M. F. Yanofsky, H. Ma, J. L. Bowman, G. N. Drews, K. A. Feldmann et al., The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature, vol.346, pp.35-39, 1990.

D. E. Soltis, P. S. Soltis, V. A. Albert, D. G. Oppenheimer, C. W. Depamphilis et al., Missing links: The genetic architecture of flower and floral diversification, Trends Plant Sci, vol.7, pp.22-31, 2002.

D. S. O'maoileidigh, E. Graciet, and F. Wellmer, Gene networks controlling Arabidopsis thaliana flower development, New Phytol, vol.201, pp.16-30, 2014.

E. R. Alvarez-buylla, S. J. Liljegren, S. Pelaz, S. E. Gold, C. Burgeff et al., MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes, Plant J, vol.24, pp.457-466, 2000.

C. H. Leseberg, A. Li, H. Kang, M. Duvall, and L. Mao, Genome-wide analysis of the MADS-box gene family in Populus trichocarpa, Gene, vol.378, pp.84-94, 2006.

Y. Zhao, X. Y. Li, W. J. Chen, X. J. Peng, X. A. Cheng et al., Whole-genome survey and characterization of MADS-box gene family in maize and sorghum, Plant Cell Tissue Organ Cult, vol.105, pp.159-173, 2011.

C. Smaczniak, R. G. Immink, G. C. Angenent, and K. Kaufmann, Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies, Development, vol.139, pp.3081-3098, 2012.

S. D. Rounsley, G. S. Ditta, and M. F. Yanofsky, Diverse roles for mads box genes in Arabidopsis development, Plant Cell, vol.7, pp.1259-1269, 1995.

H. M. Zhang and B. G. Forde, An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture, Science, vol.279, pp.407-409, 1998.

A. Garay-arroyo, E. Ortiz-moreno, M. D. Sanchez, A. S. Murphy, B. Garcia-ponce et al., The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression, EMBO J, vol.32, pp.2884-2895, 2013.

L. H. Yu, Z. Q. Miao, G. F. Qi, J. Wu, X. T. Cai et al., MADS-Box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals, Mol. Plant, vol.7, pp.1653-1669, 2014.

P. Han, B. Garcia-ponce, G. Fonseca-salazar, E. R. Alvarez-buylla, and H. Yu, AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway, Plant J, vol.55, pp.253-265, 2008.

R. V. Pérez-ruiz, B. Garcia-ponce, N. Marsch-martinez, Y. Ugartechea-chirino, M. Villajuana-bonequi et al., XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical meristem transitions, Mol. Plant, vol.8, pp.796-813, 2015.

E. R. Alvarez-buylla, B. Garcia-ponce, M. D. Sanchez, C. Espinosa-soto, M. L. Garcia-gomez et al., MADS-box genes underground becoming mainstream: Plant root developmental mechanisms, New Phytol, vol.223, pp.1143-1158, 2019.

Y. A. El-kassaby, A. M. Fashler, and O. Sziklai, Reproductive phenology and its impact on genetically improved seed production in Douglas-fir seed orchard, Silvae Genet, vol.33, pp.120-125, 1984.

S. Mutke, J. Gordo, and L. Gil, Variability of Mediterranean Stone pine cone production: Yield loss as response to climate change, Agric. For. Meteorol, vol.132, pp.263-272, 2005.

G. Thei?en, J. T. Kim, and H. Saedler, Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes, J. Mol. Evol, vol.43, pp.484-516, 1996.

E. R. Alvarez-buylla, S. Pelaz, S. J. Liljegren, S. E. Gold, C. Burgeff et al., An ancestral MADS-box gene duplication occurred before the divergence of plants and animals, Proc. Natl. Acad. Sci, vol.97, pp.5328-5333, 2000.

C. Burgeff, S. J. Liljegren, R. Tapia-lopez, M. F. Yanofsky, and E. R. Alvarez-buylla, MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots, Planta, vol.214, pp.365-372, 2002.

R. Tapia-lopez, B. Garcia-ponce, J. G. Dubrovsky, A. Garay-arroyo, R. V. Pérez-ruiz et al., An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis, Plant Physiol, vol.146, pp.1182-1192, 2008.

R. A. Chavez-montes, G. Coello, K. L. Gonzalez-aguilera, N. Marsch-martinez, S. De-folter et al., ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks, BMC Plant Biol, vol.14, p.97, 2014.

K. V. Garcia-cruz, B. Garcia-ponce, A. Garay-arroyo, M. P. Sanchez, Y. Ugartechea-chirino et al., The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components, Ann. Bot, vol.118, pp.787-796, 2016.

R. Kay, A. Chan, M. Daly, and J. Mcpherson, Duplication of CaMV-35S promoter sequences creates a strong enhancer for plant genes, Science, vol.236, pp.1299-1302, 1987.

J. C. Leplé, A. C. Brasileiro, M. F. Michel, F. Delmotte, and L. Jouanin, Transgenic poplars: Expression of chimeric genes using four different constructs, Plant Cell Rep, vol.11, pp.137-141, 1992.

C. El-euch, C. Jay-allemand, M. Pastuglia, P. Doumas, J. P. Charpentier et al., Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content and rooting ability, Plant Mol. Biol, vol.38, pp.467-479, 1998.

L. Duroux, F. Fontaine, C. Breton, J. P. Charpentier, P. Doumas et al., Histological and biochemical characterization of adventitious root formation in walnut cotyledon fragments, In Biology of Root Formation and Development

A. Altmann and Y. Waisel, Basic Life Sciences, vol.65, pp.75-84, 1997.

F. F. Ermel, S. Vizoso, J. P. Charpentier, C. Jay-allemand, A. M. Catesson et al., Mechanisms of primordium formation during adventitious root development from walnut cotyledon explants, Planta, vol.211, pp.563-574, 2000.

