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Introduction

Managing and controlling introduced species require an understanding of the ecological and evolutionary processes that underlie invasions. Biological invasions are also of more general interest because they constitute natural experiments that allow investigation of evolutionary processes on contemporary timescales. Colonizers are known to experience differences in biotic interactions, climate, availability of resources, and disturbance regimes relative to populations in their native regions, often with opportunities for colonizers to evolve changes in resource allocation which favor their success [START_REF] Balanya | Global genetic change tracks global climate warming in drosophila subobscura[END_REF][START_REF] Dlugosch | The devil is in the details: genetic variation in introduced populations and its contributions to invasion[END_REF][START_REF] Lee | Evolutionary origins of invasive populations[END_REF]. Adaptive evolutionary shifts in response to novel selection regimes may therefore be central to initial establishment and spread of invasive species after introduction [START_REF] Colautti | Rapid adaptation to climate facilitates range expansion of an invasive plant[END_REF][START_REF] Colautti | Alimentation et l'Environnement user on 05 May 2020 natural selection, and local adaptation[END_REF]. In agreement with this adaptive evolutionary shift hypothesis, experimental evidence is accumulating that evolutionary changes are not only common during invasions but also may contribute directly to invasion success [START_REF] Bock | What we still don't know about invasion genetics[END_REF][START_REF] Colautti | Alimentation et l'Environnement user on 05 May 2020 natural selection, and local adaptation[END_REF][START_REF] Ellstrand | Hybridization as a stimulus for the evolution of invasiveness in plants[END_REF][START_REF] Facon | Inbreeding depression is purged in the invasive insect harmonia axyridis[END_REF][START_REF] Lee | Evolutionary genetics of invasive species[END_REF][START_REF] Ochocki | Rapid evolution of dispersal ability makes biological invasions faster and more variable[END_REF][START_REF] Williams | Rapid evolution accelerates plant population spread in fragmented experimental landscapes[END_REF]. However, despite an increase in theoretical and empirical studies on the evolutionary biology of invasive species in the past decade, the genetic basis of evolutionary adaptations during invasions is still largely unexplored [START_REF] Barrett | Foundations of invasion genetics: the baker and stebbins legacy[END_REF][START_REF] Reznick | From low to high gear: there has been a paradigm shift in our understanding of evolution[END_REF][START_REF] Welles | Population Genomics of Colonization and Invasion[END_REF].

The spotted wing drosophila, Drosophila suzukii , represents an attractive biological model to study invasion processes. This pest species, native to South East Asia, initially invaded North America and Europe, simultaneously in 2008, and subsequently La Réunion Island (Indian Ocean) and South America, in 2013. Unlike most Drosophilids, this species lays eggs in unripe fruits by means of its sclerotized ovipositor. In agricultural areas, it causes dramatic losses in fruit production, with a yearly cost exceeding one billion euros worldwide (e.g., [START_REF] Asplen | Invasion biology of spotted wing drosophila (drosophila suzukii): a global perspective and future priorities[END_REF][START_REF] Cini | A review of the invasion of drosophila suzukii in europe and a draft research agenda for integrated pest management[END_REF]. The rapid spreading of D. suzukii in America and Europe suggests its remarkable ability to adapt or to acclimate to new environments and host plants. Using evolutionarily neutral molecular markers, [START_REF] Adrion | Drosophila suzukii: the genetic footprint of a recent, worldwide invasion[END_REF] and [START_REF] Fraimout | Deciphering the routes of invasion of drosophila suzukii by means of abc random forest[END_REF] finely deciphered the routes taken by D. suzukii in its invasion worldwide. Interestingly, both studies showed that North American (plus Brazil) and European (plus La Réunion Island) populations globally represent separate invasion routes, with different native source populations and multiple introduction events in both invaded regions [START_REF] Fraimout | Deciphering the routes of invasion of drosophila suzukii by means of abc random forest[END_REF]. These two major and separate invasion pathways provide the opportunity to evaluate replicate evolutionary trajectories. Finally, D. suzukii is a good model species for finely interpreting genomic signals of interest due to the availability of genome assemblies for this species [START_REF] Chiu | Genome of drosophila suzukii, the spotted wing drosophila[END_REF][START_REF] Ometto | Linking genomics and ecology to investigate the complex evolution of an invasive drosophila pest[END_REF][START_REF] Paris | Near-chromosome level genome assembly of the fruit pest drosophila suzukii using long-read sequencing[END_REF] along with the large amount of genomic and gene annotation resources available in its closely related model species D. melanogaster [START_REF] Hoskins | The release 6 reference sequence of the drosophila melanogaster genome[END_REF].

In this context, advances in high-throughput sequencing technologies together with population genomics statistical methods offer novel opportunities to disentangle responses to selection from other forms of evolution. These advances are thus expected to provide insights into the genomic changes that might have contributed to the success in a new environment (reviewed in [START_REF] Bock | What we still don't know about invasion genetics[END_REF][START_REF] Welles | Population Genomics of Colonization and Invasion[END_REF]. Identifying loci underlying invasion success can be considered in the context of wholegenome scan for association with populationspecific covariate. These approaches, also known as Environmental Association Analysis (EAA), have received considerable attention in recent years (e.g., [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF][START_REF] De Villemereuil | A new FST-based method to uncover local adaptation using environmental variables[END_REF][START_REF] Frichot | Testing for associations between loci and environmental gradients using latent factor mixed models[END_REF][START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. Most of the methodological developments have focused on properly accounting for the covariance structure among population allele frequencies that is due to the shared demographic history of the populations. This neutral covariance structure may indeed confound the relationship between the across population variation in allele frequencies and the covariates of interest [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF][START_REF] Frichot | Testing for associations between loci and environmental gradients using latent factor mixed models[END_REF][START_REF] Frichot | Detecting adaptive evolution based on association with ecological gradients: Orientation matters! Heredity[END_REF][START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. Yet, defining relevant environmental characteristics or traits as proxy for invasion success remains challenging and might even be viewed as the key aim. Therefore, we propose to simply summarize invasion success into a binary variable corresponding to the population's historical status (i.e., invasive or native) based on previous studies. By extension, functional annotation of the associated variants identified may provide insights into candidate traits underlying invasion success [START_REF] Estoup | Is there a genetic paradox of biological invasion? Annual Review of Ecology[END_REF][START_REF] Li | reverse ecology" and the power of population genomics[END_REF][START_REF] Wu | Fall webworm genomes yield insights into rapid adaptation of invasive species[END_REF].

