R. Vanburen, The genome of black raspberry ( Rubus occidentalis ), Plant J, vol.87, pp.535-547, 2016.

P. P. Edger, Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity, Gigascience, vol.7, pp.1-7, 2018.

N. Daccord, High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development, Nat. Genet, vol.49, pp.1099-1106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602554

Y. Van-de-peer, Size does matter, Nat. Plants, vol.4, pp.859-860, 2018.

D. Micheletti, Genetic diversity of the genus Malus and implications for linkage mapping with SNPs, Tree Genet. Genomes, vol.7, pp.857-868, 2011.

X. Xu, Genome sequence and analysis of the tuber crop potato, Nature, vol.475, pp.189-195, 2011.

N. A. Eckardt, Sequencing the rice genome, Plant Cell, vol.12, 2000.

G. Haberer, Structure and Architecture of the Maize Genome, PLANT Physiol, vol.139, pp.1612-1624, 2005.

R. Velasco, The genome of the domesticated apple (Malus × domestica Borkh, Nat. Genet, vol.42, pp.833-839, 2010.

J. Wu, The genome of the pear (Pyrus bretschneideri Rehd

, Genome Res, vol.23, pp.396-408, 2013.

D. Chagné, The Draft Genome Sequence of European Pear (Pyrus communis L, PLoS One, vol.9, p.92644, 2014.

L. Bouvier, Chromosome doubling of pear haploid plants and homozygosity Version postprint Comment citer ce document

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid "Bartlett" pear (Pyrus assessment using isozyme and microsatellite markers, Euphytica, vol.123, pp.255-262, 2002.

A. Chakravarti, A graphical representation of genetic and physical maps: the Marey map, Genomics, vol.11, pp.219-241, 1991.

S. Koren, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res, vol.27, pp.722-736, 2017.

C. Chin, Phased diploid genome assembly with single-molecule real-time sequencing, Nat. Methods, vol.13, pp.1050-1054, 2016.

I. Verde, The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution, Nat. Genet, vol.45, pp.487-494, 2013.

O. Raymond, The Rosa genome provides new insights into the domestication of modern roses, Nat. Genet, vol.50, pp.772-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01798003

T. F. Characterization and G. G. , The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, vol.449, pp.463-467, 2007.

, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, vol.408, pp.796-815, 2000.

G. Gremme, V. Brendel, M. E. Sparks, and S. Kurtz, Engineering a software tool for gene structure prediction in higher organisms, Inf. Softw. Technol, vol.47, pp.965-978, 2005.

S. M. Pilkington, A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants, BMC Genomics, vol.19, p.257, 2018.

L. Sterck, K. Billiau, T. Abeel, P. Rouzé, and Y. Van-de-peer, ORCAE: online resource for community annotation of eukaryotes, Nat. Methods, vol.9, pp.1041-1041, 2012.

M. Van-bel, TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes, Genome Biol, vol.14, p.134, 2013.

C. P. Peace, Apple whole genome sequences: recent advances and new prospects, Hortic. Res, vol.6, p.59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02348055

L. Bouvier, Y. Zhang, and Y. Lespinasse, Two methods of haploidization in pear, Pyrus communis L.: greenhouse seedling selection and in situ parthenogenesis induced by irradiated pollen, Theor. Appl. Genet, vol.87, pp.229-232, 1993.

L. Bouvier, F. R. Fillon, and Y. Lespinasse, Oryzalin as an Efficient Agent for Chromosome Doubling of Haploid Apple Shoots in vitro, Plant Breed, vol.113, pp.343-346, 1994.

M. Jaskiewicz, C. Peterhansel, and U. Conrath, Detection of Histone Modifications in Plant Leaves, J. Vis. Exp, 2011.

C. Liu, Y. Cheng, J. Wang, and D. Weigel, Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis, Nat. Plants, vol.3, pp.742-748, 2017.

