with 70 to 80% of root production.

Lateral roots seemed to appear faster among the S embryos (Figure 2a). However, even if
10.2% ± 4.1% of the primary roots that had grown after 3 weeks of culture showed at least one
lateral root for these lines, this value was not significantly different from those observed for the I1C
(4.0% ± 4.9%, Student’s t test, p = 0.4) and the transgenic control lines (5.6% ± 4.5%, Student’s test,
p = 0.2). Conversely after 5 weeks, significantly higher percentage of I1C germinated embryos presented
lateral roots (56.7% ± 29.1%) compared to the S (22.7% ± 5.2%, significantly different, Student’s t
test, p = 0.002) or the other transgenic embryos (18.7% ± 6.8%, significantly different, Student’s t test,
p = 0.006). This tendency was confirmed at the end of the fifth weeks of the germination experiments as
the number of lateral roots produced per rooted embryo was significantly higher for the I1C embryos
(3.6% ± 1.1%) compared to the S (2.2% ± 0.2%, Student’s t test, p = 0.008) or the other transgenic
embryos (2.2% ± 0.3%, Student’s t test, p = 0.03).

The development of the plantlets obtained after somatic embryo conversion was further analyzed
for the different lines. After a month and a half of culture, the root systems of the S plantlets appeared
to be more developed while their shoots were shorter and their leaves atrophied (Figure 2c). This
asymmetric development was confirmed by dry weight measurements and the calculation of individual
root/shoot ratios (Table 2). Reduced shoot development among the S lines presenting moderate to high
levels of transgene expression was also observed during classical micropropagation (Figure 2d). In the
end, no plant could ever be recovered and transferred in the greenhouse for any of the S lines.

Table 2. Transgenic walnut plantlet development. Leaf numbers, lengths, root and shoot dry weights
and root/shoot ratios (R/S) were obtained for each plantlet. For statistical analysis, the data were
gathered according to the types of line they originated from: S (S lines), WT (I1C wild-type) and other
types of transgenic lines (GIN, PAG and AS). The total number of plantlets analyzed for each type of
line is indicated (n).

Type of
Line n Leaf

Number
Stem Length

(mm)
Root length

(mm)
R/S

(length)
Stem dw

(mg)
Root dw

(mg) R/S (dw)

S 19 1.6 ± 0.9 * 9.5 ± 1.6 * 53.8 ± 11.1* 6.8 ± 1.9 * 5.7 ± 1.4 * 52.6 ± 12.7 * 12.0 ± 4.1 *
WT 20 3.0 ± 0.9 16.7 ± 5.1 30.6 ± 7.6 2.8 ± 1.1 11.4 ± 3.5 30.9 ± 8.9 3.6 ± 1.0
AS 23 1.9 ± 0.9 11.7 ± 4.4 39.0 ± 8.5 4.8 ± 1.4 * 10.4 ± 4.2 45.0 ± 11.7 7.2 ± 3.6

GIN 8 1.0 ± 1.1 * 8.6 ± 2.0 58.3 ± 18.0 * 6.9 ± 1.7 * 7.8 ± 2.5 54.4 ± 16.5 * 9.4 ± 6.2 *
PAG 13 2.2 ± 1.2 16.5 ± 6.2 65.2 ± 17.3 * 8.6 ± 6.3 * 12.2 ± 4.3 59.2 ± 15.2 * 8.4 ± 6.3

* significantly different from non-transgenic I1C (Student’s t test, p < 0.05).

In accordance with a walnut (wAGL12, accession number MF327581) and Arabidopsis AGL12 cDNA
sequences comparison (Supplemental Figure S1), AthAGL12/wAGL12 cross hybridizations or probing
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I1C walnut genomic DNA with AtAGL12 cDNA did not reveal any hybridization pattern even at low
stringency. Hence, transgene expression levels were specifically detected by northern-blot in each of
the phenotypically selected S lines (Figure 2g). Embryos of the S64 and S53 lines showed the lowest
relative expression levels of AtAGL12 while those of the S55, S105, S59 and S109 presented the highest.
Overall, the intensity of hybridization correlated well with the germination rates observed for the S
lines (Figure 2g) suggesting that the biological effects observed on the rooting and developmental
abilities of these lines (i.e., spontaneous germination, shoot atrophy) are effectively linked to AtAGL12
overexpression. Conversely, antisense overexpression of AtAGL12 did not affect the development of
walnut AS embryogenic lines as its sequence did not apparently interfere with endogenous AGL12
mRNAs (Supplemental Figure S1).

2.1.4. AtAGL12 Overexpression Causes Ectopic Root-like Structure at Different Stages of Walnut Tree
Somatic Embryogenesis

In addition to increased germination abilities, some unique developmental characteristics could
be observed on a regular basis during the propagation and the maintenance of the S embryonic lines
(Figure 3). First, compared to normally germinating WT I1C embryos (Figure 2b), some germinating
S embryos were characterized by the development of multiple primary roots (Figure 3a). Fourteen
of these cases were precisely accounted for during the germination experiments involving 600 S and
control embryos (I1C, GIN, PAG and AS), respectively. Supplementary roots were only observed
among the S55, S69, S76, S77, S101, S105 and S109 lines and up to four roots (fused or not) could be
counted per embryos. The second kind of developmental abnormalities were observed throughout
S somatic embryo development. The normal repetitive secondary embryogenic process allowing
the indefinite in vitro maintenance and propagation of the WT I1C embryonic line is presented in
Figure 3b. Commonly observed among the S embryos, these abnormalities corresponded to ectopic
root-like structures developing on the shoot apical part of immature or mature somatic embryos
(Figure 3c,d, respectively). Finally, such structures were also and much more frequently observed
on the surface of developing cotyledons where they grew in clusters that could cover up a half cm2

(Figure 3e). Histological observations of these outgrowing structures showed important similarities
with a normal root apex with the exception that they lacked well-defined meristematic zones at
their tips (Figure 3f). Indeed, we never managed to get these structures to differentiate further into
well-formed roots after being dissected and directly sub-cultured on DKW medium supplemented
with various growth regulators.
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Figure 3. Developmental abnormalities linked to AtAGL12 overexpression in walnut. (a) S77 somatic
embryo (SE) showing two fused primary roots after 3 weeks of culture. SE presenting fused primary
roots were only observed among S embryogenic lines. Scale bar: 1 cm; (b) normal repetitive secondary
somatic embryogenesis process in wild-type walnut tree I1C line. The picture shows different stages of
SE emerging from the cotyledon (Co) of a primary embryo. The arrow points to the thin basal parts of
the secondary embryos that develop from single activated epidermal cells. Scale bar: 1 mm. (c) Ectopic
root-like structure (arrow) developing on the apical side of a globular embryo (S77) in place of a regular
shoot apex. No cotyledon will form. As in 1b, note the small size of the base of the embryo linked to its
single cell origin within the primary cotyledon’s epidermis. When such root-like structures develop
directly from activated cells within the epidermal layer, they present a thicker base and need to be
cut of the cotyledon in order to be separated from it (T-shaped symbol as in 1e). Scale bar: 0.5 cm;
(d) root-like structure developing on the apical part of mature S77 somatic embryo. Excision of the
cotyledon reveals the base of the structure originating at the cotyledon/shoot apical meristem junction
(arrow). Co: cotyledon, ACo: ablated cotyledon, R: embryonic root pole. Scale bar: 1 cm; (e) cluster
of ectopic root-like structures emerging from activated epidermal cells (S76). Clusters of secondary
somatic embryos can be observed on the same initial explant (arrow). Scale bar: 0,5 cm; (f) longitudinal
section of an ectopic root-like structure (S76). In the central axis of these structures one can observe
the initiation of formation of a vascular bundle (arrow) in the absence of a clearly defined apical
meristematic zone. Scale bar: 500 µm.
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2.2. AtAGL12 Activates Cell Division and Differentiation in Arabidopsis thaliana Root Meristem