F. Bouché, Arabidopsis-Root cell types, 2017.

L. Dolan, K. Janmaat, V. Willemsen, P. Linstead, S. Poethig et al., Cellular organization of the Arabidopsis thaliana root, vol.119, pp.71-84, 1993.

J. J. Petricka, C. M. Winter, and P. Benfey, Control of Arabidopsis root development, Annu. Rev. Plant Biol, vol.63, pp.563-590, 2012.

R. Sozzani and A. Iyer-pascuzzi, Postembryonic control of root meristem growth and development, Curr. Opin. Plant Biol, vol.17, pp.7-12, 2014.

M. A. Moreno-risueno, R. Sozzani, G. G. Yardimci, J. J. Petricka, T. Vernoux et al., Transcriptional control of tissue formation throughout root development, Science, vol.350, pp.426-430, 2015.

A. P. Fisher and R. Sozzani, Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root, Curr. Opin. Plant Biol, vol.29, pp.38-43, 2016.

Y. Uga, K. Sugimoto, S. Ogawa, J. Rane, M. Ishitani et al., Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions, Nat. Genet, vol.45, pp.1097-1102, 2013.

J. G. Dubouzet, T. J. Strabala, and A. Wagner, Potential transgenic routes to increase tree biomass, Plant Sci, vol.212, pp.72-101, 2013.

G. Montiel, C. Breton, M. Thiersault, V. Burlat, C. Jay-allemand et al., Transcription factor Agamous-like 12 from Arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus suspension cells, Metab. Eng, vol.9, pp.125-132, 2007.

G. Wang, X. Li, Q. Chen, and J. Tian, Studies on factors affecting the microshoot grafting survival of walnut. Acta Hort, vol.861, pp.327-331, 2010.

V. S. Polito, G. Mcgranahan, K. Pinney, and C. Leslie, Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications for Agrobacterium-mediated transformation, Plant Cell Rep, vol.8, pp.219-221, 1989.

Z. R. Smith and J. Long, Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors, Nature, vol.464, pp.423-426, 2010.

T. Nawy, J. Y. Lee, J. Colinas, J. Y. Wang, S. C. Thongrod et al., Transcriptional profile of the Arabidopsis root quiescent center, Plant Cell, vol.17, 1908.

M. A. Hinchee and T. L. Rost, The control of lateral root development in cultured pea seedlings. II. Root fasciation induced by auxin inhibitors, Bot. Acta, vol.105, pp.121-126, 1992.

M. A. Hinchee and T. L. Rost, The control of lateral root development in cultured pea seedlings. III. Root fasciation induced by auxin inhibitors, Bot. Acta, vol.105, pp.127-131, 1992.

J. M. Van-norman, W. Xuan, T. Beeckman, and P. N. Benfey, To branch or not to branch: The role of pre-patterning in lateral root formation, vol.140, pp.4301-4310, 2013.

M. A. Moreno-risueno, J. M. Van-norman, A. Moreno, J. Zhang, S. E. Ahnert et al., Oscillating gene expression determines competence for periodic Arabidopsis root branching, Science, vol.329, pp.1306-1311, 2010.

T. Goh, S. Joi, T. Mimura, and H. Fukaki, The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins, vol.139, pp.883-893, 2012.

S. De-folter, R. G. Immink, M. Kieffer, L. Parenicova, S. R. Henz et al., Comprehensive interaction map of the Arabidopsis MADS box transcription factors, Plant Cell, vol.17, pp.1424-1433, 2005.

C. Espinosa-soto, R. G. Immink, G. C. Angenent, E. R. Alvarez-buylla, and S. De-folter, Tetramer formation in Arabidopsis MADS domain proteins: Analysis of a protein-protein interaction network, BMC Syst. Biol, vol.8, issue.9, 2014.

M. G. Dastidar, V. Jouannet, and A. Maizel, Root branching: Mechanisms, robustness, and plasticity, WIREs Dev Biol, vol.1, pp.329-343, 2012.

M. De-lucas and S. M. Brady, Gene regulatory networks in the Arabidopsis root, Curr. Opin. Plant Biol, vol.16, pp.50-55, 2013.

Y. Lee, W. S. Lee, and S. H. Kim, Hormonal regulation of stem cell maintenance in roots, J. Exp. Bot, vol.64, pp.1153-1165, 2013.

J. Schiefelbein, L. Huang, and X. H. Zheng, Regulation of epidermal cell fate in Arabidopsis roots: The importance of multiple feedback loops. Front, Plant Sci, vol.5, 2014.

D. Cornu, Walnut somatic embryogenesis: Physiological and histological aspects, Ann. For. Sci, vol.46, pp.133-135, 1989.
URL : https://hal.archives-ouvertes.fr/hal-00882519

C. Breton, D. Cornu, D. Chriqui, A. Sauvanet, P. Capelli et al., Somatic embryogenesis, micropropagation and plant regeneration of "Early Mature" walnut trees (Juglans regia) that flower in vitro, Tree Physiol, vol.24, pp.425-435, 2004.

F. A. Van-engelen, J. W. Molthoff, A. J. Conner, J. P. Nap, A. Pereira et al., An improved plant transformation vector based on pBIN19, Trans. Res, vol.4, pp.288-290, 1995.

N. Bechtold, J. Ellis, and G. Pelletier, In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants, C. R. Acad. Sci. Serie III Paris Life Sci, vol.316, pp.1194-1199, 1993.

T. Murashige and F. Skoog, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, vol.15, pp.473-497, 1962.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI