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STUDY OF PERFORMANCE CRITERIA OF SERIAL CONFIGURATION OF 1

TWO CHEMOSTATS 2

MANEL DALI YOUCEF, ALAIN RAPAPORT AND TEWFIK SARI 3

Abstract. This paper deals with thorough analysis of serial configurations of two chemostats.
We establish an in-depth mathematical study of all possible steady states, and we compare
the performances of the two serial interconnected chemostats with the performances of a
single one. The comparison is evaluated under three different criteria. We analyze pursuant
to the minimization of the output substrate concentration, the productivity of the biomass
and the biogas flow rate. We determine specific conditions, which depend on the biological
parameters, the operating parameters of the model and the distribution of the total volume.
These necessary and sufficient conditions provide the most efficient serial configuration of
two chemostats versus one. Complementarily, this mainly helps to discern when it is not
advisable to use the serial configuration instead of a simple chemostat, depending on: the
considered criterion, the operating parameters fixed by the operator and the distribution of
the volumes into the two tanks.

1. Introduction 4

The chemostat device was invented concomitantly by Monod [1] and Novick & Szi- 5

lard [2] in 1950. Widely used as a biochemical laboratory-pilot, it consists essentially in a 6

continuously-fed bioreactor characterized by the equality of the input and the output flow 7

rates. It is designed as a vessel in which different microorganisms grow, also called con- 8

tinuous culture of microorganisms. Its importance for the continuous culture of microor- 9

ganisms has been reported in several books and publications, among them [3, 4, 5, 6, 7]. 10

In other words, the classical model of the chemostat consists of a perfect mixed media at a 11

constant temperature, a constant pH, a filtered feed and a unique flow rate. Although this 12

model is used for industrial applications with continuously-fed bioreactors such as waste- 13

water treatment, see for instance [8], in physical reality, industrial applications which use 14

large bioreactors hardly satisfy the assumption of the perfect mixed media. Several mathe- 15

matical representations of the spatial heterogeneity have been studied in the literature with 16

partial differential equations, see for instance [9, 10]. However, discrete spatial representa- 17

tions, such as the gradostat model [6, 11], are also a way to represent spatial heterogeneity 18

[12, 13, 14]. Serial configurations, as a simple gradostat, have received a great interest in 19

the literature in view of optimizing bioprocesses. Indeed, it has been shown that having 20

two tanks (or more) in series (each of them being assumed to be perfectly mixed) can pro- 21

duce the same substrate conversion than a single vessel, but with a significant lower total 22

volume, and thus a lower residence time. Serial configurations have been also studied in 23

view of ecological insight, see for instance [15, 16]. In this paper, we propose to revisit the 24

serial configuration of two chemostats in series with a constant total volume V , as shown in 25

Figure 1. We focus on the analysis of the performance at steady-state for different criteria 26

with the aim of drawing comparisons with the single chemostat. Notice that these different 27

criteria of comparison are known in the literature, see for instance [3]. However, to our 28

knowledge, a complete and deep analysis of all possible configurations for a general class 29
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of growth functions and the various criteria is missing in the literature, which is the aim of30

the present work.31

It is well known [4, 6] that, for the simple chemostat, the output concentration at steady32

steady S out is independent of the input concentration S in, provided that there is no washout,33

see also (2.5). This property is no longer satisfied when there is a spatial structure, see for34

instance [15] and the references therein. Since S out measures the performances of the35

chemostat to convert the substrate S , our purpose is to distinguish which configuration36

guarantees the minimal output substrate concentration at steady state. Actually, reducing37

the output substrate concentration is one of the biological objectives in waste-water treat-38

ments and this minimizing problem is well known in the literature. The novelty of our39

work is that S out is considered as a function which depends on the three operating parame-40

ters: the input substrate concentration, the dilution rate and the volume of each chemostat.41

In fact, what has already been treated, see for instance [17, 18, 19], corresponds to the case42

where the input substrate concentration S in is fixed and the total volume V can be chosen.43

Thus, we give conditions which involve the input substrate concentration S in and ensure44

the optimal way to slice the two serial reactors volume. These conditions can ensure a45

lower output substrate concentration.46

Our study is somehow a generalization of the main results presented in [16]. The condi-47

tions that we found are necessary and sufficient to reduce the output substrate concentration48

in contrast of the result in [16] where the given conditions are only sufficient. In addition,49

the originality of this article consists in comparing both configurations according to two50

other performance indexes which are the productivity of the biomass and the biogas flow51

rate. The biogas flow rate represents the quantity of natural gas per unit of time produced52

by the decomposition of organic matter in absence of oxygen and the productivity of the53

biomass represents the amount of biomass per unit of time produced by the decomposi-54

tion of organic matter. The productivity of the biomass of several configurations including55

the serial device of two interconnected chemostats has been graphically and numerically56

analyzed in [12, 20]. However, these two criteria have not yet been deeply mathemati-57

cally analyzed. The global analysis shows that the different performance criteria involve58

the same performance threshold. This threshold is explicitly defined by a function which59

depends on the dilution rate D. It defines the set of the values of S in and D that allow or not60

a better performance of the serial configuration with two chemostats. Several numerical61

applications are given to illustrate all the results of the study.62

This paper is organized as follows. Section 2 presents the model. Subsequently, the63

main part of the paper constituting Section 3 is dedicated to the study of the equilibria and64

the performance analysis of the configuration. Indeed, the output substrate concentration,65

the productivity of the biomass and the biogas flow rate are respectively treated in Sections66

3.1, 3.2 and 3.3. Next, the operating diagram of the model is depicted in Section 4. After-67

wards, several numerical simulations illustrating the results of our analysis and using some68

specific growth functions are represented in Section 5. Finally, Section 6 contains a global69

conclusion. Most of the proofs corresponding of the theorems and propositions stated70

along the paper are proved in Appendixes A, B, C and D. Firstly, Appendix A contains71

the proof related to the existence and the stability of steady states. Secondly, Appendixes72

B and C contain respectively the proofs related to the output substrate concentration, the73

productivity of the biomass and the biogas flow rate. Finally, Appendix D contains proofs74

related to some of technical results of the paper.75
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2. Mathematical model 76

If S and X denote respectively the substrate and the biomass concentration in a single 77

chemostat of volume V , the input flow rate Q and the input concentration of substrate S in, 78

their time evolution are modeled by the following system of ordinary differential equations: 79

(2.1) Ṡ = D
(
S in − S

)
− f (S ) X/Y

Ẋ = −DX + f (S ) X

where Y is the yield conversion of substrate into biomass, f (·) the specific growth rate of 80

the microorganisms that is assumed null at S = 0 and to be increasing for S > 0, and 81

D = Q/V is the dilution rate. Without loss of generality, one can assume Y = 1 in equation 82

(2.1) by using the change of variable x = X/Y . System (2.1) become 83

(2.2) Ṡ = D
(
S in − S

)
− f (S ) x

ẋ = −Dx + f (S ) x

The detailed mathematical analysis of the model (2.2) may be found in [4, 6]. Let us recall 84

classical results about the asymptotic behavior of (2.2). We define 85

(2.3) m := sup
S>0

f (S ), (m may be +∞).