The Bayesian hierarchical model initially proposed by [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF], later extended in [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF] and implemented in the software BayPass, represents one of the most flexible and powerful frameworks to carry out EAA since it efficiently accounts for the correlation structure among allele frequencies in the sampled populations. Although association analyses may be carried out with categorical or binary covariables (see the example of Littorina population ecotypes in [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF], the assumed linear relationship with allele frequencies is not entirely satisfactory and may even be problematic when dealing with small data sets or if one wishes to disregard some populations.

In the present study, we developed a nonparametric counterpart for the association model implemented in BayPass [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. This new approach relies on a contrast statistic, we named C 2 , that compares the standardized population allele frequencies (i.e., the allele frequencies corrected for the population structure) between the two groups of populations specified by the binary covariable of interest. We evaluated the performance of this statistic on simulated data and used it to characterize the genome response of D. suzukii during its worldwide invasion. To that end, we generated Pool-Seq data (e.g., [START_REF] Gautier | Estimation of population allele frequencies from next-generation sequencing data: poolversus individual-based genotyping[END_REF][START_REF] Schlotterer | Sequencing pools of individuals -mining genome-wide polymorphism data without big funding[END_REF] 

New Approaches

To identify single nucleotide polymorphisms (SNPs) associated with a population-specific binary trait, such as the invasive versus native status of D. suzukii populations, we developed a new statistic, we called C 2 . The C 2 statistic was designed to contrast SNP allele frequencies between the two groups of populations specified by the binary trait while accounting for the possibly complex evolutionary history of the different populations. Indeed, the shared population history is a major (neutral) contributor to allele frequency differentiation across populations (e.g. [START_REF] Bonhomme | Detecting selection in population trees: the lewontin and krakauer test extended[END_REF][START_REF] Gunther | Robust identification of local adaptation from allele frequencies[END_REF] that may confound association signals (e.g. [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF][START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF].

We here relied on the multivariate normal approximation introduced by [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF] and further extended by [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF] to model population allele frequencies and to define the C 2 contrast statistic. More precisely, consider a sample made of J populations (each with a label j = 1,...,J) that have been characterized for I biallelic SNPs (each with a label i = 1,...,I), with the reference allele arbitrarily defined (e.g., by randomly drawing the ancestral or the derived state). Let α ij represent the (unobserved) allele frequency of the reference allele at SNP i in population j. As previously defined and discussed [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF][START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF], we introduced an instrumental allele frequency α ij (for each SNP i and population j) taking values on the real line such that α ij = min 1,max 0,α ij .

Following [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF] and [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF], a multivariate Gaussian (prior) distribution of the vector α i = α ij 1...J is then assumed for each SNP i:

α i | Ω,π i ∼ N J (π i 1 J ;π i (1-π i )Ω) (1)
where 1 J is the all-one vector of length J; Ω is the (scaled) covariance matrix of the population allele frequencies which captures information about their shared demographic history; and π i is the weighted mean frequency of the SNP i reference allele. If Ω is used to build a tree or an admixture graph [START_REF] Pickrell | Inference of population splits and mixtures from genome-wide allele frequency data[END_REF], π i corresponds to the root allele frequency. We further define for each SNP i the vector αi of standardized (instrumental) allele frequencies in the J populations as:

αi = Γ -1 Ω α ij -π i π i (1-π i ) (1..J) (2) 
where Γ Ω results from the Cholesky decomposition of Ω (i.e., Ω = Γ Ω t Γ Ω ). The vector αi thus contains scaled allele frequencies that are corrected for both the population structure (summarized by Ω) and the across-population (e.g., ancestral) allele frequency (π i ).

The C 2 contrast statistic is then simply defined as the mean squared difference of the sum of standardized allele frequencies of the two groups of populations defined according to the binary trait modalities:

C 2 (i) = 1 c t c αi t c 2 (3) 
where c = c j (1..J) is a vector of the trait values observed for each population j such that c j = 1

(respectively c j = -1) if population j displays the first (respectively second) trait modality. One may also define c j = 0 to exclude a given population j from the comparison. According to our model, the J elements of αi are independent and identically distributed as a standard Gaussian distribution under the null hypothesis of only neutral marker differentiation. The C 2 statistic is thus expected to follow a χ 2 distribution with one degree of freedom.

The estimation of the C 2 statistic was here performed using the Markov-Chain Monte Carlo (MCMC) algorithm implemented in the BayPass software [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. respectively, were then obtained as:

XtX (i) = αi t αi C 2 (i) = 1 c t c αi t c 2 (5)
Under the null hypothesis, XtX (i) ∼ χ 2 J and C 2 (i) ∼ χ 2 1 allowing one to rely on standard decision making procedures, e.g. based on pvalues or more preferably on q-values to control for multiple-testing issues [START_REF] Storey | Statistical significance for genomewide studies[END_REF].

Results

Simulation-based evaluation of the performance of our novel statistical framework [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF] and the XtX estimator described above.

Note however that because selection scan approaches rely on (covariate-free) differentiation statistics (here, the XtX), they do not allow to distinguish among the outlier SNPs those responding to the ec1 constraint from those responding to the ec2 constraint.

Based on the status of each simulated SNP (i.e., neutral, and ec1 or ec2 selected) and combining results in the 100 simulated data sets, standard receiver operating curves (ROCs) were computed [START_REF] Grau | Prroc: computing and visualizing precision-recall and receiver operating characteristic curves in r[END_REF] and plotted in Figure 1B (respectively 1C) for the six statistics. This 

Robustness of the different approaches to demographic events typical of biological invasions

The HsIMM scenario used for the above simulations may imperfectly capture some characteristics of the demographic history of invasive species. Indeed, an invasion may be triggered by a relatively small number of colonizers leading to population bottlenecks (e.g, [START_REF] Estoup | Is there a genetic paradox of biological invasion? Annual Review of Ecology[END_REF]. Moreover, invasive species, particularly those with low dispersal capabilities (which is not the case of D. suzukii ), may be prone to allele surfing, wherein a variant rises to high frequency by chance as the expansion wave advances due to repeated bottlenecks q q q q q q q q q q q q q q q q q q q q q q -0.22 -0.20 -0.18 -0.16 B) Inv2 Scenario q q q q q q q q q q q q q q q q q q q q q q -0. Scenario Inv2 all G1 and G2 all G1 and G2 BF>20 (> 15)

-0.2 -0.1 0.0 0.1 0.2 C) SVD of Ω ^Inv1
1.9×10 -4 (9.2×10 -4 ) 2.4×10 -4 (1.0×10 -3 ) 2.6×10 -4 (1.1×10 -3 ) 3.6×10 -4 (1.3×10 -3 ) C 2 q-value< 0.01 (<0.05) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 4.6×10 -5 (1.9×10 -3 ) XtX q-value< 0.01 (<0.05) 0.0 (0.0) 1.3×10 -5 (4.6×10 -5 )

Table 1. Proportion of SNPs (False Positive Rate) simulated under the invasion scenarios Inv1 (n=165,020 SNPs) and Inv2 (n=152,321 SNPs) displaying outlying differentiation (based on the XtX statistic) or showing a signal of association with the population invasive status (based on the BF criterion or the C 2 statistic). Support for association was evaluated using the BayPass regression models (BF criterion) or the q-value derived from the estimated contrast statistics C 2 for the three different tests comparing the six native populations allele frequencies to i) all 16 invasive populations ("all"); ii) the eight invasive populations from the first group ("G1"); or iii) the eight invasive populations from the second group ("G2") (Figure S3). Results from the two latter tests were combined to compute False Positive Rates (columns "G1 and G2" in the Table ).

Note that the BF threshold of 20 dB (resp. 15 dB) corresponds to decisive (resp. very strong) evidence in favor of association according to the Jeffreys' rule [START_REF] Jeffreys | Theory of Probability[END_REF]. To account for the bilateral nature of the underlying test (SNPs might be over or under-differentiated if under directional or balancing selection), the p-values derived from the XtX statistic were computed as p = 1-2 | Φ χ 2 (J) XtX -0.5 |, where Φ χ 2 (J) represents the cumulative density function of the χ 2 distribution with J degrees of freedom (here J = 22).

first axis (Figure 2D). These results suggest that the shared population history may be globally well accounted for by the model. Accordingly, the distribution of the p-values derived from the XtX was close to uniform for the scenario Inv1 (Figure S3A) as expected given that all the analyzed SNPs evolved neutrally. This resulted in a desired null FPR at both the 1% and 5% q-value threshold (Table 1). Yet, for the Inv2 scenario, we observed an (undesirable) excess of small p-values derived from the XtX . However, this feature only resulted in an almost null FPR after correcting for multiple testing, the FPR being equal to only 4.6×10 -5 at the 5% q-value threshold (Table 1).

Similar patterns were observed for the distribution of the p-values derived from the different C 2 statistics (Figures S3C andS3D).

Note that for the Inv1 scenario, we observed a smaller proportion of small C 2 p-values than expected under uniform expectation that might originate from an imperfect deshrinking of the standardized allele frequencies. Overall, the FPR associated to the C 2 statistics was null at the 1% q-value threshold for both the scenarios Inv1 and Inv2 except, for the latter, when considering

C G1 2
and C G2 2 group-specific contrasts for which the FPR was equal to 4.6×10 -5 (Table 1). At the stringent decisive evidence threshold of 20 dB [START_REF] Jeffreys | Theory of Probability[END_REF] on BF, the FPR was always one order of magnitude higher ranging from 1.9×10 The overall differentiation was estimated using the recently developed F ST estimator for Pool-Seq data [START_REF] Hivert | Measuring genetic differentiation from pool-seq data[END_REF]. It ranged from 8.86% to 9.02% (8.95% on average) for the autosomal data sets and from 17.6% to 17.8% (17.8% on average)

for the X-chromosome data sets. Although a higher genetic differentiation is expected for the X-chromosome even under equal contribution of males and females to demography, the almost twice higher overall differentiation observed for the X chromosome compared to autosomes might have been accentuated by unbalanced sex-ratio (e.g., polyandry), male-biased dispersal or a higher impact of selection on the X-chromosome [START_REF] Clemente | Inferring sex-specific demographic history from snp data[END_REF]. Inferring sex-specific demography was beyond the scope of the present study, but for our purposes, this finding justified to perform separate genome scans on autosomal and X-linked SNPs.

We ran BayPass on the different data sets to estimate, for every SNPs, the C 2 statistic that contrasts the allele frequencies of native and invasive populations, while accounting for their shared population history as summarized in the scaled covariance matrix Ω. Interestingly, the estimated Ω matrices for autosomal and Xlinked SNPs resulted in a similar structuring of the genetic diversity across the 22 populations (Figure S4), which may rule out selective forces as the main driver of the differences of global differentiation levels observed between the two chromosome types. Note also that the representation of the two major axes of variation of Ω (Figure S4) resulted in a pattern intermediary between the ones obtained when analyzing the data simulated above under the invasion scenarios Inv1 and Inv2 (Figure 2). The distribution of the p-values derived from the C 2 statistics was well-behaved, being close to uniform for higher p-values (Figure S5A). To account for multiple testing issues, we used the qvalue R package [START_REF] Storey | Statistical significance for genomewide studies[END_REF] to compute the individual SNP q-values plotted in Figure 3B.

A striking feature of the resulting Manhattan plot was the lack of clustering of SNPs with high q-values which might be related to a small extent of linkage disequilibrium (LD) across the D. suzukii populations, as expected from their large effective populations sizes [START_REF] Fraimout | Deciphering the routes of invasion of drosophila suzukii by means of abc random forest[END_REF]. We identified 101 SNPs (including three X-linked) that were significant at the 1% q-value threshold (i.e., 1% of these 101 SNPs are expected to be false positives). As a matter of comparison, we also estimated the BF for association of the (standardized) population allele frequencies with the native or invasive status of the population, i.e., under a parametric regression model [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF] (Figure S6A). Out of the 101 significant SNPs previously identified, 80 displayed a BF> 20 db, the threshold for decisive evidence according to the Jeffreys' rule [START_REF] Jeffreys | Theory of Probability[END_REF]. However, in total, 6,406 SNPs displayed a BF> 20 db probably due to an increase of false positives at this threshold (see above simulations under invasion scenarios). We also compared the C 2 statistic to the XtX measure of overall differentiation. The (two-sided) p-values derived from the latter were also well behaved (Figure S5B) and allowed the computation of q-values to control for multiple testing. As shown in Figure S6B, at the same 1% q-value threshold for XtX, 71 out of the 101 C 2 significant SNPs were significantly differentiated but they represented only a small proportion of the 35,546 significantly differentiated SNPs. This is not surprising since invasion success is obviously In total, 204 SNPs (detailed in Table S3)

were significant in at least one of the three contrasts at the 1% q-value threshold. ). Values for the autosomal (X-linked) SNPs are plotted in purple (green).

Annotation of candidate SNPs

For annotation purposes, we relied on genomic resources available in D. melanogaster, a model species closely related to D. suzukii . More specifically we extracted from the WT3-2.0 D.

suzukii genome assembly 5 kb long genomic (6 native vs. 8 invasive populations of the American invasion route). The third column gives the overall number of significant SNPs (at the 1% q-value threshold) and their maximal spacing in bp (on the D. suzukii assembly). Columns 4 to 6 gives the number of significant SNPs for each of the three contrast analyses.

related drosophila species, as shown in Figure S7 for the gene cpo.