Since AtAGL12 overexpression led to dramatic developmental and morphological modifications
of walnut somatic embryogenesis, the same constructs were used to transform Arabidopsis (Figure 4).
In this homologous transgene recipient system, both S and AS constructs were expected to be effective.
Indeed, upon germination every kanR T1 S seedlings (Figure 4a) grew larger and presented much
shorter but thicker roots than WT controls (Figure 4b). Conversely, AS plantlets (Figure 4c) were smaller,
developed slowly, and presented small root systems suggesting successful interferences between the
overexpressed AS sequence and endogenous AGL12 mRNAs.
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Figure 4. AtAGL12 overexpression in Arabidopsis thaliana. (a) Sense (S) T1 kanR plantlets 10 days
after germination; scale bar: 1 cm; (b) wild-type (WT) plantlets 10 days after germination; scale bar:
1 cm (c) Antisense (AS) T1 kanR plantlets 10 days after germination; scale bar: 1 cm; for each plantlet,
an arrow points to the apical root tip. (d) Schematic longitudinal section of a WT Arabidopsis root tip
adapted from [28]. The main cell types forming the root apical meristem are indicated in different
colors: RC: root cap (grey-blue); Ep: epidermis (dark blue); Co: cortex (light blue); E: endodermis
(purple-grey), Pe: pericycle (purple); St: Stele (orange). In the stem cell niche (SCN, encircled in red) of
the meristem, the quiescent center cells (QC, red with asterisks) are surrounded by a small number of
initial cells whose descendants will further divide and differentiate. The main areas of the meristem
affected by AtAGL12 overexpression are encircled by dashed lines (see 1f and 1g). Scale bar: 20 µm.
(e) Longitudinal section of the primary root tip of a S plantlet presenting two fused roots. In S plantlets,
the apical root meristematic zone (M) is enlarged and the stele (St) wider. RH: root hair. Scale bar:
100 µm. (f). Longitudinal section of a S plantlet root tip. The meristematic areas principally affected by
AtAGL12 overexpression are encircled (dashed lines). Compared to WT (1d), the basal SNC area of the
meristem is wider, characterized by a greater number of meristematic cells. Scale bar: 20 µm. (g) Closer
view of the 1f root tip focused on the SNC area. Scale bar: 10 µm; (h) longitudinal section of the upper
part of the root of a S plantlet showing numerous cell divisions resulting in the formation of abnormal
cell masses around the stele. The presence of adjacent trichoblasts (*) developing root hairs (RH) can
be observed. Ep: epidermis, Co: cortex, St: stele. Scale bar: 50 µm. (i) Closer view of the cellular
protuberance. The arrows point to closely occurring periclinal cell divisions within the pericycle layer
(Pe). Further, both anticlinal and periclinal cell divisions explain the important outgrowth of these
structures. Scale bar: 20 µm.

Due to the important changes affecting the sizes of both the roots and the apical parts of S
plantlets whose transfer could be of major interest in trees, we focused our analysis on positively
affected S transgenic plants. Three S and WT plantlets were sampled for histological comparisons
while every other S and AS T1 were transferred to the greenhouse for T2 production and further
molecular and phenotypic characterizations. In our hands, WT roots were too fine to obtain any
satisfactory longitudinal sections of their apex but cross sections of WT and S roots are presented in
Supplemental Figure S2. Yet, compared to a schematic longitudinal representation of the well-described
WT Arabidopsis root apex (Figure 4d, adapted from [28]), longitudinal sections of S roots provide clear
views of the dramatic changes induced by AtAGL12 overexpression in T1 plantlets (Figure 4e,f).

At low magnification, observations of the primary roots of 3 weeks old S plantlets revealed
drastically enlarged RAM leading to an important increase of the number of cell rows forming the stele
(Figure 4e,f). In S plantlets, this number varied between 17 to 32 on the two types of sections observed
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(transversal and longitudinal) whereas only eight to 10 cells were recorded in WT transverse sections
(Supplemental Figure S2). The numbers of cell layers forming the outer tissues of the S roots (i.e., cortex
and epidermis) did not appear to be affected by AtAGL12 overexpression. Closer observations of S
root tips revealed important and unorganized cell division patterns in the basal part of the meristem
leading to less defined cell lineage patterns in its upper part corresponding principally to the stele
differentiating zone (Figure 4f). Whereas the root cap does not appear to be affected in S plants, the
cells within the SCN area are small, present dense cytoplasm and small vacuoles related to their
meristematic status (Figure 4g). Interestingly, increased cell division activity was also observed in the
upper part of S roots leading locally to the formation of ectopic cell masses around the stele (Figure 4h).
In these structures, the most internal cell divisions patterns were localized within the pericycle cell
layer of the root (Figure 4i). Thereafter, periclinal and anticlinal cell divisions seem to be involved in
their expansion. These overgrowing structures could correspond to enlarged or merging meristematic
areas linked to AtAGL12 overexpression that might affect the early stages of lateral root formation in
the upper part of the roots. In this part of the roots, slighter alterations could also be noticed within the
epidermis layer where adjacent trichoblats developing root hairs where regularly observed (Figure 4h).

In the end, both of these major structural variations affecting the root apical meristem and the
upper part of the roots did not prevent the growth of the S plantlets. Conversely, S plants grew larger
during the whole in vitro culture period (Figure 4a). In the greenhouse, S plants continued to grow
faster than WT while AS plants remained much smaller. Both S and AS plants produced flowers and
seeds but no differences could be observed between T2 S, AS transgenic lines and WT suggesting a
systematic post-transcriptional repression of transgene expression in homozygous plants.

3. Discussion

Because of their relatively simple structure consisting of three main concentric tissue layers
(epidermis, cortex and stele), roots represent an attractive model to study cell fate and cell differentiation
within a single organ [29]. As for shoots, root development results from the activation of intricate
morphogenetic programs that are mainly unraveled through studies performed on model species
Arabidopsis thaliana. GRN governing the establishment of the primary and lateral root meristems,
the radial tissue patterning and the basal apical differentiation axis have been analyzed through
the characterization of important TFs and the study of developmental mutants, many of them
being linked to hormonal and nutrient metabolism [30–33]. As a potential target to increase plant
biomass production or adaptation abilities, root development has already been subjected to genetic
engineering [34]. However, many of these attempts lead concomitantly to important reductions of
shoot growth [35].

In this work, we prospected the use of MADS-box genes to modify root development and analyze
their potential roles during the growth of this organ. AGL12, present as a single clade member
preferentially expressed in Arabidopsis roots, appeared to be an attractive candidate for these purposes.
Indeed, AGL12/XAL1 had already been shown to be an important regulator of cell proliferation in
Arabidopdis root apex [21,22] and we had previously shown that the overexpression of AtAGL12
promoted the aggregation of Catharantus roseus suspension cells into parenchyma-like structures and
the production of alkaloids [36]. In the present study, we used the same strategy to overexpress
AtAGL12 cDNA in sense and antisense orientations in heterologous (Juglans sp.) and homologous
(A. thaliana) recipients in order to amplify some of its effects on root development.

In Juglans sp., high expression levels of AtAGL12 correlate well with increased germination abilities
of the S embryos. Our results suggest that an expression threshold of this single heterologous TF appears
to be sufficient to activate cell division in both apical embryonic meristems leading to an increased root
biomass production but also to a disorganization of the shoot apex meristem preventing the production
of any plantlet (Figure 2c). This phenomenon was observed in most transformation experiments
aimed at improving root development [35]. In our walnut S lines, the shoot apical disturbances might
be explained by inefficient post-transcriptional regulation process of the transgene (i.e., miRNAs)
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since the overexpressed heterologous AtAGL12 would not present enough sequence similarities with
the corresponding endogene (Supplemental Figure S1). Indeed, such apical abnormalities were not
observed in Arabidopsis S T1 plantlets (Figure 4a) in which apical post-transcriptional regulation of the
overexpressed homologous transgene sequence would be effective. Upon germination, the roots of the
S walnut somatic embryos seemed to grow faster as visualized by the precocious appearance of lateral
roots in some lines (Figure 2a). However, the data collected overall on the selected S lines showed that
the differences concerning lateral root development were not significant after 3 weeks of germination
and even reversed after 5 weeks. This result could be explained by a progressive reduction of root
growth rates due to the lack of shoot development or to environmental competition since much more S
embryos had germinated in each Petri dish compared to the wild-type. Finally, another explanation
would imply a negative effect of AtAGL12 expression on lateral root initiation. To test these possibilities
and avoid the negative effects of AtAGL12 constitutive overexpression in the shoot apex, we tried to
graft in vitro wild-type shoot tips explants onto S line rootstocks in order to produce chimeric plants
and study their development in the greenhouse [37]. Unfortunately, walnut tree micrografting was
unsuccessful in our hand. However, the use of genetically engineered rootstock for enhanced AGL12
expression could be transferred to other “transformable” horticultural species or poplar. In the end,
the use of root-specific or artificially inducible promoters could also provide interesting perspectives to
specifically alter AGL12 expression levels in roots without any major disturbances of the shoot apical
part. The development of such transgenic plants or trees could provide interesting models to study the
impacts of the root systems on biomass production, carbon allocation, shoot/root ratios as well as on
drought or wind resistance in the general context of climate change.

Interestingly, numerous developmental abnormalities corresponding to the development of
root-like structures were observed in the transgenic Juglans sp. somatic embryo lines overexpressing
AtAGL12. Their formation at different places on the embryos or cotyledons appears coherent with the
d35S expression patterns observed throughout walnut somatic embryo development (Figure 1a,b) and
may be explained by local cell division activations at different stages of the secondary embryogenesis
process and partial reorientations of this developmental program toward root development. In Juglans
sp. normal secondary embryogenesis process, clusters of young somatic embryos arise through
perpendicular divisions of single cotyledonary epidermal cells (Figure 3b) [38]. In S lines, the
overexpression patterns of AtAGL12 placed under the control of the d35S promoter may interfere
locally with these morphogenetically activated surface cells to deviate their development from the
embryonic program toward the production of root-like structures well-anchored to the cotyledon
(Figure 3c,e). Then, during early embryo development, the same type of morphogenetic interferences
could affect the apex of globular stage embryos to induce the formation of pointy embryos that
consequently, as regular somatic embryos, are easy to separate from the cotyledon they originated
from (Figure 3c). Later, a partial reprogramming of meristematic cells at the cotyledon/embryo
axis junction would explain the formation of the ectopic structures developing on the apex of more
mature transgenic embryos (Figure 3d). Despite their important structural resemblance to roots, the
development of these ectopic structures was never sufficiently reoriented to lead to the formation of
a functional root meristem (Figure 3f) as observed for PLETHORA mutants [39]. Indeed, the only
supplementary functional roots that developed in the S walnut tree embryogenic lines originated
from developmentally determined root apex of germinating transgenic S embryos (Figure 3a). Thus,
the overexpression of AtAGL12 in Juglans sp. does not appear to allow by itself a complete homeotic
conversion of embryogenetically programmed cells into functional root apex but rather induce the
activation of cell division and partial cell differentiation process in meristematic or developmentally
activated cells. Indeed, both of these roles were confirmed in Arabidopsis thaliana transgenic plants.

In Arabidopsis, the ectopic overexpression of AtAGL12 resulted also in majorly altered phenotypes
for both S and AS T1 transgenic plantlets (Figure 4). AS plantlets (Figure 4c) presented much shorter
roots and were smaller than the wild-type plants (Figure 4b). These phenotypes are consistent with
the Xal1/AGL12 mutants described in [20]. Indeed, antisense RNA or knock-out mutations are more
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likely to affect the expression of genes present as single copy in the genome like AGL12. Conversely, S
plantlets (Figure 4a) grew faster and produced larger leaves while their roots were shorter but much
thicker due to important activations of cell division both in the root apical meristem and in the upper
parts of the root. At both locations, the induced cell divisions lead to major increases in cell number
within the reactive meristematic structures (Figure 4e–i). These observations are in accordance with
previous results concluding that AGL12 was a strong regulator of cell division in Arabidopsis roots
and C. roseus cultured cells [20,36]. In the end, the enhanced apical shoot growth observed in the
Arabidopsis S plants might be explained by an indirect effect of AtAGL12 overexpression in the roots
whose enlarged vascular bundle may improve nutrient transfer to the shoot or by direct activation of
cell divisions within the shoot and leaf tissues. AGL12/XAL1 has recently been shown to activate the
expression of Plethora 1 (PLT1) and other important cell cycle genes in the root meristem [22]. Since
AGL42 has been shown to be a specific marker of the quiescent center [40], one could also assume
that the overexpression of AtAGL12 could eventually interfere with this MADS-box TF or lead to
its replacement within the MADS-box transcription regulatory complexes formed in this particular
area of the transgenic roots. Interestingly, transgenic lines overexpressing AGL12/XAL1 under the
35S promoter showed delayed cell differentiation as their root hairs appeared further away from the
root tip [22]. In our study based on the use of d35S based constructs, quite opposite phenotypes are
obtained (Figure 4). S plantlets produced much shorter functional roots whose overall structuration
suggests both activated cell division and cell differentiation rates in the transgenic root tips. In the
epidermis of S plantlets, the differentiation of root hairs could be noticed in the near vicinity of the
RAM (Figure 4e). Such ectopic cell differentiation patterns affecting the epidermis layer were also
be observed in the upper part of the transgenic roots where adjacent trichoblasts produce root hairs
(Figure 4h). Compared to the observations previously reported in transgenic Arabidopsis [22], the S
and AS phenotypes we observe could certainly result from stronger overexpression and inactivation
of AtAGL12 due to the use of the d35S promoter. Indeed, the upper parts of transgenic S roots
obtained with this stronger promoter are also characterized by the development of ectopic cell masses
(Figure 4h) that share important morphological and developmental similarities with the abnormal
“root primordial masses” (RPMs) induced in pea seedlings roots upon cultivation with different auxin
transport inhibitors [41,42]. In S plantlets roots, the formation of such RPMs lacking complete apical
differentiation appears to be linked to the activation of pericycle cells as a consequence of AtAGL12
overexpression. In wild-type plants when lateral roots are normally formed, only a few pericycle
cells located close to the vascular xylem poles are activated. These activated xylem pole pericycle
cells undergo first periclinal and then anticlinal divisions to form small lateral root primordia that are
regularly separated due to an oscillatory gene expression system [43]. The same kind of development
can initially be observed in the RPMs developing in S roots (Figure 4i, arrows) and in treated pea
roots [41]. In both cases, relatively larger rows of pericycle cells adjacent to xylem vessels appear to be
activated resulting in enlarged responsive areas. Anticlinal and periclinal divisions would then lead to
the thickening of these structures that could correspond to abnormally enlarged or merging lateral root
primordia expanding around the stele. The use of reporter constructs driven by xylem pole pericycle
cell and lateral root primordia specific promoters could allow to verify this hypothesis [44,45].

In wild-type Arabidopsis root, the expression of AGL12/Xal1 has been reported in the primary
root meristem, the central cylinder, the lateral root primordia originating from the pericycle and the
atrichoblasts within the epidermis [19,20]. In the present study, one can notice that the overexpression
of AtAGL12 also appears to affect each of these root tissues including the epidermis (Figure 4h).
So far, AGL12 is thought to be an upstream regulator of SOC, FLOWERING LOCUS T and LFY during
Arabidopsis flower induction while involved in the regulation of cell divisions and secondary cell wall
synthesis in the root [20–22]. In C. roseus, its overexpression affected cell division and aggregation as
well as alkaloid production [36]. Its involvement in these different aspects of plant physiology places
this TF at the crossroad of different pathways that remain to be elucidated in terms of interacting
partners as well as downstream targets. In Arabidopsis, the results of large scale two-hybrid yeast
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experimentations superposed to microarray expression patterns highlighted specific interactions
between MADS-box proteins marked by the formation of tetrameric transcription regulatory units in
various tissues [46,47]. According to these data, AGL12 could interact with AGL21 and/or AGL16 to
regulate different downstream processes in roots such as meristem cell division and differentiation,
secondary cell-wall synthesis, secondary metabolite production and/or lateral root initiation. Thus,
AGL12 and other MADS-box TFs could lie upstream of or interfere with various GRN regulating the
specific differentiation process that are being established in roots [30,48–51].

In conclusion, our results confirm the prominent role of AGL12 in root meristem cell division and
differentiation processes in Juglans sp. and Arabidopsis. Transcriptomic analysis of the genes affected
by AGL12 misregulation should provide us with a clearer view of its role during root development
and allow us to determine the corresponding GRN linked to the drastic phenotypic alterations
we have obtained. AGL12 and other “root-specific” MADS-box genes could represent interesting
candidates to engineer root development or root architecture in plants, rootstocks or trees. Beyond any
biotechnological aspects concerning the production and the use of genetically modified organisms,
discovering the GRN linked to root development through the analysis of master genes like AGL12
in GM trees should lead to the determination of yet unexplored genetic markers linked to their root
foraging abilities. Until now, tree breeding programs have mainly been based on the selection of
apical traits (e.g., disease resistance, trunk growth and straightness, branching, wood quality, bud set
. . . ). In fine, the characterization of such genetic markers in Populus or Eucalyptus sp. might be of
great interest for carbon allocation, wood biomass production and drought resistance studies in these
tree models.

4. Materials and Methods

4.1. Plant Materials

Juglans nigra x J. regia somatic embryos (line I1C) maintained through repetitive secondary
embryogenesis were sub-cultured every 3 to 5 weeks on hormone- and L-glutamine-free DKW medium
as previously described [52,53]. Arabidopsis thaliana (Col-0) were cultured in peat pots under standard
greenhouse conditions (23 ◦C, photoperiod 16 h, regular watering).

4.2. Binary Vector Construction

Arabidopsis thaliana AGL12 cDNA (clone pSR102, accession U20193) and promoter sequence (clone
pSR212 derived from Clontech pBI101.1) were kindly provided by Prof. Martin Yanofsky (U.C. San
Diego). AtAGL12 full-length cDNA sequence was excised from the PCR 2.1 vector (Invitrogen) by
EcoRI digestion and inserted into pLBR19 under the control of the double 35S Cauliflower Mosaic
Virus promoter [23,25]. Expression cassettes containing AtAGL12 cDNA in sense (S) or antisense
(AS) orientation were selected through asymmetric XbaI restriction digestion and transferred into the
pBINPLUS binary vector carrying nptII sequence conferring kanamycin resistance [54]. Binary plasmids
with AtAGL12 promoter::GUS (pSR212) and d35S::GUS-intron (pKYGIN) fusions were added to the
study. The four constructs (d35S::AtAGL12S, d35S::AtAGL12AS, pAtAGL12::GUS and d35S::GUS-intron)
were then transferred by triparental mating into Agrobacterium (C58/pMP90).

4.3. Plant Transformation

Genetic transformation of walnut tree I1C somatic embryos was performed according to [25]
with the following modifications. For each Agrobacterium strain, 50 to 75 white cotyledonary embryos
(3–5 mm) were immersed for 2 h in 25 mL of bacterial suspension (2.5 × 108 cfu/mL, 200 rpm) in the
presence of acetosyringone (100 µM) and sterilized Fontainebleau sand (2 g). The embryos were then
recovered and plated onto solid DKW medium supplemented with acetosyringone (100 µM). After
48 h the embryos were collected, rinsed 3 times in 50 mL of liquid DKW medium (20 min, 200 rpm)
supplemented with cefotaxim (500 mg/L) and ticarpen (250 mg/L), and placed on solid DKW medium
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supplemented with the same antibiotics. After one week, the embryos were transferred onto solid
DKW medium only supplemented with kanamycin (500 mg/L). After 4 subcultures (15 days each) in
the presence of kanamycin, emerging secondary embryos were sampled and individually sub-cultured
5 more times on kanamycin-supplemented medium to establish kanamycin resistant (kanR) embryonic
lines. Preliminary molecular screens, gus staining and/or phenotypic observations were then performed
to confirm their transgenic status and coarsely evaluate their spontaneous germination abilities. At the
end of this selection process, 10 to 12 transgenic lines obtained from each construct (d35S::AtAGL12S,
d35S::AtAGL12AS, pAtAGL12::GUS, and d35S::GUS-intron) were selected, and thereafter routinely
cultivated only on antibiotic-free medium, and further referred in the text as S, AS, PAG, and GIN
lines, respectively.

Arabidopsis thaliana transformations were realized through the “floral-dip” method [55]. Seeds
obtained from treated inflorescences were surface sterilized, imbibed for 48 h at 4 ◦C and sown on MS
medium [56] supplemented with kanamycin (100 mg/mL) in a growth chamber (16 h photoperiod,
200 µmol photons m/s, 15 ◦C/20 ◦C night/day, 70% relative humidity). Two days after germination
(DAG), green kanR T1 plantlets were selected, transferred on the same medium lacking the selective
antibiotic for phenotypic observations and transferred to the greenhouse to produce T2 seeds. Imbibed
WT seeds were directly sown on kanamycin free medium.

4.4. Molecular Biology

Germinated and mature non-germinated somatic embryos (250 mg) were sampled, frozen in liquid
nitrogen, lyophilized, and used for DNA and RNA extractions [53]. RNA obtained from germinated
wild-type (I1C line) somatic embryos were used to clone a partial walnut AGL12 cDNA sequence by 3′

RACE-PCR using the same strategy as previously described [53]. Its sequence (wAGL12, accession
number MF327581) is presented in Supplemental Figure S1.

The transgenic status of the kanR walnut tree embryonic lines was confirmed by at least two of
the following means: gus staining, PCR, RT-PCR, Southern-dot blot or Southern-blot (Supplemental
Table S1) during the kanamycin selection process (GIN and PAG lines) or after a preliminary screen of
their germination abilities (S and AS lines). Briefly, T-DNA insertions within PAG, S and AS kanR lines
were primarily confirmed by means of PCR amplifications using different combination of primers.
Then, complementary Southern-dot- and Southern- blot analysis performed with a nptII probe on
selected PCR+ lines were used to detect transgene presence. Southern-dot blot membranes used for
large scale molecular screenings of kanR lines were realized with 1 µg of denatured DNA using a
96 well microfiltration unit (Bio-Dot, Bio-RAD). Southern-blots were then performed with 5 µg of
digested DNA on a fewer number of lines to estimate transgene insertion events. Hybridization and
washing conditions of these membranes were the same as those used for northern-blot analysis (see
below). For transgene expression analysis, northern-blots were realized with 20 µg of total RNA
obtained from mature non-germinated S somatic embryos. Membranes were probed with amplified
cDNA fragments of AtAGL12 and Juglans Rib60S (accession AJ278460), washed twice in 0.2x SSC,
2% w/v SDS at 65 ◦C before autoradiography [53].

4.5. Histochemical Revelation of B-glucuronidase Activity

Explants of walnut tree somatic embryos and embryonic roots (GIN and PAG lines) were vacuum
infiltrated with 0.1 M phosphate buffer (pH 7.0) containing X-GlcA (1 mM, B5285 Sigma), Na2EDTA
(10 mM), potassium ferricyanide (1 mM), potassium ferrocyanide (1 mM), methyl hydrate (20% v/v),
and Triton X-100 (0.5% v/v). After 3 to 16 h of incubation at 37 ◦C, the explants were rinsed, fixed in
70% ethanol, and observed under a Nikon SMZ1000 stereomicroscope equipped with a Nikon DS-Fi1
digital camera.
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4.6. Root Development Analysis

In Juglans sp., spontaneous in vitro germination abilities and root development characteristics
of somatic embryos were determined for 10 representative transgenic S lines that presented upon
preliminary screening: strikingly higher, higher or equivalent spontaneous germination rates compared
to the original I1C line. GIN, PAG, and AS embryonic lines were added to the phenotypic analysis as
controls. For each line, 3 replicates of 10 embryos (2–5 mm, early cotyledonary stage) were placed
on solidified hormone -, kanamycin -free DKW medium in 70 mm Petri dishes (dark, 27 ◦C). After
3 weeks, the developing cotyledons were ablated and the embryonic axis aligned on the same medium
in plates (120 × 120 mm) placed vertically for 2 additional weeks. Primary and lateral root appearances
were scored at the end of each phase. Rooted embryos were then individually transferred in culture
tubes (16 h photoperiod). After 5 weeks, the root and shoot apices of each plantlet were separated,
lyophilized, and weighted on a precision balance (Pioneer P114C, Ohaus corp.). These experiments
were repeated twice and statistical analyses were performed using R software.

In Arabidopsis, phenotypic observations were performed on at least 5 in vitro germinated T1 kanR

S and AS plantlets grown for one to three weeks on kanamycin free medium. WT plantlets were
grown in parallel on kanamycin free medium. Due to the important differences observed between S,
AS and WT Arabidopsis plantlets, only three S T1 and WT individuals were sampled for histological
observations. One and two of these plants were respectively used for transversal and longitudinal
sections of their roots. Every other AS and S T1 available were transferred to the greenhouse to produce
T2 seeds. T2 seeds and plantlets were treated as T1.

4.7. Microscopic Analysis

All plant tissue samples were fixed with 2.5% glutaraldehyde in 0.1M pH 6.8 citrate phosphate
buffer for 4 h at room temperature. Explants were then post-fixed in osmium tetroxyde 1% (w/v),
dehydrated through an ethanol series, and embedded in epoxy resin (EPON). Longitudinal and
transversal semi-thin sections (1 µm) stained with azure II/methylene blue were observed with a light
microscope (Leica-DMR) and photographed. Vascular tissue organization (cell counts) of Arabidopsis
roots were performed on median longitudinal sections of their root tips and on two perpendicular
diagonals on transverse sections (Supplemental Figure S2).

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/4/444/s1,
Figure S1: Sequence alignment of walnut and Arabidopsis AGL12 cDNA. Figure S2: Transverse sections of WT
(Col-0) and S T1 Arabidopsis roots sampled 3 weeks after germination. Table S1: List of primers and methods used
for transgene detection in walnut.

Author Contributions: G.M., M.G., F.L. and M.S. contributed in investigation, resources, methodology and data
curation. P.R. performed data curation, formal analysis and validation. P.G. and C.J.-A. contributed in supervision,
writing—review and editing. C.B. contributed in conceptualization, investigation, project administration, and
writing—original draft preparation. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to Prof. Martin Yanofsky (University of California at San Diego) for
providing AGL12 cDNA and promoter constructs and S. Desbourdes and O. Bertel (INRAE, Orléans, France) for
image processing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yanofsky, M.F.; Ma, H.; Bowman, J.L.; Drews, G.N.; Feldmann, K.A.; Meyerowitz, E.M. The protein encoded
by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 1990, 346, 35–39. [CrossRef]

2. Soltis, D.E.; Soltis, P.S.; Albert, V.A.; Oppenheimer, D.G.; dePamphilis, C.W.; Ma, H.; Frohlich, M.W.;
Theiβen, G. Missing links: The genetic architecture of flower and floral diversification. Trends Plant Sci. 2002,
7, 22–31. [CrossRef]

http://www.mdpi.com/2223-7747/9/4/444/s1
http://dx.doi.org/10.1038/346035a0
http://dx.doi.org/10.1016/S1360-1385(01)02098-2


Plants 2020, 9, 444 17 of 19

3. O’Maoileidigh, D.S.; Graciet, E.; Wellmer, F. Gene networks controlling Arabidopsis thaliana flower
development. New Phytol. 2014, 201, 16–30. [CrossRef]

4. Alvarez-Buylla, E.R.; Liljegren, S.J.; Pelaz, S.; Gold, S.E.; Burgeff, C.; Ditta, G.S.; Vergara-Silva, F.; Yanofsky, M.F.
MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes.
Plant J. 2000, 24, 457–466. [CrossRef] [PubMed]

5. Leseberg, C.H.; Li, A.; Kang, H.; Duvall, M.; Mao, L. Genome-wide analysis of the MADS-box gene family in
Populus trichocarpa. Gene 2006, 378, 84–94. [CrossRef] [PubMed]

6. Zhao, Y.; Li, X.Y.; Chen, W.J.; Peng, X.J.; Cheng, X.A.; Zhu, S.W.; Cheng, B.J. Whole-genome survey and
characterization of MADS-box gene family in maize and sorghum. Plant Cell Tissue Organ Cult. 2011, 105,
159–173. [CrossRef]

7. Smaczniak, C.; Immink, R.G.; Angenent, G.C.; Kaufmann, K. Developmental and evolutionary diversity of
plant MADS-domain factors: Insights from recent studies. Development 2012, 139, 3081–3098. [CrossRef]

8. Rounsley, S.D.; Ditta, G.S.; Yanofsky, M.F. Diverse roles for mads box genes in Arabidopsis development.
Plant Cell 1995, 7, 1259–1269. [CrossRef]

9. Zhang, H.M.; Forde, B.G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root
architecture. Science 1998, 279, 407–409. [CrossRef]

10. Garay-Arroyo, A.; Ortiz-Moreno, E.; Sanchez, M.D.; Murphy, A.S.; Garcia-Ponce, B.; Marsch-Martinez, N.;
de Folter, S.; Corvera-Poire, A.; Jaimes-Miranda, F.; Pacheco-Escobedo, M.A.; et al. The MADS transcription
factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN
expression. EMBO J. 2013, 32, 2884–2895. [CrossRef]

11. Yu, L.H.; Miao, Z.Q.; Qi, G.F.; Wu, J.; Cai, X.T.; Mao, J.L.; Xiang, C.B. MADS-Box transcription factor AGL21
regulates lateral root development and responds to multiple external and physiological signals. Mol. Plant
2014, 7, 1653–1669. [CrossRef] [PubMed]

12. Han, P.; Garcia-Ponce, B.; Fonseca-Salazar, G.; Alvarez-Buylla, E.R.; Yu, H. AGAMOUS-LIKE 17, a novel
flowering promoter, acts in a FT-independent photoperiod pathway. Plant J. 2008, 55, 253–265. [CrossRef]
[PubMed]

13. Pérez-Ruiz, R.V.; Garcia-Ponce, B.; Marsch-Martinez, N.; Ugartechea-Chirino, Y.; Villajuana-Bonequi, M.; de
Folter, S.; Azpeitia, E.; Davila-Velderrain, J.; Cruz-Sanchez, D.; Garay-Arroyo, A.; et al. XAANTAL2 (AGL14)
is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical
meristem transitions. Mol. Plant 2015, 8, 796–813. [CrossRef] [PubMed]

14. Alvarez-Buylla, E.R.; Garcia-Ponce, B.; Sanchez, M.D.; Espinosa-Soto, C.; Garcia-Gomez, M.L.;
Pineyro-Nelson, A.; Garay-Arroyo, A. MADS-box genes underground becoming mainstream: Plant root
developmental mechanisms. New Phytol. 2019, 223, 1143–1158. [CrossRef] [PubMed]

15. El-Kassaby, Y.A.; Fashler, A.M.K.; Sziklai, O. Reproductive phenology and its impact on genetically improved
seed production in Douglas-fir seed orchard. Silvae Genet. 1984, 33, 120–125.

16. Mutke, S.; Gordo, J.; Gil, L. Variability of Mediterranean Stone pine cone production: Yield loss as response
to climate change. Agric. For. Meteorol. 2005, 132, 263–272. [CrossRef]

17. Theiβen, G.; Kim, J.T.; Saedler, H. Classification and phylogeny of the MADS-box multigene family suggest
defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol.
1996, 43, 484–516. [CrossRef]

18. Alvarez-Buylla, E.R.; Pelaz, S.; Liljegren, S.J.; Gold, S.E.; Burgeff, C.; Ditta, G.S.; de Pouplana, L.R.;
Martinez-Castilla, L.; Yanofsky, M.F. An ancestral MADS-box gene duplication occurred before the divergence
of plants and animals. Proc. Natl. Acad. Sci. USA 2000, 97, 5328–5333. [CrossRef]

19. Burgeff, C.; Liljegren, S.J.; Tapia-Lopez, R.; Yanofsky, M.F.; Alvarez-Buylla, E.R. MADS-box gene expression
in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 2002, 214,
365–372. [CrossRef]

20. Tapia-Lopez, R.; Garcia-Ponce, B.; Dubrovsky, J.G.; Garay-Arroyo, A.; Pérez-Ruiz, R.V.; Kim, S.H.; Acevedo, F.;
Pelaz, S.; Alvarez-Buylla, E.R. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root
meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol. 2008, 146, 1182–1192.
[CrossRef]

21. Chavez Montes, R.A.; Coello, G.; Gonzalez-Aguilera, K.L.; Marsch-Martinez, N.; De Folter, S.;
Alvarez-Buylla, E.R. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana
root transcriptional regulatory networks. BMC Plant Biol. 2014, 14, 97. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/nph.12444
http://dx.doi.org/10.1046/j.1365-313x.2000.00891.x
http://www.ncbi.nlm.nih.gov/pubmed/11115127
http://dx.doi.org/10.1016/j.gene.2006.05.022
http://www.ncbi.nlm.nih.gov/pubmed/16831523
http://dx.doi.org/10.1007/s11240-010-9848-8
http://dx.doi.org/10.1242/dev.074674
http://dx.doi.org/10.1105/tpc.7.8.1259
http://dx.doi.org/10.1126/science.279.5349.407
http://dx.doi.org/10.1038/emboj.2013.216
http://dx.doi.org/10.1093/mp/ssu088
http://www.ncbi.nlm.nih.gov/pubmed/25122697
http://dx.doi.org/10.1111/j.1365-313X.2008.03499.x
http://www.ncbi.nlm.nih.gov/pubmed/18363787
http://dx.doi.org/10.1016/j.molp.2015.01.017
http://www.ncbi.nlm.nih.gov/pubmed/25636918
http://dx.doi.org/10.1111/nph.15793
http://www.ncbi.nlm.nih.gov/pubmed/30883818
http://dx.doi.org/10.1016/j.agrformet.2005.08.002
http://dx.doi.org/10.1007/bf02337521
http://dx.doi.org/10.1073/pnas.97.10.5328
http://dx.doi.org/10.1007/s004250100637
http://dx.doi.org/10.1104/pp.107.108647
http://dx.doi.org/10.1186/1471-2229-14-97
http://www.ncbi.nlm.nih.gov/pubmed/24739361


Plants 2020, 9, 444 18 of 19

22. Garcia-Cruz, K.V.; Garcia-Ponce, B.; Garay-Arroyo, A.; Sanchez, M.P.; Ugartechea-Chirino, Y.; Desvoyes, B.;
Pacheco-Escobedo, M.A.; Tapia-Lopez, R.; Ransom-Rodriguez, I.; Gutierrez, C.; et al. The MADS-box
XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to
differentiation by regulating cell-cycle components. Ann. Bot. 2016, 118, 787–796. [CrossRef] [PubMed]

23. Kay, R.; Chan, A.; Daly, M.; McPherson, J. Duplication of CaMV-35S promoter sequences creates a strong
enhancer for plant genes. Science 1987, 236, 1299–1302. [CrossRef] [PubMed]

24. Leplé, J.C.; Brasileiro, A.C.M.; Michel, M.F.; Delmotte, F.; Jouanin, L. Transgenic poplars: Expression of
chimeric genes using four different constructs. Plant Cell Rep. 1992, 11, 137–141. [CrossRef] [PubMed]

25. El Euch, C.; Jay-Allemand, C.; Pastuglia, M.; Doumas, P.; Charpentier, J.P.; Capelli, P.; Jouanin, L. Expression
of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content
and rooting ability. Plant Mol. Biol. 1998, 38, 467–479. [CrossRef] [PubMed]

26. Duroux, L.; Fontaine, F.; Breton, C.; Charpentier, J.P.; Doumas, P.; Jay-Allemand, C. Histological and
biochemical characterization of adventitious root formation in walnut cotyledon fragments. In Biology of
Root Formation and Development; Altmann, A., Waisel, Y., Eds.; Basic Life Sciences, Springer: Boston, MA,
USA, 1997; Volume 65, pp. 75–84. [CrossRef]

27. Ermel, F.F.; Vizoso, S.; Charpentier, J.P.; Jay-Allemand, C.; Catesson, A.M.; Couée, I. Mechanisms of
primordium formation during adventitious root development from walnut cotyledon explants. Planta 2000,
211, 563–574. [CrossRef]

28. Bouché, F. Arabidopsis—Root cell types. Figshare 2017. [CrossRef]
29. Dolan, L.; Janmaat, K.; Willemsen, V.; Linstead, P.; Poethig, S.; Roberts, K.; Scheres, B. Cellular organization

of the Arabidopsis thaliana root. Development 1993, 119, 71–84.
30. Petricka, J.J.; Winter, C.M.; Benfey, P.N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 2012,

63, 563–590. [CrossRef]
31. Sozzani, R.; Iyer-Pascuzzi, A. Postembryonic control of root meristem growth and development. Curr. Opin.

Plant Biol. 2014, 17, 7–12. [CrossRef]
32. Moreno-Risueno, M.A.; Sozzani, R.; Yardimci, G.G.; Petricka, J.J.; Vernoux, T.; Blilou, I.; Alonso, J.; Winter, C.M.;

Ohler, U.; Scheres, B.; et al. Transcriptional control of tissue formation throughout root development. Science
2015, 350, 426–430. [CrossRef] [PubMed]

33. Fisher, A.P.; Sozzani, R. Uncovering the networks involved in stem cell maintenance and asymmetric cell
division in the Arabidopsis root. Curr. Opin. Plant Biol. 2016, 29, 38–43. [CrossRef] [PubMed]

34. Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al.
Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.
Nat. Genet. 2013, 45, 1097–1102. [CrossRef] [PubMed]

35. Dubouzet, J.G.; Strabala, T.J.; Wagner, A. Potential transgenic routes to increase tree biomass. Plant Sci. 2013,
212, 72–101. [CrossRef] [PubMed]

36. Montiel, G.; Breton, C.; Thiersault, M.; Burlat, V.; Jay-Allemand, C.; Gantet, P. Transcription factor Agamous-like
12 from Arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus
suspension cells. Metab. Eng. 2007, 9, 125–132. [CrossRef] [PubMed]

37. Wang, G.; Li, X.; Chen, Q.; Tian, J. Studies on factors affecting the microshoot grafting survival of walnut.
Acta Hort. 2010, 861, 327–331. [CrossRef]

38. Polito, V.S.; McGranahan, G.; Pinney, K.; Leslie, C. Origin of somatic embryos from repetitively embryogenic
cultures of walnut (Juglans regia L.): Implications for Agrobacterium-mediated transformation. Plant Cell Rep.
1989, 8, 219–221. [CrossRef]

39. Smith, Z.R.; Long, J.A. Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription
factors. Nature 2010, 464, 423–426. [CrossRef]

40. Nawy, T.; Lee, J.Y.; Colinas, J.; Wang, J.Y.; Thongrod, S.C.; Malamy, J.E.; Birnbaum, K.; Benfey, P.N.
Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 2005, 17, 1908–1925. [CrossRef]
[PubMed]

41. Hinchee, M.A.W.; Rost, T.L. The control of lateral root development in cultured pea seedlings. II. Root
fasciation induced by auxin inhibitors. Bot. Acta 1992, 105, 121–126. [CrossRef]

42. Hinchee, M.A.W.; Rost, T.L. The control of lateral root development in cultured pea seedlings. III. Root
fasciation induced by auxin inhibitors. Bot. Acta 1992, 105, 127–131. [CrossRef]

http://dx.doi.org/10.1093/aob/mcw126
http://www.ncbi.nlm.nih.gov/pubmed/27474508
http://dx.doi.org/10.1126/science.236.4806.1299
http://www.ncbi.nlm.nih.gov/pubmed/17770331
http://dx.doi.org/10.1007/BF00232166
http://www.ncbi.nlm.nih.gov/pubmed/24213546
http://dx.doi.org/10.1023/A:1006034709501
http://www.ncbi.nlm.nih.gov/pubmed/9747854
http://dx.doi.org/10.1007/978-1-4615-5403-5_11
http://dx.doi.org/10.1007/s004250000314
http://dx.doi.org/10.6084/m9.figshare.4688752.v2
http://dx.doi.org/10.1146/annurev-arplant-042811-105501
http://dx.doi.org/10.1016/j.pbi.2013.10.005
http://dx.doi.org/10.1126/science.aad1171
http://www.ncbi.nlm.nih.gov/pubmed/26494755
http://dx.doi.org/10.1016/j.pbi.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26707611
http://dx.doi.org/10.1038/ng.2725
http://www.ncbi.nlm.nih.gov/pubmed/23913002
http://dx.doi.org/10.1016/j.plantsci.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/24094056
http://dx.doi.org/10.1016/j.ymben.2006.10.001
http://www.ncbi.nlm.nih.gov/pubmed/17157545
http://dx.doi.org/10.17660/ActaHortic.2010.861.45
http://dx.doi.org/10.1007/BF00778537
http://dx.doi.org/10.1038/nature08843
http://dx.doi.org/10.1105/tpc.105.031724
http://www.ncbi.nlm.nih.gov/pubmed/15937229
http://dx.doi.org/10.1111/j.1438-8677.1992.tb00276.x
http://dx.doi.org/10.1111/j.1438-8677.1992.tb00277.x


Plants 2020, 9, 444 19 of 19

43. Van Norman, J.M.; Xuan, W.; Beeckman, T.; Benfey, P.N. To branch or not to branch: The role of pre-patterning
in lateral root formation. Development 2013, 140, 4301–4310. [CrossRef] [PubMed]

44. Moreno-Risueno, M.A.; Van Norman, J.M.; Moreno, A.; Zhang, J.; Ahnert, S.E.; Benfey, P.N. Oscillating gene
expression determines competence for periodic Arabidopsis root branching. Science 2010, 329, 1306–1311.
[CrossRef] [PubMed]

45. Goh, T.; Joi, S.; Mimura, T.; Fukaki, H. The establishment of asymmetry in Arabidopsis lateral root founder
cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 2012, 139, 883–893. [CrossRef]
[PubMed]

46. De Folter, S.; Immink, R.G.H.; Kieffer, M.; Parenicova, L.; Henz, S.R.; Weigel, D.; Busscher, M.; Kooiker, M.;
Colombo, L.; Kater, M.M.; et al. Comprehensive interaction map of the Arabidopsis MADS box transcription
factors. Plant Cell. 2005, 17, 1424–1433. [CrossRef]

47. Espinosa-Soto, C.; Immink, R.G.H.; Angenent, G.C.; Alvarez-Buylla, E.R.; De Folter, S. Tetramer formation in
Arabidopsis MADS domain proteins: Analysis of a protein-protein interaction network. BMC Syst. Biol. 2014,
8, 9. [CrossRef]

48. Dastidar, M.G.; Jouannet, V.; Maizel, A. Root branching: Mechanisms, robustness, and plasticity. WIREs Dev
Biol. 2012, 1, 329–343. [CrossRef]

49. De Lucas, M.; Brady, S.M. Gene regulatory networks in the Arabidopsis root. Curr. Opin. Plant Biol. 2013, 16,
50–55. [CrossRef]

50. Lee, Y.; Lee, W.S.; Kim, S.H. Hormonal regulation of stem cell maintenance in roots. J. Exp. Bot. 2013, 64,
1153–1165. [CrossRef]

51. Schiefelbein, J.; Huang, L.; Zheng, X.H. Regulation of epidermal cell fate in Arabidopsis roots: The importance
of multiple feedback loops. Front. Plant Sci. 2014, 5, 47. [CrossRef]

52. Cornu, D. Walnut somatic embryogenesis: Physiological and histological aspects. Ann. For. Sci. 1989, 46,
133s–135s. [CrossRef]

53. Breton, C.; Cornu, D.; Chriqui, D.; Sauvanet, A.; Capelli, P.; Germain, E.; Jay-Allemand, C. Somatic
embryogenesis, micropropagation and plant regeneration of “Early Mature” walnut trees (Juglans regia) that
flower in vitro. Tree Physiol. 2004, 24, 425–435. [CrossRef] [PubMed]

54. Van Engelen, F.A.; Molthoff, J.W.; Conner, A.J.; Nap, J.P.; Pereira, A.; Stiekema, W.J. pBINPLUS: An improved
plant transformation vector based on pBIN19. Trans. Res. 1995, 4, 288–290. [CrossRef] [PubMed]

55. Bechtold, N.; Ellis, J.; Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult
Arabidopsis thaliana plants. C. R. Acad. Sci. Serie III Paris Life Sci. 1993, 316, 1194–1199.

56. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures.
Physiol. Plant. 1962, 15, 473–497. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1242/dev.090548
http://www.ncbi.nlm.nih.gov/pubmed/24130327
http://dx.doi.org/10.1126/science.1191937
http://www.ncbi.nlm.nih.gov/pubmed/20829477
http://dx.doi.org/10.1242/dev.071928
http://www.ncbi.nlm.nih.gov/pubmed/22278921
http://dx.doi.org/10.1105/tpc.105.031831
http://dx.doi.org/10.1186/1752-0509-8-9
http://dx.doi.org/10.1002/wdev.17
http://dx.doi.org/10.1016/j.pbi.2012.10.007
http://dx.doi.org/10.1093/jxb/ers331
http://dx.doi.org/10.3389/fpls.2014.00047
http://dx.doi.org/10.1051/forest:19890529
http://dx.doi.org/10.1093/treephys/24.4.425
http://www.ncbi.nlm.nih.gov/pubmed/14757582
http://dx.doi.org/10.1007/BF01969123
http://www.ncbi.nlm.nih.gov/pubmed/7655517
http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Walnut Tree Transformation 
	Walnut Tree Somatic Embryo Transformation 
	The Promoter of AtAGL12 is Functional in Walnut Tree Somatic Embryos 
	AtAGL12 Activates the Germination of Walnut Tree Somatic Embryos 
	AtAGL12 Overexpression Causes Ectopic Root-like Structure at Different Stages of Walnut Tree Somatic Embryogenesis 

	AtAGL12 Activates Cell Division and Differentiation in Arabidopsis thaliana Root Meristem 

	Discussion 
	Materials and Methods 
	Plant Materials 
	Binary Vector Construction 
	Plant Transformation 
	Molecular Biology 
	Histochemical Revelation of B-glucuronidase Activity 
	Root Development Analysis 
	Microscopic Analysis 

	References