As f is increasing then the break-even concentration is defined by 86

(2.4) λ(D) = f −1(D) when 0 ≤ D < m.

When S in > λ(D) (or, equivalently, f
(
S in

)
> D), any solution of (2.2) with S (0) ≥ 0 87

and x(0) > 0 converges toward the positive steady state E1 =
(
λ(D), S in − λ(D)

)
. On the 88

contrary, when D ≥ m or S in ≤ λ(D) (or, equivalently, f
(
S in

)
≤ D), any solution of (2.2) 89

with S (0) ≥ 0 and x(0) ≥ 0 converges toward the wash-out steady state E0 =
(
S in, 0

)
. 90

Thus, the output concentration at steady state S out(S in,D) is given by 91

(2.5) S out
(
S in,D

)
=

 S in if D ≥ f
(
S in

)
λ (D) if D < f

(
S in

)
We consider now the serial interconnected chemostats, where the volume V is divided into 92

two volumes, rV and (1 − r)V with r ∈ (0, 1), as shown in Figure 1, with Q the flow rate 93

and S in the input substrate concentration in the first chemostat. The mathematical model 94

is given by the following equations: 95

(2.6)

Ṡ 1 = D
r (S in − S 1) − f (S 1) x1

ẋ1 = −D
r x1 + f (S 1)x1

Ṡ 2 = D
1−r (S 1 − S 2) − f (S 2)x2

ẋ2 = D
1−r (x1 − x2) + f (S 2)x2

The dilution rate D is defined by D = Q/V . For the limiting cases r = 0 and r = 1, 96

these equations are not valid. Indeed, the limiting cases correspond to the single chemostat 97

model defined by (2.2). 98

99

In [16], the mathematical analysis of (2.6) was performed for a linear growth function 100

f (S ) = aS (a > 0) and numerical simulations were given for a Monod growth function 101

f (S ) = mS/(K + S ). The results of [16] were extended to Monod growth function and for 102

increasing and concave growth function in [21]. 103
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S in

Q

Q

Q

rV (1 − r)V

S out
r

(
S in,D

)

S 1
x1

S 2
x2

Figure 1. The serial configuration of two chemostats. The output sub-
strate concentration at steady state S out

r measures the performance of the
system to convert the substrate S in.

Remark 1. The main result in [16, 21], see also [15], predicts that there exists a threshold104

S in
1 such that for S in ≤ S in

1 , the output S out
r

(
S in,D

)
, which is the output density of the105

substrate at steady state, satisfies S out
r (S in,D) > λ(D), for all r ∈ (0, 1) and, if S in > S in

1 ,106

there exists a threshold r1 ∈ (0, 1), such that S out
r (S in,D) < λ(D) if and only if r1 < r < 1.107

As it was noticed in (2.5), for a single chemostat, one has S out(S in,D) = λ(D). There-108

fore, if S in ≤ S in
1 , the serial configuration is always less efficient than the single chemostat109

of the same total volume V . In contrast, for S in > S in
1 and r large enough (i.e. r > r1), the110

serial configuration is more efficient than the single chemostat.111

In this paper, we extend this result to general increasing growth functions where the con-112

cavity of f is not required and we provide explicit formulas for the thresholds S in
1 (D) and113

r1

(
S in,D

)
. Hence, we consider a growth function satisfying only the following qualitative114

property:115

Assumption 1. The function f is C1, with f (0) = 0 and f ′(S ) > 0 for all S > 0.116

The following result is classical in the mathematical theory of the chemostat and is left117

to the reader.118

Lemma 1. The solutions (S 1(t), x1(t), S 2(t), x2(t)) of (2.6) with nonnegative initial condi-119

tions, exist for all t ≥ 0, are positive, bounded and lim
t→+∞

(S i(t) + xi(t)) = S in for i = 1, 2.120

121

The existence and stability of steady states of (2.6) are given by the following result.122

We use the abbreviation LES for locally exponentially stable and GAS for globally asymp-123

totically stable in the positive orthant.124

Theorem 1. Assume that Assumption 1 is satisfied. The steady states of (2.6) are:125

• The washout steady state E0 = (S in, 0, S in, 0) which always exists. It is GAS if and126

only if127

(2.7) D ≥ max{r, 1 − r} f (S in).

It is LES if and only if: D > max{r, 1 − r} f (S in).128
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• The steady state E1 =
(
S in, 0, S 2, S in − S 2

)
of washout in the first chemostat but 129

not in the second one, where S 2 is given by S 2 = λ (D/(1 − r)). This steady state 130

exists if and only if D < (1 − r) f (S in). It is GAS if and only if 131

(2.8) r f (S in) ≤ D < (1 − r) f (S in).

It is LES if and only if: r f (S in) < D < (1 − r) f (S in). 132

• The steady state E2 = (S ∗1, S
in − S ∗1, S

∗
2, S

in − S ∗2) of persistence of the species in 133

both chemostats, where S ∗1 is given by S ∗1 = λ (D/r) and S ∗2 = S ∗2(S in,D, r) is the 134

unique solution of the equation 135

(2.9) h(S 2) = f (S 2) with h(S 2) =
D

(
S ∗1 − S 2

)
(1 − r)

(
S in − S 2

) .
This steady state exists if and only if D < r f (S in). It is GAS and LES whenever it 136

exists. 137

Proof. The proof is given in Appendix A. � 138

Remark 2. Transcritical bifurcations occur in the limit cases D = r f (S in) and D = (1 − 139

r) f (S in). 140

(1) For 0 < r < 1/2, we have a transcritical bifurcation of E0 and E1 when D = 141

(1 − r) f (S in) and a transcritical bifurcation of E1 and E2 when D = r f (S in). 142

(2) For 1/2 < r < 1, we have a transcritical bifurcation of E0 and E2 when D = 143

r f (S in) and a transcritical bifurcation of E0 and E1 when D = (1 − r) f (S in). 144

(3) For r = 1/2 and D = f (S in)/2, we have transcritical bifurcations of E0 and E1, 145

and E0 and E2, simultaneously. 146

y

0
S 2

S ∗1S ∗2

y = f (S 2)

y = h(S 2)
DS ∗1

(1−r)S in

(a)

S 2

y

0 S ∗1

DS ∗1
(1−r)S in,2

DS ∗1
(1−r)S in,1

y = f (S 2)

y = h2(S 2)

y = h1(S 2)

S ∗12 S ∗22 (b)

Figure 2. (a): Graphical illustration of equation (2.9). (b): The result of
Proposition 1 with S ∗i2 = S ∗2(S in,i,D, r), i = 1, 2.