Discussion

We characterized the genome response of D. suzukii during its worldwide invasion by conducting a genome-wide scan for association with the invasive or native status of the sampled populations. To that end, we relied on the newly developed C 2 statistic that was aimed at identifying significant allele frequencies differences between two contrasting groups of populations while accounting for their overall correlation structure due to the shared population history.

Our approach identified genomic regions and candidate genes most likely involved in adaptive processes underlying the invasion success of D. melanogaster, but for most of them, functional and phenotypic studies turned out to be limited.

Their putative role in explaining the invasion success thus remained largely elusive. To avoid too speculative interpretations [START_REF] Pavlidis | A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans[END_REF], we will not elaborate further on the candidate genes. Yet, we did notice that long non-coding RNAs represent more than 10% (14 out of 130) of our candidate genes, a feature which may underline a critical role of variants involved in gene regulation to promote shortterm response to adaptive constraints during invasion. Also, two genes RhoGEF64C and cpo contained SNPs that were found to be highly significantly associated with the invasive status in both the European and American invasion routes. While the function of the RhoGEF64C gene has so far not been extensively studied, several functional and phenotypic studies in other Drosophila species identified genetic variation in the cpo gene associated with traits possibly important for invasion success. For instance, cpo genetic variation was found to contribute to natural variation in diapause in D. melanogaster populations of a North American cline and in populations from the more distantly related species Drosophila montana [START_REF] Kankare | Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study[END_REF]Schmidt et al., 2008). Moreover, indirect action of selection on diapause, by means of genetic correlations involving cpo genetic variation, was found on numerous other life-history traits in D.

melanogaster [START_REF] Schmidt | Reproductive diapause and life-history clines in north american populations of drosophila melanogaster[END_REF][START_REF] Schmidt | Geographic variation in diapause incidence, lifehistory traits, and climatic adaptation in drosophila melanogaster[END_REF]. Specifically, compared to diapausing populations, non-diapausing populations had a shorter development time and higher early fecundity, but also lower rates of larval and adult survival and lower levels of cold resistance.

Both theoretical [START_REF] Roughgarden | Density-dependent natural selection[END_REF] and experimental [START_REF] Mueller | Trade-off between r-selection and k-selection in drosophila populations[END_REF] evidence show that traits typical for colonization (i.e., the so-called r-traits; [START_REF] Charlesworth | Evolution in Age-Structured Populations[END_REF] high vs. low altitude adaptation (e.g., [START_REF] Foll | Widespread signals of convergent adaptation to high altitude in asia and america[END_REF], ecotypes of origin (e.g., [START_REF] Roesti | The genomics of ecological vicariance in threespine stickleback fish[END_REF][START_REF] Westram | Do the same genes underlie parallel phenotypic divergence in different littorina saxatilis populations?[END_REF], or domesticated vs. wild status (e.g., [START_REF] Alberto | Convergent genomic signatures of domestication in sheep and goats[END_REF].

In our simulation study using the HsIMM model, the power of the C 2 statistic was similar to that of a standard BF obtained after assuming a linear relationship between the (standardized) population allele frequencies and their corresponding binary status. Yet, we found that the robustness of both statistics strongly differed according to the structuring of genetic diversity of the neutral variants. In the analyses of association with the invasion status of the neutral SNPs simulated under the two invasion scenarios we investigated, the BF was the highest for SNPs displaying homogeneous variant allele frequencies in the invasive populations and that were also common in all the populations.

In this case, the assumed linear relationship of the population allele frequencies with their invasive or native group membership may result in significantly non-null regression coefficients, while the difference of the mean allele frequencies of both groups (as measured after standardization by the C 2 statistic) is not outlying. Conversely the C 2 contrast statistic was the highest for neutral variants that were rare in the native populations and for which allele frequencies were high on average in the invasive populations, but still displayed high heterogeneity in invasive populations (hence the absence of linear relationship among populations with invasive or native group memberships). It should be noticed that these patterns were observable on raw allele frequencies since we simulated balanced population invasion histories. Because of the different behaviors of the BF criterion and the C 2 statistic, combining both metrics may globally help reducing false positive rates. Doing so may however substantially reduce power since the two metrics are similarly expected, at least to some extent, to be sensitive to different association signal at truly causal variants. We therefore chose to focus only on the C 2 statistic to identify our candidate SNPs associated to invasive status in the D. suzukii populations.

It is worth stressing that C 2 has several critical advantages over BF, as well as over any other decision criterion that may be derived from a parametric modeling. From a practical point of view, the C 2 estimation does not require inclusion of any other model parameters making it more robust when dealing with data sets including a small number of populations (e.g., <8 populations), the later type of data sets often leading to unstable estimates of BF (unpublished results). In addition, it may easily be derived from only a subset of the populations under study (as we did here when computing the C EU 2 and C AM 2 contrasts specific to each of the two invasion routes), while using the complete design to capture more accurate information about the shared population history. Last, the χ 2 calibration of the C 2 under the null hypothesis represents an attractive property in the context of large data sets since it allows to deal with multiple testing issues by controlling for FDR [START_REF] Francois | Controlling false discoveries in genome scans for selection[END_REF], via, e.g., the estimation of q-values [START_REF] Storey | Statistical significance for genomewide studies[END_REF].

To estimate the C 2 statistic, we needed to correct allele frequencies for population structure.

To that end, we relied on the Bayesian hierarchical model implemented in the software BayPass that has several valuable properties including (i) the accurate estimation of the scaled covariance matrix of population allele frequencies (Ω), (ii) the integration over the uncertainty of the across population allele frequencies (π parameter), and (iii) the inclusion of additional layers of complexities such as the sampling of reads from (unobserved) allele counts in Pool-Seq data [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. However, as previously mentioned, the Bayesian hierarchical modeling results in shrinking the posterior means of the (lower-level) model parameters [START_REF] Kruschke | Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan[END_REF] and also related statistics such as, here, the C 2 and XtX differentiation statistics. To ensure proper calibration of the two corresponding estimates, we hence needed to rely on the rescaled posterior means of the standardized allele frequencies. This empirical procedure proved efficient in providing well behaved p-values, while avoiding computationally intensive calibration procedure based on the analysis of pseudo-observed data sets simulated under the generative model [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. Still, this did not allow accounting for the uncertainty of the allele frequencies estimation This conversely led to a high mapping resolution.

In practice, when dealing with large data sets, a sub-sampling strategy consisting in analyzing data sets thinned by marker position also allows further reduction of across-population LD [START_REF] Gautier | The genomic basis of color pattern polymorphism in the harlequin ladybird[END_REF]. Finally, it should be noticed that information from LD might be at least partially recovered by combining C 2 or XtX derived p-values into local scores [START_REF] Fariello | Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach[END_REF]. 

Conclusion and perspectives

Our genome-wide association approach allowed identifying genomic regions and genes most likely involved in adaptive processes underlying the invasion success of D. suzukii . The approach can be transposed to any other invasive species, and more generally to any species models for which binary traits of interest can be defined at the population level. The major advantage of our approach is that it does not require a preliminary, often extremely laborious, phenotypic characterization of the populations considered (for example using common garden melanogaster in our study). Following a strategy sometimes referred to as "reverse ecology" since it goes from gene(s) to phenotype(s) [START_REF] Li | reverse ecology" and the power of population genomics[END_REF], it is then necessary to test and validate via quantitative genetic experiments whether the inferred candidate traits show significant differences between native and invasive populations. The functional interpretation of the statistical association results can also benefit from experimental validation approaches based on techniques using RNA interference (RNAsilencing, e.g. [START_REF] Janitz | High-Throughput RNA Interference in Functional Genomics[END_REF] and/or genome editing approaches (e.g., [START_REF] Karageorgi | Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest drosophila suzukii[END_REF] targeting the identified candidate variants. Hopefully, such a combination of statistical, molecular and quantitative approaches will provide useful insights into the genomic and phenotypic responses to invasion, and by the same, will help better predict the conditions under which invasiveness can be enhanced or suppressed. 

Materials and Methods

Simulation study

w(o) = I i=1 2 k=1 (1+e k (p(o))(1-g i (o))s i (k)) (6)
where g i (o) is the genotype of individual o at marker i coded as the number of the reference allele (0, 1 or 2).

In a second time, we evaluated the robustness of the new C 2 criterion as well as the BF statistic to the occurrence of bottleneck events, as the latter are expected (especially in the context of biological invasion) to strongly impact the genetic variation of populations within invaded areas and between invasive and native areas (e.g, [START_REF] Estoup | Is there a genetic paradox of biological invasion? Annual Review of Ecology[END_REF]. To this aim, we used the software DIYABC v2.1.0 [START_REF] Cornuet | Diyabc v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, dna sequence and microsatellite data[END_REF] to simulate data sets composed of selectively neutral and independent SNP loci under two invasion scenarios depicted in Figure 2 [START_REF] Hudson | Generating samples under a wright-fisher neutral model of genetic variation[END_REF] which is equivalent to applying a default MAF threshold on the simulated data sets. As a matter of fact, each locus will be characterized by the presence of at least a single copy of a variant over all genes sampled from all studied populations (i.e. pooling all genes genotyped at the locus). We further applied a 1% MAF threshold on the simulated data sets (i.e., similar to that used on real data) before analyzing them using BayPass (hence a total of 165,020 and 152,321 SNPs analyzed with BayPass under the scenarios Inv1 and Inv2, respectively). S2). Samples were collected between 2013 and 2016 using baited traps (with a vinegar-alcohol-sugar mixture) and sweep nets, and stored in ethanol. Only four of the 22 samples were composed of flies which directly emerged in the lab from fruits collected in the field (Table S2). Native Asian samples consisted of a total of six sample sites including four Chinese and two Japanese localities. Samples from the invasive range were collected in Hawaii (1 sample site), Continental US (6 sites), Brazil (1 site), Europe (7 sites) and the French island of La Réunion (1 site). The continental US (plus Brazil) and European (plus La Réunion Island) populations are representative of two separate invasion routes (the American and European routes, respectively), with different native source populations and multiple introduction events in both invaded areas [START_REF] Fraimout | Deciphering the routes of invasion of drosophila suzukii by means of abc random forest[END_REF]; see Table S2).

Sampling of D. suzukii populations and DNA extraction

Pool sequencing

For each of the 22 sampling sites, the thoraxes of 50 to 100 representative adult flies (Table S2) were pooled for DNA extraction using the EZ-10 spin column genomic DNA minipreps kit (Bio basic inc.). Barcoded DNA PE libraries with insert size of ca. 550 bp were further prepared using the Illumina Truseq DNA Library Preparation Kit following manufacturer protocols using the 22 DNA pools samples. The DNA libraries were then validated on a DNA1000 the BayPass core model with default options for the MCMC algorithm to obtain estimates of four items: (i) the scaled covariance matrix (Ω);

(ii) the SNP-specific XtX overall differentiation statistic in the form of both XtX, the posterior mean of XtX [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF] and XtX , our newly described calibrated estimator; (iii) our novel C 2 statistic in the form of the calibrated estimator described above; and (iv) Bayes Factor reported in deciban units (db) as a measure of support for association with contrasts of each SNP based on a linear regression model [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF][START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF]. For BF, a value > 15 db (respectively > 20 db) provides very strong (respectively decisive) evidence in favor of association according to the Jeffreys' rule [START_REF] Jeffreys | Theory of Probability[END_REF].

For the D. suzukii data sets, we specified the pool haploid sample sizes, for either autosomes or the X-chromosome (Table S2) 

  Hence, comparing the structuring of genetic diversity on a whole genome scale among invasive populations and their source populations might allow the characterization of the types of genetic variation involved in adaptation during invasion of new areas and their potential ecological functions. For example, Puzey and Vallejo-Marin (2014) used whole genome resequencing data to scan for shifts in site frequency spectra to detect positive selection in introduced populations of monkey-flower (Mimulus guttatus). Regions putatively under selection were associated with flowering time and abiotic and biotic stress tolerance and included regions associated with a chromosomal inversion polymorphism between the native and introduced range.

  consisting of whole-genome sequences of pools of individual DNA (from n=50 to n=100 individuals per pool) representative of 22 worldwide populations sampled in both the invaded (n=16 populations) and native (n=6 populations) ranges of the species. We then estimated the C 2 statistics associated with the invasive vs. native status of the populations on a worldwide scale or considering separately each of the two invasion routes (European and American) as characterized by Fraimout et al. (2017). Our aim was to identify genomic regions and genes involved in adaptive processes underlying the invasion success of D.suzukii .

  allowed comparing for various thresholds covering the range of variation of the different statistics, the power to detect ec1 (respectively ec2 ) selected SNPs (i.e., the proportion of true positives among the corresponding selected SNPs) as a function of the false positive rates (FPR, i.e., the proportion of positives among neutral SNPs). The C 2 statistic was found to efficiently detect SNPs affected by ec1 and ec2 environmental constraints, the area under the ROC curve (AUC) being equal to 0.977 (Figure1B) and 0.943 (Figure1C), respectively.The unbalanced population representation of the two ec2 types had a limited impact on the performance of the C 2 statistic to identify the underlying selected SNPs. In addition, the C 2 statistics clearly discriminated the selected SNPs according to their underlying environmental constraint. In other words, no selection signal was identified by the C 2 statistic computed for the ec2 (respectively ec1 ) contrast on ec1 (respectively ec2 ) selected SNPs, resulting in ROC AUC close to the value of 0.5 obtained with a random classifier. The ROC curves displayed in Figures 1B and 1C also revealed nearly identical performance of the C 2 statistic and the BF. Accordingly, the correlation between both statistics were fairly high (Pearson's r equal to 0.983 and 0.923 for ec1 and ec2, respectively). Yet, one practical advantage of the C 2 statistic was its good calibration with respect to the null hypothesis of no association, the corresponding p-values (assuming a χ 2 distribution with 1 degree of freedom) being close to uniform (Figure S1).Similarly, the two XtX estimators were found highly correlated (Pearson's r = 0.998) with almost confounded ROC curves, but only the XtX was properly calibrated (FigureS2). Their performances were however clearly worse than those obtained with the C 2 (and BF) statistics.This was in part explained by their inability to discriminate between the two types of selected SNPs, i.e. selected SNPs overly differentiated in ec2 generating false positives in the identification of ec1 SNPs (Figure1B) and vice versa.Accordingly, ROC AUC in Figure1Bfor the XtX were also smaller than in Figure1C, ec1 selected SNPs being more differentiated than those in ec2 due to the simulated design. Yet, the power of the XtX statistic to detect ec1 or ec2 selected SNPs remained substantially smaller than that of the corresponding C 2 contrast statistics. For instance, at the 1% p-value significance threshold, the power to detect ec1 (respectively ec2) selected SNPs was equal to 72.6% (respectively 59.1%) with the C 2 statistic and only 17.1% (respectively 10.4%) with the XtX estimator, even when considering for the latter, a unilateral test to only target overly differentiated SNPs. Note that, as expected from the good calibration of the XtX statistic, similar results were obtained when considering empirical p-value thresholds computed from the distribution of the XtX statistics estimated from neutral SNPs.
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  FIG.1. Evaluation of the performance of the C 2 contrast statistic on simulated data and comparison with the BF for association and two XtX SNP-specific differentiation estimators. A) Schematic representation of the demographic scenario used for the simulation. It consists of two successive phases: (i) a neutral divergence phase with migration (only some illustrative migration combinations being represented) leading to the differentiation of an ancestral population into 16 populations after four successive fission events (at generations t = 50, t = 150, t = 200 and t = 300); and (ii) an adaptive phase (lasting 200 generations) during which individuals were subjected to selective pressures exerted by two environmental constraints (ec1 and ec2 ) each having two possible modalities (a or b) according to their population of origin (i.e., eight possible environments in total). Out of the 5,000 simulated SNPs, the fitness of individuals in the environment of their population of origin was determined by their genotypes at 25 SNPs for ec1 and 25 SNPs for ec2 constraints. In total 100 data sets were simulated. B) and C) The ROC curves associated to the ec1 and ec2 C 2 contrasts and the two corresponding BF for association are plotted together with those associated with the two XtX estimators (i.e., posterior mean estimator XtX, and the new calibrated estimator XtX ). The FPR's associated to each statistic were obtained from the corresponding neutral SNP estimates combined over the 100 simulated data sets (n = 4,950×100 = 495,000 values in total). Similarly, the TPR's were estimated from either the n = 2,500 combined ec1 (B) or ec2 (C) selected SNPs. ROC AUC values are given between parentheses.

  FIG. 2. Description of the invasion scenarios Inv1 (A) and Inv2 (B) with values of the historical and demographical parameters used to simulated evolutionary neutral SNP data sets. The coordinates of the 22 populations on the first two axes of variation (following Singular Value Decomposition with the plot.omega function available in the BayPass package) of the scaled covariance matrix of allele frequencies Ω Inv1 (resp. Ω Inv2 ) estimated using BayPass from the SNP data simulated under Inv1 (resp. Inv2 ) are plotted in C (resp. D).

  computed within all the invasive populations was equal to 0.12 across the 162 top BF all SNPs (with a BF all > 15), close to the median computed over all the simulated SNPs, but far lower than the median computed across the 74 top C all 2 SNPs (with a C all 2 derived p-value > 10 -4 ). Accordingly, the size of the allele frequency range within the invasive populations was larger for the top C all 2 SNPs than for the top BF all SNPs (0.745 against 0.450); but the reverse was observed within native populations. In addition, the average allele frequencies of the top C all 2 SNPs were far smaller (median of 0.017) with a smaller range of variation (median of 0.070) when compared to top BF all SNPs (median of 0.251) characterized by a wider range of variation (median of 0.215), whereas the same values computed over all the SNPs were intermediary between these two extremes. Overall, these results suggest that, in such invasion scenarios, the regression analysis based on BF may be more sensitive to neutral variants common in the native populations and displaying rather homogeneous allele frequencies within the invasive populations. In contrast, the C 2 statistic appears more sensitive to variants rare in the native populations and raising to high allele frequencies with high heterogeneity in the invasive populations. Yet, correction for multiple testing on the C 2 derived p-value turned out to more efficiently control for false positive rates than standard thresholds on the BF, and this for both simulated invasion scenarios. Genome-wide scan for association with invasion success in D. suzukii To identify genomic regions associated with the invasion success of D. suzukii, we carried out a genome scan, based on the C 2 statistic, to contrast the patterns of genetic diversity among 22 populations originating from either the native (n=6 populations) or invaded areas (n=16 populations) (Figure 3A). To that end we sequenced pools of 50 to 100 individuals representative of each population (TableS2)and mapped the resulting sequencing reads onto the newly released WT3-2.0 D. suzukii genome assembly[START_REF] Paris | Near-chromosome level genome assembly of the fruit pest drosophila suzukii using long-read sequencing[END_REF]. ThesePool-Seq data allowed the characterization of 11,564,472 autosomal and 1,966,184 X-linked SNPs segregating in the 22 populations that were sub-sampled into 154 autosomal and 26 X-linked data sets (of ca. 75,000 SNPs each) for further analyses.

)

  FIG.3. Whole-genome scan for association with invasion success in D. suzukii. A) Geographic location of the 22 D. suzukii population samples genotyped using a pool-sequencing methodology. Population samples from the native range are in blue and those from the invaded range are in red (American invasion route) or light red (European invasion route)[START_REF] Fraimout | Deciphering the routes of invasion of drosophila suzukii by means of abc random forest[END_REF]. See TableS2for details on each population sample. B) Manhattan plot of the SNP q-values on a -log 10 scale derived from the estimated C 2 statistics for the native vs. invasive status contrast of the 22 worldwide D. suzukii populations. SNPs are ordered by their position on their contig of origin displayed with alternating dark blue and light blue color when autosomal and dark green and light green when X-linked. The horizontal dashed line indicates the 1% q-value threshold (here corresponding to a p-value threshold of 8.49×10 -8 ) which gives the expected FDR (False Discovery Rate), i.e., the expected proportion of false positives among the 110 SNPs (highlighted in the plot) above this threshold.

  FIG. 4. Pairwise comparison of the q-values derived from the C EU 2 (native vs. invasive D. suzuki populations of the

  found that a relatively small number of SNPs were significantly associated with the invasive status of D. suzukii populations. This may seem surprising since the binary trait under study (invasive versus native) is complex in the sense that numerous biological differences may characterize invasive and native populations. The invasion process itself, including the associated selective pressures and the genetic composition of the source populations, may actually differ depending on the considered invaded areas. Hence the small number of SNPs showing strong signals of association with the invasive status may stem from the integrative nature of our analysis over a large number of invasive populations from different invasion routes. The genomic features that may be identified under this evolutionary configuration are expected to correspond to major genetic changes instrumental to invasions shared by a majority of populations. Accordingly, it is worth noting that the independent contrast analyses of the two main invasion routes (i.e. the American and the European routes) point to substantially different subsets of SNPs significantly associated with the invasive status of the populations. This suggests that the source populations and some aspects of the invasion process differ in the two invaded areas. This could also reflect the presumably polygenic nature of the traits underlying invasion success since the evolutionary trajectories of complex traits may rely on different combination of favorable genetic variants. The availability of a high quality genome assembly of D. suzukii (Paris et al., 2020) and a large amount of genomic resources for its sister model species D. melanogaster allowed identifying a set of genes associated with the invasive status of populations. A subset of those genes was associated with physiological functions and traits previously documented in D.

  , such as a non-diapausing phenotype, are selected when a population evolves in a new habitat with low densities and low levels of competition. Common garden studies are needed to assess potential differences in key life history traits (including diapause induction and correlated traits) between native and invasive populations of D. suzukii and to evaluate to which extent these are related to the identified variants (including those within the cpo gene) differentiating the native and invasive populations of this species. The C 2 statistic we developed in the present study appears particularly well suited to search for association with population-specific binary traits. Apart from the invasive vs. native status we studied in D. suzukii , numerous examples can be found where adaptive constraints may be formulated in terms of contrasting binary population features, including individual resistance or sensibility to pathogens or hostdefense systems (e.g., Eoche-Bosy et al., 2017),

  (i.e., their full marginal distribution) and more importantly, it implicitly assumes exchangeability of SNPs both across the populations and along the genome. Such an assumption, which pertains to the null hypothesis of neutral differentiation only (and consequently of no association with binary population-specific covariable), might actually be viewed as conservative even in the presence of background LD across the populations, providing that a reasonably large number of SNPs is analyzed. Interestingly, the almost absence of clustering of associated SNPs we observed in the D. suzukii genome suggested a very limited extent of across-population LD, presumably resulting from large effective population sizes.

  Other less computationally intensive (but less flexible and versatile) approaches may be considered to estimate the C 2 statistic. For instance, the C 2 statistic is closely related to the S B statistic recently proposed by Refoyo-Martinez et al. (2019) to identify footprints of selection in admixture graphs. However, while the C 2 statistic relies on the full scaled covariance matrix of population allele frequencies (Ω), the S B statistic relies on a covariance matrix called F (Refoyo-Martinez et al., 2019) that specifies an a priori inferred admixture graph summarizing the history of the sampled populations. The covariance matrix F thus represents a simplified version of Ω that may only partially capture the covariance structure of the population allele frequencies. In addition, to compute S B , the graph root allele frequencies are estimated as the average of allele frequencies across the sampled population, which might result in biased estimates, particularly when the graph is unbalanced. Deriving the matrix F from Ω (e.g., Pickrell and Pritchard, 2012) might actually allow interpreting C 2 as a Bayesian counterpart of the S B statistic, thereby benefiting from the aforementioned advantages regarding the estimation of the parameters Ω and π and allowing proper analysis of Pool-Seq data.

  experiments) in order to inform candidate traits for which genomic associations are sought. As a matter of fact, in our association study the populations analyzed are simply classified into two categories: invasive or native. The functional and phenotypic interpretation of the signals obtained by our genome scan methods remains challenging. Such interpretation requires a good functional characterization of the genome of the studied species or, failing that, of a closely related species (i.e. D.

  We used computer simulations to evaluate the performance of the novel statistical framework described in the section New Approach. A first set of simulated data sets were generated under the SimuPOP environment[START_REF] Peng | simupop: a forwardtime population genetics simulation environment[END_REF] using individual-based forward-in-time simulations implemented on a modified version of the code developed by de Villemereuil et al. (2014) for the so-called HsIMM-C demographic scenario. This corresponded to an highly structured isolation with migration demographic model (Figure 1A) that was divided in two successive periods: (i) a neutral divergence phase leading to the differentiation of an ancestral population into 16 populations after four successive fission events (at generations t = 50, t = 150, t = 200 and t = 300); and (ii) an adaptive phase (lasting 200 generations) during which individuals of the 16 populations were subjected to selective pressures exerted by two environmental constraints (ec1 and ec2 ), each constraint having two possible modalities (a or b). We thus had a total of four possible environments in our simulation setting (Figure 1A). All the simulated populations consisted of 500 diploid individuals reproducing under randommating with non-overlapping generations. From generation t = 150 (with four populations), the migration rate m jj between two populations j and j was set to m jj = m 2 p-1 where p is the number of populations in the path connecting k to k in the population tree. The migration rate between the two ancestral populations from generation t = 50 to t = 150 was set to m = 0.005. For illustration purposes, some of the migration edges were displayed in Figure 1A. Following de Villemereuil et al. (2014), a simulated genotyping data set consisted of 320 individuals (20 per populations) that were genotyped for 5,000 bi-allelic SNPs regularly spread along ten chromosomes of one Morgan length and with a frequency of 0.5 for the reference allele (randomly chosen) in the root population. Polygenic selection acting during the adaptive phase was simulated by choosing 50 randomly distributed SNPs (among the previous 5,000 ones) that influenced individual fitness according to either the ec1 or ec2 environmental constraints (with 25 SNPs for ec1 and 25 SNPs for ec2 ). The fitness of each individual, given its genotype, can be defined at each generation. Let p(o) = j (j = 1,...,16) denote the population of origin of individual o (o = 1,...,16×500), and e k (j) = 1 (respectively e k (j) = -1) if the environmental constraint eck (k = 1,2) of population j is of type a (respectively b). Let further denote s i (k) the local selective coefficient of SNP i such that s i (k) = 0 if the SNP is neutral with respect to eck and s i (k) = 0.01 otherwise. The fitness of each individual o (at each generation) given its genotypes at all the SNPs is then defined using a cumulative multiplicative fitness function as:

  . The two scenarios roughly mimic the situation of the worldwide D. suzukii invasion (Fraimout et al., 2017) by considering two invaded areas (with eight populations sampled in each area) with two independent primary bottlenecked introductions from two different native populations (among a set of six sampled native populations). The two scenarios differ by the relationships among the invasive populations within each invaded area: i) in the scenario Inv1 each invasive population of an area derived from the same primarily introduced population with a bottleneck occurring at different time in the past, and ii) in the scenario Inv2 the invasive populations of an area are successively founded one after the other with a bottleneck event at each foundation, a process likely to favor allele surfing during geographic range expansion (Excoffier and Ray, 2008). A detailed description of the two invasion scenarios with values of the historical and demographical parameters used to simulate the two SNP data sets is provided in Figures 2A and 2B. We used the ''Simulate dataset + SNP option'' of DIYABC v2.1.0 to generate autosomal SNP genotypes (n = 50 diploid individuals sampled per population) at 250,000 loci under both the scenarios Inv1 and Inv2, following the algorithm by

  Adult D. suzukii flies were sampled in the field at a total of 22 localities (hereafter termed sample sites) distributed throughout most of the native and invasive range of the species (Fig 3A and Table

  , to activate the Pool-Seq mode of BayPass. The C W W 2 statistic for the contrast of the six native and 16 worldwide invasive populations was estimated jointly with the C EU 2 and C AM 2 statistics for the contrast of the six native and eight invasive populations of the European and American invasion routes, respectively. For these two latter estimates, this simply amounted to setting c j = 0 (see eq. 3) for all population j not considered in the corresponding contrast analysis. Finally, two additional independent runs (using optionseed ) were performed to assess reproducibility of the MCMC estimates. We found a fairly high correlation across the different independent runs (Pearson's r > 0.92 for autosomal and r > 0.87 and X-chromosome data) for the different estimators and thus only presented results from the first run. Similarly and for each chromosome type (i.e., autosomes or the X chromosome), a near perfect correlation of the posterior means of the estimated Ω matrix elements was observed across independent runs as well as within each run across SNP sub-samples, with the corresponding FMD distances (Gautier, 2015) being always smaller than 0.4. We thus only reported results regarding the Ω matrix that were obtained from a single randomly chosen sub-data set analysed in the first run. platform Toulouse Midi-Pyrenees for providing computing resources, Nicolas Rode for useful discussions and comments on a previous version of the manuscript and Nicolas Ris, Jon Koch, Masahito Kimura, Simon Fellous, Vincent Debat, Marta Pascual, Ruth Hufbauer, Marindia Depra, Isabel Martinez, Pierre Girod and Maxi Richmond for help in collecting some of the D. suzukii samples.
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Table 2 .

 2 Description of the 26 orthologous D. melanogaster genes represented by at least two of the 204 SNPs found significant for one of the three contrast analyses, C W W

2 (6 native vs. 16 invasive populations), C EU 2 (6 native vs. 8 invasive populations of the European invasion route) and C AM 2
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sequences surrounding each of the 204 SNPs identified above and aligned them onto the dmel6 reference genome [START_REF] Hoskins | The release 6 reference sequence of the drosophila melanogaster genome[END_REF] using the BLAT algorithm implemented in the program pblat [START_REF] Wang | pblat: a multithread blat algorithm speeding up aligning sequences to genomes[END_REF]. The gene annotation available from the UCSC genome browser allowed us to map 169 SNPs out of the 204 SNPs onto 130 different D. melanogaster genes, 145 SNPs lying within the gene sequences and 24 less than 2.5 kb apart (our predefined threshold; Table S3). Only one of the four SNPs significant 3B). It should be noticed that 14 of the 130 genes (ca. 11%) were long non-coding RNA. We however decided to focus on the 26 genes that were represented by at least two SNPs significant in one of the three contrast analyses; see Table 2 for details. The significant SNPs underlying the different genes tended to be very close, spanning a few bp (span > 1kb for only five genes). In particular, we observed doublet variants (i.e., adjacent SNPs in complete LD) within three genes (cpo, ome and lnc:CR45759 ).

Among these 26 candidate genes, 10 and 12 might be considered as specific to the European and American invasion routes, respectively, since they did not contain any SNP significant for the alternative contrasts. Only two genes contained SNPs significant in all three contrast analyses:

RhoGEF64C with one SNP and cpo with two SNPs. Such convergent signals of association with invasive status in the two independent invasion routes were particularly convincing. The median allele frequencies (computed from raw read counts) for the reference allele underlying the corresponding RhoGEF64C significant SNP was 0.09 (from 0.00 to 0.44) in the native populations compared to 0.93 (from 0.90 to 0.98) and 0.87 (from 0.59 to 1.00) in the invasive populations of the European and American invasion routes, respectively (Table S3). Similarly, the two SNPs significant for the three contrast analyses in the cpo gene actually formed a doublet with a median reference allele frequency of 0.20 (from 0.02 to 0.33) in the native populations compared to 0.99 (from 0.91 to 1.00, excluding the outlying Hawaiian population) in the invasive populations of the European and American invasion routes, respectively (Table S3). Finally, for both the genes RhoGEF64C and cpo, all D. suzukii extended sequences underlying the corresponding SNPs aligned within potentially rapidly evolving intronic sequences. These sequences nevertheless displayed substantial similarities with other of the mem program from the bwa 0.7.17 software [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF]Li and Durbin, 2009). Read alignments with a mapping quality Phred-score < 20 or PCR duplicates were further removed using the view (option -q 20) and markdup programs from the SAMtools 1.9 software (Li et al., 2009), respectively.

Variant calling was then performed on the resulting mpileup file using VarScan mpileup2cns for autosomal and X chromosomes, respectively (Table S2). As previously described [START_REF] Gautier | The genomic basis of color pattern polymorphism in the harlequin ladybird[END_REF], the autosomal and X-chromosome data sets were divided into sub-data sets of ca.

75,000 SNPs each (by taking one SNP every 154

SNPs and one SNPs every 26 SNPs along the underlying autosomal and X-chromosome contigs, respectively).

Genome scan analyses

All genome-wide scans were performed using an upgraded version (2.2) of BayPass [START_REF] Gautier | Genome-wide scan for adaptive divergence and association with population-specific covariates[END_REF] (available from http://www1.montpellier.inra.fr/CBGP/ software/baypass/), that includes the new C 2 and XtX statistics estimated as described in the above section New Approach. We always used