D. Mapleson, G. Garcia-accinelli, G. Kettleborough, J. Wright, and B. J. Clavijo, KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies, Bioinformatics, vol.33, pp.574-576, 2017.

D. Kim, B. Langmead, and S. L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods, vol.12, pp.357-360, 2015.

, EvidentialGene: mRNA Transcript Assembly Software. Available at, p.16, 2019.

W. J. Kent, BLAT---The BLAST-Like Alignment Tool, Genome Res, vol.12, pp.656-664, 2002.

S. Montanari, Development of a highly efficient Axiom TM 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization

J. W. Van-ooijen, JoinMap® 4.0: software for the calculation of genetic linkage maps Version postprint Comment citer ce document

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02563877

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

J. N. Burton, Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions, Nat. Biotechnol, vol.31, pp.1119-1125, 2013.

R. Luo, SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, Gigascience, vol.1, p.18, 2012.

D. E. Wood and S. L. Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biol, vol.15, p.46, 2014.

W. Bao, K. K. Kojima, and O. Kohany, Repbase Update, a database of repetitive elements in eukaryotic genomes, Mob. DNA, vol.6, p.11, 2015.

A. Smit, R. Hubley, and P. Grenn,

B. J. Haas, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc, vol.8, pp.1494-1512, 2013.

C. Trapnell, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc, vol.7, pp.562-578, 2012.

M. G. Grabherr, Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol, vol.29, pp.644-652, 2011.

. Transdecoder,

M. Stanke, M. Diekhans, R. Baertsch, and D. Haussler, Using native and syntenically mapped cDNA alignments to improve de novo gene finding, Bioinformatics, vol.24, pp.637-644, 2008.

S. Foissac, Genome Annotation in Plants and Fungi: EuGène as a Model Platform, Current Bioinformatics, vol.3, 2008.

S. Degroeve, Y. Saeys, B. De-baets, P. Rouze, and Y. Van-de-peer, SpliceMachine: predicting splice sites from high-dimensional local context representations, Bioinformatics, vol.21, pp.1332-1338, 2005.

B. J. Haas, Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies, Nucleic Acids Res, vol.31, pp.5654-66, 2003.

B. J. Haas, Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments, Genome Biol, vol.9, p.7, 2008.

K. Vanneste, Y. Van-de-peer, and S. Maere, Inference of Genome Duplications from Age Distributions Revisited, Mol. Biol. Evol, vol.30, pp.177-190, 2013.

S. Guindon, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

A. J. Enright, S. Van-dongen, and C. A. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Res, vol.30, pp.1575-84, 2002.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

N. Goldman and Z. Yang, A codon-based model of nucleotide substitution for proteincoding DNA sequences, Mol. Biol. Evol, vol.11, pp.725-761, 1994.

Z. Yang, Phylogenetic Analysis by Maximum Likelihood, Mol. Biol. Evol, vol.4, pp.1586-1591, 2007.

G. Ostlund, InParanoid 7: new algorithms and tools for eukaryotic orthology analysis, Nucleic Acids Res, vol.38, pp.196-203, 2010.

D. M. Emms and S. Kelly, OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy, Genome Biol, vol.16, p.157, 2015.

Y. Wang, MCScanX: a toolkit for detection and evolutionary analysis of gene Version postprint Comment citer ce document

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid "Bartlett" pear (Pyrus synteny and collinearity, Nucleic Acids Res, vol.40, pp.49-49, 2012.

F. Cabanettes and C. Klopp, D-GENIES: dot plot large genomes in an interactive, efficient and simple way, PeerJ, vol.6, p.4958, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625819

, Comment citer ce document

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid, Troggio, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02563877

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid, Troggio, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02563877

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid, Troggio, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02563877

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., Pseudo-chromosome-length genome assembly of a double haploid, Troggio, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02563877

G. Linsmith, S. Rombauts, S. Montanari, C. H. Deng, J. Celton et al., , 2019.