Figure 2 (a) shows the functions f and h and the solution S ∗2 = S ∗2(S in,D, r) of the 147

equation (2.9), which is unique since f is strictly increasing and the graph of h is a hyper- 148

bola. If S in,1 > S in,2, then hi(S 2) =
D(S ∗1−S 2)

(1−r)(S in,i−S 2) , i = 1, 2, satisfies h2(S 2) > h1(S 2), for all 149

S 2 ∈ (0, S ∗1), as shown in Figure 2 (b). Therefore, we have the following result: 150

Proposition 1. Let S in,1 and S in,2 be two different input substrate concentrations. If S in,1 > 151

S in,2 > 0 then for all r ∈
(
D/ f (S in,2), 1

)
and D > 0, one has S ∗2(S in,1,D, r) < S ∗2(S in,2,D, r). 152

153
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Proof. The proof is given in Appendix B.1. �154

3. The three performance criteria155

In this section we give the expressions of the output substrate concentration at steady156

state, the productivity of the biomass and the biogas flow rate, for the serial configuration157

of two chemostats.158

3.1. Output substrate concentration. Let us consider the dependency of the output sub-159

strate concentration with respect to the dilution rate D and the input concentration S in. As160

stated in Theorem 1, for 0 < r < 1, the output substrate concentration at steady state is161

given by the formulas:162

(3.1) S out
r (S in,D) =


S in if max{r, 1 − r} f (S in) ≤ D
λ(D/(1 − r)) if r f (S in) ≤ D ≤ (1 − r) f (S in)
S ∗2(S in,D, r) if D < r f (S in).

Although S out
r (S in,D) is defined by (3.1) only for 0 < r < 1, we extend it, by continuity,163

for r = 0 and r = 1 by164

(3.2) S out
0 (S in,D) = S out

1 (S in,D) = S out(S in,D).

The continuity follows from the facts that limr→1 S ∗2(S in,D, r) = λ(D) and the second case,165

where S out
r (S in,D) = λ(D/(1 − r)), is possible only if 0 ≤ r ≤ 1/2.166

We have to compare S out
r (S in,D), given by (3.1) and (3.2), with S out(S in,D), given by167

(2.5). Let r ∈ (0, 1) be fixed. Let gr : [0, rm) → R, where m is given by (2.3), be defined168

by169

(3.3) gr(D) = λ (D) +
λ(D/r) − λ (D)

1 − r
.

The following result asserts that the serial configuration of two chemostats of volumes rV170

and (1 − r)V respectively, shown in Figure 1, is more efficient than the simple chemostat171

of volume V , if and only if S in > gr(D).172

Theorem 2. For any r ∈ (0, 1), one has S out
r (S in,D) < S out(S in,D) if and only if S in >173

gr(D).174

Proof. The proof is given in Appendix B.2 �175

We need the following assumption, which is satisfied by any concave growth function,176

but also by Hill function, which is not concave, as it is shown in Section 5.177

Assumption 2. For every D ∈ [0,m), the function r ∈ (D/m, 1) 7→ gr(D) ∈ R is strictly178

decreasing.179

Let g : [0,m[ 7→ R be defined by180

(3.4) g(D) = λ (D) +
D

f ′ (λ (D))
.

We have the following result:181

Lemma 2. Assume that Assumptions 1 and 2 are satisfied. For all (S in,D) verifying the182

condition S in > g(D), there exists a unique r1 = r1(S in,D) ∈ (0, 1) such that S in = gr1 (D).183

One has r > r1(S in,D) if and only if S in > gr(D).184

Proof. The proof is given in Appendix B.3. �185
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We can state now our main result which compares S out
r (S in,D) and S out(S in,D). 186

Theorem 3. Assume that Assumptions 1 and 2 are satisfied. 187

• If S in ≤ g(D) then for any r ∈ (0, 1), S out
r (S in,D) > S out(S in,D). 188

• If S in > g(D) then S out
r (S in,D) < S out(S in,D) if and only if r1(S in,D) < r < 1 with 189

r1(S in,D) defined in Lemma 2. 190

The equality is fulfilled for r = 0, r = r1 and r = 1. 191

Proof. The proof is given in Appendix B.4. � 192

Lemma 2 and Theorem 3 give analytical expression for the thresholds S in
1 and r1 men- 193

tioned in Remark 1. Indeed, we have S in
1 = g(D) and r1 depends on D and S in, and is given 194

implicitly by equation S in = gr1 (D). In Section 5, we give explicit formulas for r1(S in,D) 195

in the cases of linear growth functions, see (5.1), or Monod growth functions, see (5.2). 196

To have a better understanding of the role of the parameter r, we also analyze the function 197

r 7→ S out
r (S in,D) when S in and D are fixed. According to the conditions on S in and D, 198

related to the global stability of the equilibria, several cases must be distinguished. The 199

following result encompasses the whole possible cases. 200

Proposition 2. Let D > 0 and S in > 0. We denote by r0 the ratio r0 = D/ f (S in). 201

1) If S in ≤ λ(D) then for any r ∈ [0, 1], one has S out
r (S in,D) = S out(S in,D) = S in. 202

2) If λ(D) < S in < λ(2D) then one has 1
2 < r0 < 1 and 203

(3.5) S out
r (S in,D) =


λ(D/(1 − r)) if 0 ≤ r ≤ 1 − r0
S in if 1 − r0 ≤ r ≤ r0
S ∗2(S in,D, r) if r0 ≤ r ≤ 1

3) If λ(2D) ≤ S in then one has 0 < r0 ≤
1
2 and 204

(3.6) S out
r (S in,D) =

{
λ(D/(1 − r)) if 0 ≤ r ≤ r0
S ∗2(S in,D, r) if r0 ≤ r ≤ 1

Proof. The proof is given in Appendix B.5. � 205

For a deeper analysis, we consider the functions D 7→ S out
r (S in,D) and D 7→ S out(S in,D) 206

where we fix the input substrate density S in and the parameter r. We add the following 207

assumption, which is satisfied by concave growth functions and also by Hill functions as it 208

is shown in Section 5. 209

Assumption 3. For every r ∈ (0, 1), the function D ∈ (0, rm) 7→ gr(D) ∈ R is strictly 210

increasing. 211

We have the following result: 212

Proposition 3. Assume that Assumptions 1 and 3 are satisfied. For any r ∈ (0, 1) and 213

S in > 0, there exists a critical value Dr = Dr(S in), which is the unique solution of the 214

implicit equation S in = gr(D), such that the serial configuration of two interconnected 215

chemostats is more efficient than a simple chemostat if and only if 0 < D < Dr(S in). That 216

is to say, for any 0 < D < Dr(S in), one has S out
r (S in,D) < S out(S in,D). 217

Proof. The proof is given in Appendix B.6. � 218

The result of Proposition 3 is illustrated by Figure 3. In this figure the critical value 219

Dr = Dr(S in) is depicted for various value of r and S in, illustrating then Proposition 1 220

which assert that, for a fixed dilution rate D, the output substrate concentration decreases 221
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D

S out, S out
r

S in,1

S in,2

f (S in,1)f (S in,2)0 D1
rD2

r
(a) 0 < r < 1

2

D

S out, S out
r

S in,1

S in,2

0 f (S in,1)f (S in,2)D1
rD2

r
(b) 1

2 < r < 1
Figure 3. The output substrate concentration of the serial device and the
simple chemostat are respectively represented by the red and the blue
curves. Di

r is the implicit solution of S in,i = gr(D), i = 1, 2. The output
substrate concentration of the serial device (in red) decreases as S in in-
creases.

when increasing S in increases.222

223

The following Lemmas 3 and 4 provide sufficient conditions for Assumption 2 and 3 to224

be satisfied. These conditions are useful for the applications given in section 5. For this225

purpose we consider the function γ defined by226

(3.7) γ(r,D) = gr(D) where dom(γ) = {(r,D) : 0 < r < 1, 0 < D < rm},

which consists simply in considering gr(D), given by (3.3), as a function of both variables227

r and D. If ∂γ
∂r (r,D) < 0 for all (r,D) ∈ dom(γ), then Assumption 2 is satisfied. Similarly, if228

∂γ
∂D (r,D) > 0 for all (r,D) ∈ dom(γ), then Assumption 3 is satisfied. The following lemmas229

gives equivalent conditions, and also sufficient conditions, for partial γ derivatives to have230

their signs as indicated above.231

Lemma 3. For D ∈ (0,m), let lD be defined on (D/m, 1] by lD(r) = λ(D/r). The following232

conditions are equivalent233

(1) For all (r,D) ∈ dom(γ), ∂γ
∂r (r,D) < 0.234

(2) For all D ∈ (0,m) and r ∈ (D/m, 1), lD(1) > lD(r) + (1 − r)l′D(r).235

If lD is strictly convex on (D/m, 1], then the condition 2 is satisfied. If, in addition, f is236

twice derivable, then lD is twice derivable and the following conditions are equivalent237

(1) For all D ∈ (0,m) and r ∈ (D/m, 1], l′′D(r) > 0.238

(2) For all S > 0, f (S ) f ′′(S ) < 2 ( f ′(S ))2.239

Proof. The proof is given in Appendix D.1. �240

Lemma 4. The following conditions are equivalent241

(1) For all (r,D) ∈ dom(γ), ∂γ
∂D (r,D) > 0.242

(2) For all (r,D) ∈ dom(γ), f ′ (λ(D/r)) < f ′ (λ(D)) /r2.243

If f ′ is decreasing, then the condition 2 is satisfied.244

Proof. The proof is given in Appendix D.2. �245
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Remark 3. If the growth function is twice derivable and satisfies f ′′(S ) ≤ 0 for all S > 0, 246

then the condition 4 in Lemma 3 and the condition 2 in Lemma 4 are satisfied. Thus, As- 247

sumptions 2 and 3 are satisfied. Therefore, our results apply for concave growth functions. 248

The previous lemmas allow to consider a non-concave growth function such as the Hill 249

function as shown in Section 5.3. 250

3.2. Biomass productivity. Let us consider the dependency of the productivity of the 251

biomass with respect to the dilution rate D and the input concentration S in. Recall that for 252

a simple chemostat the output biomass at steady state is given by xout = S in − S out. Thus, 253

the productivity of a single chemostat is defined by 254

(3.8) P(S in,D) := Qxout(S in,D) =

{
0 if D ≥ f (S in)
VD(S in − λ(D)) if D < f (S in)

Let Dopt(S in) be the dilution rate which maximizes P(S in,D) i.e. 255

(3.9) Dopt(S in) := argmax
0≤D≤ f (S in)

P(S in,D).

Assumption 4. The dilution rate Dopt(S in) defined by (3.9) is unique. 256

Proposition 4. The dilution rate Dopt(S in) defined by (3.9) is the solution of equation 257

S in = g(D) where g is defined by (3.4). 258

Proof. The proof is given in Appendix C.1. � 259

The productivity of the two serial interconnected chemostats at steady-state is 260

(3.10) Pr(S in,D) := Qxout
r (S in,D).

Using the definitions (3.1) of S out
r (S in,D) and xout

r = S in − S out
r , for r ∈ (0, 1), we have 261

(3.11) Pr(S in,D) =


0 if max{r, 1 − r} f (S in) ≤ D
VD

(
S in − λ(D/(1 − r))

)
if r f (S in) ≤ D ≤ (1 − r) f (S in)

VD
(
S in − S ∗2

(
S in,D, r

))
if D < r f (S in)

and Pr(S in,D) = P(S in,D), when r = 0 and r = 1. As a consequence of Theorem 3 we 262

obtain the following result. 263

Corollary 1. Assume that Assumptions 1 and 2 are satisfied. 264

• If S in ≤ g(D) then for any r ∈ (0, 1), Pr(S in,D) < P(S in,D). 265

• If S in > g(D) then Pr(S in,D) > P(S in,D) if and only if r ∈ (r1, 1), where r1 = 266

r1(S in,D) is the unique solution of S in = gr(D) 267

and Pr(S in,D) = P(S in,D) for r = 0, r = r1 and r = 1. 268

Proof. The proof is given in Appendix C.2. � 269

This Corollary ensures that if S in > g(D) and for any r1 < r < 1, the productivity of the 270

biomass of the serial configuration is larger than the one of the simple chemostat. These 271

conditions, related to the productivity of the biomass, are the same conditions that arose 272

in the case of the minimization of the output substrate concentration, see Section 3.1. We 273

illustrate this Corollary in Section 4 in Figure 8. 274
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3.3. Biogas flow rate. Let us consider the dependency of the biogas flow rate with respect275

to the dilution rate D and the input concentration S in. Recall that for a simple chemostat276

the output biomass at steady state is given by xout = S in − S out. Classically, the biogas flow277

rate at steady-state of the simple chemostat model is given by278

(3.12) G
(
S in,D

)
:= V xout f (S out) =

 0 if D ≥ f
(
S in

)
VD

(
S in − λ (D)

)
if D < f

(
S in

)
The biogas flow rate of the serial configuration of two chemostats is the sum with the279

same propositional coefficient kept equal to one280

(3.13) Gr

(
S in,D

)
:=

2∑
i=1

Vixout,i f (S out,i).

with Vi the volume, xout,i the output steady-state biomass and S out,i the output steady-state281

substrate concentration, all corresponding to the tank i = 1, 2. In this respect, for r = 0 and282

r = 1 we have Gr

(
S in,D

)
= G(S in,D) and when r ∈ (0, 1) it is formulated by283

(3.14)

Gr

(
S in,D

)
=


0 if max{r, 1 − r} f (S in) ≤ D
VD

(
S in − λ(D/(1 − r))

)
if r f (S in) ≤ D ≤ (1 − r) f (S in))

VD
(
S in − λ(D/r)

)
+ V(1 − r) f

(
S ∗2

) (
S in − S ∗2

)
if D < r f (S in)

Proposition 5. For any D ∈ [0,m[, S in > 0 and r ∈ (0, 1), one has Gr(S in,D) = Pr(S in,D).284

285

Proof. The proof is given in Appendix C.3. �286

We know that for a single chemostat, the biogas flow rate and the productivity of the287

biomass at steady state are identical. Proposition 5 asserts this same conclusion in the288

case of two serial interconnected chemostats. Thereby, we deduce that analyzing the pro-289

ductivity of the biomass or the biogas flow rate at the steady state of two interconnected290

chemostats are equivalent. In this respect, Corollary 1 and the following result are verified291

for both performance criteria.292

Proposition 6. Let S in > 0. Let Gmax(S in) = maxD∈(0, f (S in)) G(S in,D). For any D > 0 and293

r ∈ (0, 1), one has Gr(S in,D) < Gmax(S in).294

Proof. The proof is given in Appendix C.4 . �295

The two functions D 7→ Gr(S in,D) and D 7→ G(S in,D) are depicted in Figure 4. It296

shows that, for fixed values S in and r, the biogas production of the serial configuration297

of two chemostats is more efficient than the one of the single chemostat if and only if298

0 < D < Dr with Dr solution of S in = gr(D), as it was proved in Proposition 3. In addition,299

Proposition 6 guarantees that the biogas flow rate of the serial device will never exceed the300

maximal biogas flow rate of the single chemostat. In other words, the extrema of the blue301

curve of the serial configuration will never exceed the extremum of the black curve of the302

simple chemostat.303

This result has been graphically shown in [12] and [20] for the productivity of the304

biomass in the particular case of the Monod growth function. The simulations depicted305

in these references predicted that spatialization as we proposed it, does not give a better306

productivity of the biomass than a simple chemostat. According to Proposition 5, we know307

that at steady-state, the biogas flow rate and the productivity of the biomass are the same,308
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D
0

G,Gr

Dr
(a) 0 < r < 1

2

D
0

G,Gr

Dr
(b) r = 1

2

D
0

G,Gr

Dr
(c) 1

2 < r < 1
Figure 4. The biogas flow rate of the serial configuration of two
chemostats (in light blue) and the one of the single chemostat (in black).

which explains why predictions of the authors of [12] and [20] correspond to Proposition 309

6. 310

4. Operating Diagram 311

The operating diagram is the bifurcation diagram for which the values of the biological 312

parameters are fixed. The various regions of the operating diagram reflect qualitatively 313

different dynamics. The operating parameters which are the input concentration S in and 314

the dilution rate D of the chemostat can be chosen by the practitioners and the behavior 315

of the model is discussed with respect to them. In contrast, the biological parameters are 316

the ones of the growth function since they depend on the organisms, the substrates and the 317

conversion rate Y , and are usually estimated in the laboratory. 318

Let the curves Φr and Φ1−r in the (S in,D) positive plane be defined by 319

(4.1) Φr :=
{(

S in,D
)

: D = r f (S in)
}

and Φ1−r :=
{(

S in,D
)

: D = (1 − r) f (S in)
}
.

The curves Φr and Φ1−r split the positive plane (S in,D) in several regions denoted I0(r),
I1(r), I2(r) and I3(r) defined by:

I0(r) :=
{(

S in,D
)

: max{r, 1 − r} f (S in) ≤ D
}
,

I1(r) :=
{(

S in,D
)

: r f (S in) ≤ D < (1 − r) f (S in)
}
, 0 ≤ r < 1

2 ,

I2(r) :=
{(

S in,D
)

: 0 < D < min{r, 1 − r} f (S in)
}
,

I3(r) :=
{(

S in,D
)

: (1 − r) f (S in) ≤ D < r f (S in)
}
, 1

2 < r ≤ 1.

We fix r in (0, 1) and we depict in the plane (S in,D) the regions in which the solution of 320

system (2.6), with positive initial condition, globally converges towards one of the steady 321

states E0, E1 or E2. In the case 0 ≤ r < 1
2 [res. 1

2 < r ≤ 1], the regions I0(r), I1(r) and 322

I2(r) [res. I0(r), I2(r) and I3(r) ] form a partition of the positive plane. The region I1(r) for 323
1
2 ≤ r ≤ 1 [res. I3(r) for 0 ≤ r ≤ 1

2 ] is empty. The behavior of the system in each region is 324

given in Table 1. 325

Let the curve Γr in the positive plane (S in,D) be defined by 326

(4.2) Γr :=
{
(S in,D) : S in = gr(D)

}
with gr defined by (3.3). 327
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I0(r) I1(r) I2(r) I3(r)
E0 GAS U U U
E1 GAS U
E2 GAS GAS

Table 1. Stability of the steady states in the various regions of the oper-
ating diagram. The letter U means that the steady state is unstable. The
letters GAS means that the steady state is globally asymptotically stable
in the positive orthant. No letter means that the steady state does not
exist.

Lemma 5. For all r ∈ (0, 1) the curve Φr defined by (4.1) is always above the curve Γr328

defined by (4.2) in the plane (S in,D).329

Proof. The proof is given in Appendix D.3. �330

S in

D

0

I0(r)

I1(r)

I2(r)

Γr

Φr

Φ1−r

(a) 0 < r < 1
2

S in

D

0

I0(r)

I3(r)

I2(r)

Γr

Φr

Φ1−r

(b) 1
2 < r < 1

Figure 5. The operating diagram of two interconnected chemostats in
serial depending on the parameter r.

In this respect, for any growth function f verifying Assumption 1, the operating diagram331

of system (2.6) looks like Figure 5. Thus, according to Theorem 2, for the minimization of332

the output substrate concentration criterion, the serial configuration is more efficient than333

the simple chemostat if and only if S in > gr(D) i.e. if and only if (S in,D) is strictly below334

the curve Γr, see Figure 5. Let use the operating plane to give a better understanding of335

the results of Proposition 2 on the behavior of the function r 7→ S out
r

(
S in,D

)
, according to336

(S in,D). To this end, we consider the curves Φ1, Γ and Φ1/2 in the operating plane defined337

by:338

(4.3) Φ1/2 =
{
(S in,D) : S in = λ(2D)

}
, Φ1 =

{
(S in,D) : S in = λ(D)

}
339

(4.4) and Γ =
{
(S in,D) : S in = g(D)

}
with g defined by (3.4).340
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Curves Γ and Φ1/2 lie below curve Φ1. Therefore, curves Γ, Φ1/2 and Φ1 split the 341

operating plane into at most five regions defined by: 342

(4.5)

J0 =
{
(S in,D) : S in ≤ λ(D)

}
,

J1 =
{
(S in,D) : λ(D) < S in ≤ min (g(D), λ(2D))

}
,

J2 =
{
(S in,D) : g(D) < S in < λ(2D)

}
,

J3 =
{
(S in,D) : max (g(D), λ(2D)) ≤ S in

}
,

J4 =
{
(S in,D) : λ(2D) < S in < g(D)

}
.

These regions are shown in Figure 6 which is given for an illustrative example but does 343

not correspond to any particular growth function. Regions J0, J1 and J3 always exist and

S in

D

0

J0

J1

J2

J3
J4

Γ

Φ1/2

Φ1

Figure 6. Regions in the operating plan with different behaviors of the
mapping r 7→ S out

r (S in,D) where (S in,D) is fixed.
344

are connected. However, regions J2 and J4 do not necessarily exist and if they exist, in 345

general, they are not necessarily connected, depending on the relative positions of curves 346

Γ and Φ1/2. For instance, for linear growth rates, Γ = Φ1/2 and regions J2 and J4 do not 347

exist (see Section 5.1); for Monod growth function, curve Γ is above curve Φ1/2 and region 348

J4 does not exist (see Section 5.2); for Hill growth function, regions J2 and J4 both exist 349

(see Section 5.3) and are connected. Notice that for plotting operating diagrams we must 350

choose the growth function f and the values of the biological parameters, see Figures 9 351

and 14. We can state now the main result on function r 7→ S out
r

(
S in,D

)
, for (S in,D) ∈ Ji, 352

i = 0, ..., 4. 353

Proposition 7. Let Ji, i = 0, 1, ...4 be defined by (4.5). The behavior of function r 7→ 354

S out
r

(
S in,D

)
, according to (S in,D) is as follows: 355

• If (S in,D) ∈ J0, then for all r ∈ [0, 1], S out
r (S in,D) = S out(S in,D) = S in. 356

• If (S in,D) ∈ J1 then when λ(D) < S in < λ(2D), S out
r (S in,D) is given by (3.5) and 357

when S in = λ(2D), S out
r (S in,D) is given by (3.6). In addition, for all r ∈ (0, 1), 358

S out
r (S in,D) > S out(S in,D). The equality is fulfilled for r = 0 and r = 1, see Figure 359

7 (a). 360
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• If (S in,D) ∈ J2 then S out
r (S in,D) is given by (3.5) and S out

r (S in,D) < S out(S in,D) if361

and only if r ∈ (r1, 1) where r1 = r1(S in,D) is the unique solution of S in = gr(D).362

The equality is fulfilled for r = 0, r = r1 and r = 1, see Figure 7 (b).363

• If (S in,D) ∈ J3 then S out
r (S in,D) is given by (3.6) and S out

r (S in,D) < S out(S in,D) if364

and only if S in > g(D) and r ∈ (r1, 1) where r1 = r1(S in,D) is the unique solution365

of S in = gr(D). The equality is fulfilled for r = 0, r = r1 and r = 1, see Figure 7366

(c).367

• If (S in,D) ∈ J4 then S out
r (S in,D) is given by (3.6) and for all r ∈ (0, 1), S out

r (S in,D) >368

S out(S in,D). The equality is fulfilled for r = 0 and r = 1, see Figure 7 (d).369

Proof. The proof is given in Appendix B.7 �370

r

S out,S out
r

0

S in

λ(D)

1 − r0 r0 1
(a) (S in,D) ∈ J1

r

S out,S out
r

S in

λ(D)

0 1 − r0 r0 r1 1
(b) (S in,D) ∈ J2

r

S out,S out
r

S in

λ(D)

0 r0 r1 1
(c) (S in,D) ∈ J3

r

S out,S out
r

S in

λ(D)

0 r0 1
(d) (S in,D) ∈ J4

Figure 7. The map r 7→ S out
r (S in,D) (in red) in the regions J1, J2, J3 and

J4 compared to r 7→ S out(S in,D) (in blue). The value r1 is the unique
solution of S in = gr(D) and r0 = D/ f (S in).

According to the regions depicted in Figure 6, we obtain Figure 7 which covers the371

whole possible cases of the behavior of the function r 7→ S out
r (S in,D). Thusly, we can372

minimize the output substrate concentration at the steady state by using a serial configura-373

tion of two interconnected chemostats instead of one chemostat if (S in,D) is fixed in the374

regions J2 or J3 (i.e. S in > g(D)) and for r1 < r < 1.375

We have previously shown that Corollary 1 is a consequence of Theorem 3 and one can376

see in Proof C.2 of Corollary 1 that comparing the two quantities Pr(S in,D) and P(S in,D)377
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r

P, Pr

0 11 − r0 r0

VD(S in − λ(D))

(a) (S in,D) ∈ J1

r

P, Pr

0 11 − r0 r0 r1

VD(S in − λ(D))

(b) (S in,D) ∈ J2

r

P, Pr

0 1r0 r1

VD(S in − λ(D))

(c) (S in,D) ∈ J3

r

P, Pr

0 1r0

VD(S in − λ(D))

(d) (S in,D) ∈ J4

Figure 8. The map r 7→ Pr(S in,D) (in light blue) in the regions J1, J2,
J3 and J4 compared to r 7→ P(S in,D) (in black). The value r1 is the
unique solution of S in = gr(D) and r0 = D/ f (S in).

involves the comparison of the two quantities S out
r (S in,D) and S out(S in,D). That is why, 378

the curves representing the productivity of the biomass depicted in Figure 8 are analo- 379

gous to the curves of Figure 7. In Figure 8, we fix r ∈ (0, 1) and we plot the functions 380

r 7→ Pr(S in,D) and r 7→ P(S in,D) for (S in,D) fixed in the regions J1, J2, J3 and J4. As 381

in the case of the output substrate concentration, it is shown that the productivity of the 382

biomass or the biogas flow rate of the serial configuration is larger than the one of the 383

simple chemostat if and only if r ∈ (r1, 1) and (S in,D) is fixed in one of the regions J2 or 384

J3. 385

5. Applications and numerical illustrations 386

In this section, we consider three different kinetics: the linear function, the Monod 387

function and the Hill function. Table 2 gives the analytical expressions of most of the re- 388

sults previously presented. These expressions show that an analytical study of the different 389

performance criteria is possible. 390

5.1. Linear function. We consider f as a linear function defined by f (S ) = aS . Ac-
cording to Table 2, remark that λ(2D) = g(D) then, the curves Φ1/2 and Γ defined respec-
tively by (4.3) and (4.4) merge and constitute only one curve. The behavior of the maps
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Functions gr(D) g(D) λ(2D)

f (S ) = aS , a > 0 D(1+r)
ar

2D
a

2D
a

f (S ) = mS
K+S , DK(m(1+r)−D)

(m−D)(mr−D)
KD(2m−D)

(m−D)2
2KD

m−2D

f (S ) = mS 2

K2+S 2
K
√

D
1−r

(
1

√
rm−D

− r
√

m−D

)
K
2

√
D

(m−D)3 (3m − 2D) K
√

2D
m−2D

Table 2. Analytical expressions obtained for a linear, Monod and Hill
(with p = 2) growth functions.

r 7→ S out
r (S in,D) and r 7→ S out(S in,D) or r 7→ Pr(S in,D) and r 7→ P(S in,D) depends on

the position of (S in,D) in the three regions Ji, i = 0, 1, 3 represented in Figure 9 (a). These
regions are defined by

J0 =
{
(S in,D) : S in ≤ λ(D)

}
, J1 =

{
(S in,D) : λ(D) < S in ≤ λ(2D)

}
, J3 =

{
(S in,D) : λ(2D) ≤ S in

}
.

S in

D Φ1

Φ1/2 = Γ
J0

J1

J3

S in
0 S in

1
(a)

S in

D Φ1

Γ
Φ1/2

J0

J1 J2

J3

S in
0 S in

1 S in
2
(b)

Figure 9. Regions in the operating plane with f defined by f (S ) = S in
(a) and f (S ) = 6S/(5 + S ) in (b). The dashed blue line D = 1 indicates
the respective critical values S in

0 , S in
1 and S in

2 of Figures 10 and 11.

391

For a fixed value of D, the passageway form the region J0 to J1 is defined by the critical392

value S in
0 = λ(D) and the passageway form the region J1 to J3 is defined by the critical393

value S in
1 = g(D) = λ(2D) as shown in Figures 9 (a) and 10 (b). As stated in Lemma 2,394

for any S in > S in
1 there exists a threshold r1 = r1(S in,D) solution of S in = gr(D) which is395

explicitly defined by396

(5.1) r1(S in,D) =
D

aS in − D
.

Then, according to the three performance criteria which are the minimization of the output397

substrate concentration, the maximization of the productivity of the biomass and the max-398

imization of the biogas flow rate, the serial configuration is more efficient than the simple399

chemostat if and only if S in > S in
1 and r ∈ (r1, 1). This result is illustrated in Figure 10400

for minimization of the output substrate concentration criterion. Figure 10 (a) should be401

compared with Figure 6 of [16], where the part of the curves represented in Figure 10 (a)402
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corresponding to r > r0, for which S out
r (S in,D) = S ∗2(S in,D, r), are depicted. Indeed, in 403

[16], the authors were only interested in the case where the positive equilibrium E2 is GAS. 404

The threshold S in
1 = 2 shown in Figure 6 of [16] is given by S in

1 = g(1) and for any S in > 2 405

the threshold r1(S in,D) is explicitly given by (5.1).

r

S out, S out
r

(a) (S in,D) ∈ J1 ∪ J3

r

S out, S out
r

S in
0

S in
1

(b)

Figure 10. (a): The function r 7→ S out
r (S in,D) with f (S ) = S , D = 1,

r1(4, 1) = 0.333, r1(3, 1) = 0.5 and r1(2.5, 1) = 0.666. (b): For D = 1,
the critical values corresponding to the passageways between the regions
Ji, i = 0, 1, 3 are S in

0 = 1 and S in
1 = 2.

406

5.2. Monod function. The Monod function is defined by f (S ) = mS/(K + S ), see the 407

second line of Table 2. 408

Lemma 6. The curve Γ is located strictly above the curve Φ1/2 in the (S in,D) plane. 409

Proof. The proof in given in the Appendix D.4 � 410

Thus, considering a Monod function induces four regions Ji, i = 0, 1, 2, 3 in the oper- 411

ating plane, that describe the behaviors of the maps r 7→ S out
r (S in,D) and r 7→ Pr(S in,D), 412

which depend on the position of (S in,D) in these regions, as depicted in Figure 9 (b). The 413

behavior of the map r 7→ S out
r (S in,D) through these regions is depicted in Figure 11 (a). 414

For a fixed dilution rate D, the limit curves Φ1, Γ and Φ1/2 define critical values denoted 415

S in
0 = λ(D), S in

1 = g(D) and S in
2 = λ(2D), that respectively characterize the passageways 416

between the regions Ji, i = 0, 1, 2, 3, see Figures 9 (b) and 11 (b). As stated in Lemma 2, 417

for any S in > S in
1 there exists a threshold r1 = r1(S in,D) solution of S in = gr(D) which is 418

explicitly defined by 419

(5.2) r1(S in,D) =
D(K + S in)(m − D)

m(S inm − D(K + S in))
.

Then, according to the three studied performance criteria, the serial configuration is more 420

efficient than the simple chemostat if and only if S in > S in
1 and r1 < r < 1. Figure 11 421

(a) should be compared with Figure 9 of [16], where the part of the curves represented in 422

Figure 11 (a) corresponding to r > r0, for which S out
r (S in,D) = S ∗2(S in,D, r), are depicted. 423

Indeed, in [16], the authors were only interested to the case where the positive equilibrium 424

E2 is GAS. If D = 1 as shown in Figure 9 (b), the threshold S in
1 is given by S in

1 = g(1) = 2.2 425

and for any S in > 2.2 the threshold r1 is explicitly given by (5.2). 426
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r

S out, S out
r

(a) (S in,D) ∈ J1 ∪ J2 ∪ J3

r

S out, S out
r

S in
0

S in
2

S in
1

(b)

Figure 11. (a): The function r 7→ S out
r (S in,D) with f (S ) = 6S/(5 + S ),

D = 1, r1(4, 1) = 0.5, r1(3, 1) = 0.666 and r1(2.5, 1) = 0.833. (b): The
critical values corresponding to the passageways between the regions Ji,
i = 0, 1, 2, 3 are S in

0 = 1, S in
1 = 2.2 and S in

2 = 2.5.

Notice that Figures 10 (a) and 11 (a) illustrate Proposition 1. As stated in this Proposi-427

tion, when D is fixed, one can remark that when increasing S in, the output substrate con-428

centration at the steady state decreases. Thus, the minimum of the curve r 7→ S out
r (S in,D),429

representing the optimal point that gives the best possible serial configuration, decreases430

as S in > S in
1 = g(D) and S in increases.431

S in

D

Γr

Φr

Φ1−r

Γ

∆r

(a) 0 < r < 1
2

D

S in

Γr

Φ1−r

Φr

Γ

∆r

(b) 1
2 < r < 1

Figure 12. The curves Φr and Φ1−r are defined by (4.1). The curves
Γr and Γ are respectively defined by (4.2) and (4.4). The curve ∆r of
maximal productivity, defined by (5.3), is obtained numerically with
f (S ) = 6S/(5 + S ), V = 1, and (a): r = 0.295, (b): r = 0.75.

For the purpose of comparing the productivity of the biomass of both configurations, for432

a fixed r ∈ (0, 1), we characterize the operating parameters, (S in,D) that allow the optimal433

biomass productivity of the serial configuration. Let ∆r be the curve defined by434

(5.3) ∆r =

(S in,Dopt
r (S in)

)
: Dopt

r (S in) = argmax
0≤D≤ f (S in)

Pr(S in,D)

 .
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D

Pr
Pmax

r

Dopt
r

(a) S in = 0.4

Pr
Pmax

r

D

(b) S in = 0.84

Pr

Pmax
r

D
Dopt

r

(c) S in = 1.2
Figure 13. The productivity of the biomass, of the serial configuration
with Dopt

r = Dopt
r (S in) defined in (5.3) and Pmax

r = Pr(S in,Dopt
r ), corre-

sponding to the Figure 12 (a).

where Pr is defined by (3.11). This curve is obtained numerically and depicted in the 435

operating plane (S in,D), see Figure 12 (a) and (b). For the values of the parameters used 436

in Figure 12 (a), corresponding to the case 0 < r < 1/2, there exits a threshold S in ≈ 0.84 437

such that for 0 < S in < 0.84, the maximum of Pr(S in,D) is reached when Pr(S in,D) = 438

VD(S in − S ∗2(S in,D, r)), and for S in > 0.84, it is reached when Pr(S in,D) = VD(S in − 439

λ(D/(1 − r))), as shown in Figure 13. Therefore, for 0 < S in < 0.84, the maximum of 440

Pr(S in,D) is reached when E2 is stable, i.e. when D < r f (S in), as illustrated for S in = 0.4 441

in Figure 13 (a). That is why, for 0 < S in < 0.84, the curve ∆r is strictly below the curve 442

Φr. In contrast, for S in > 0.84 the maximum of Pr(S in,D) is reached when E1 is stable, i.e. 443

when D ≥ r f (S in), as illustrated for S in = 1.2 Figure 13 (c). That is why, for S in > 0.84, 444

the curve ∆r is strictly above the curve Φr. In the limit case S in = 0.84, both maxima of 445

Pr(S in,D) are equal, as shown in Figure 13 (b). This corresponds to the leap of the curve 446

∆r, shown in Figure 12 (a). On the other hand, for 1/2 < r < 1, the equilibrium E1 cannot 447

be stable and Pr(S in,D) = VD(S in − S ∗2(S in,D, r)), whenever it is positive. Therefore, its 448

maximum is reached when the positive equilibrium E2 is stable, that is why, the curve ∆r 449

is strictly below the curve Φr, see Figure 12 (b). 450

According to Proposition 4, Γ is the curve of equation D = Dopt(S in), where Dopt(S in) is 451

defined in (3.9). In other words, Dopt(S in) is the optimal dilution rate corresponding to the 452

maximal productivity of the biomass, of the simple chemostat. We observe on Figure 12 453

that ∆r is strictly below the curve Γ. Hence Dopt(S in) > Dopt
r (S in), as it was also depicted 454

in Figure 4. We conjecture that this property is always verified. 455

5.3. Hill function. For all p > 1, the non-concave Hill function is defined by f (S ) = 456

mS p/(K p + S p). 457

Proposition 8. The Hill function verifies Assumption 2 and 3. 458

Proof. The proof is given in Appendix D.5 � 459

Proposition 8 shows that we can use effectively a non-concave growth function in our 460

analysis. In the following, we consider the case where p = 2, see third line of Table 2. 461

Lemma 7. Let us denote D1 = m(3 −
√

5)/4. 462

If 0 < D < D1 then the curve Φ1/2 defined by (4.3) is strictly above the curve Γ defined 463

in (4.4). In contrast, if D1 < D < m
2 then the curve Φ1/2 is strictly below the curve Γ. 464
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Proof. The proof is given in Appendix D.6 �465

According to Lemma 7, considering an Hill function with p = 2 induces five regions466

Ji, i = 0, 1, 2, 3, 4 in the operating plane, defined in (4.5), that describe the behavior of the467

maps r 7→ S out
r (S in,D) and r 7→ S out(S in,D) or r 7→ Pr(S in,D) and r 7→ P(S in,D), which468

depends on the position of (S in,D) in these regions (see Figure 14 ). For a fixed dilution469

rate D, the limit curves Φ1, Γ and Φ1/2 define critical values denoted S in
0 = λ(D), S in

1 =470

g(D) and S in
2 = λ(2D) that characterize the passageways between the different regions Ji,471

i = 0, 1, 2, 3, 4. Notice that, if D < D1, as shown in Figure 14 (b), where D1 is defined472

in Lemma 7 then, we have S in
1 > S in

2 and the behavior of the maps r → S out
r (S in,D) is as473

depicted in Figure 15 (b). Remark that, in this case, the region where S out
r (S in,D) = S in

474

disappears before the emergence of the threshold r1 solution of S in = gr(D), that is, before475

the emergence of the region where the serial configuration is more efficient than the simple476

chemostat i.e. S out
r (S in,D) < S out(S in,D). On the other hand, if D > D1, as shown in477

Figure 14 (a) then, we have S in
1 < S in

2 and the behavior of the maps r → S out
r (S in,D) is as478

depicted in Figure 15 (a).

S in

D
Φ1

Γ

Φ1/2

S in
0 S in

1 S in
2

J0

J1

J4

J2

J3

(a)

S in

D

D1

λ(2D1)S in
0 S in

1S in
2

J4

J0

J1

J3

(b)
Figure 14. The five regions in the operating plane where f (S ) =

8S 2/(5 + S 2). The blue dashed lines D = 3 and D = 1 indicate re-
spectively the critical values S in

0 , S in
1 and S in

2 , of schemes (a) and (b) of
Figure 15.

479

As stated in Lemma 2, for any S in > S in
1 , there exists a threshold r1 = r1(S in,D) solution480

of S in = gr(D) such that, for r1 < r < 1, the performance of the serial configuration is481

more efficient than the one of the simple chemostat. In other words, the output substrate482

concentration at steady-state of the serial configuration is lesser than the one of the simple483

chemostat if and only if (S in,D) ∈ J2 ∪ J3 and r ∈ (r1, 1).484

6. Conclusion485

This work presents an in-depth mathematical study of a model of two serial intercon-486

nected chemostats with one species and a monotonic growth function. We analyze, at487

steady-state, three different performance criteria: the minimization of the output substrate488

concentration, the maximization of the productivity of the biomass and the maximization489

of the biogas flow rate. The aim is to compare with the performance of the single chemo-490

stat. A part of this paper extends some of the results published in [16] and presented in491

the thesis [21]. In these both references, the concavity of the function f is a required as-492

sumption but this assumption is not necessary in our analysis. The thorough study of our493
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r

S out, S out
r

S in
0

S in
1

S in
2

(a) D > D1 (S in,D) ∈ J1 ∪ J2 ∪ J3

r

S out, S out
r

S in
0

S in
2S in

1

(b) D < D1 (S in,D) ∈ J1 ∪ J3 ∪ J4

Figure 15. The function r → S out
r (S in,D) with f (S ) = 8S 2/(

√
5 + S 2)

and D1 = 1.5279. (a): D = 3, r1(9, 3) = 0.43, r1(5, 3) = 0.56,
r1(3.87, 3) = 0.72, S in

0 = 1.73, S in
1 = 3.11 and S in

2 = 3.87. (b):
D = 1, r1(2.5, 1) = 0.28, r1(2, 1) = 0.38, r1(1.5, 1) = 0.70, S in

0 = 0.85,
S in

1 = 1.33 and S in
2 = 1.29.

model reveals three main results. First, we provide an explicit expression depending on the 494

dilution rate D, that represents the threshold S in
1 = g(D) on the input concentration for the 495

performance. We deduce that there exists a configuration of two tanks that is better than 496

a single tank. Actually, through the optimization of the distribution of the volume V and 497

the threshold S in
1 , we distinguish which configuration is the best. Secondly, we infer that 498

maximizing the production of the biomass is equivalent to maximize the biogas flow rate 499

at steady-state even in the case of a serial device of two interconnected chemostats. At the 500

end, we obtain the same conditions for the three performance criteria. Thus, reducing the 501

output substrate concentration, maximizing the production of the biomass or maximizing 502

the biogas flow rate at steady state involve the same conditions and the same threshold 503

S in
1 . These conditions are necessary and sufficient to allow the best performance, and they 504

are characterized by the input concentration S in, the dilution rate D and the parameter r. 505

Finally, for deeper understanding, we depict the corresponding operating diagram of the 506

model which describes the behavior of the steady states. This diagram presents the condi- 507

tions which induce an optimal configuration with regions characterized by the parameter r 508

and the operating parameters S in and D. 509

To broaden and deepen the present work, a forthcoming paper will present the analysis 510

of performance, of an extension, of the model of two serial interconnected chemostats, with 511

death rates. This future work will also include a comparison with the simple chemostat 512

with death rate. 513

Appendix A. Proof of Theorem 1 514

A.1. Existence of equilibria. System (2.6) has a cascade structure. Let us consider zi(t) = 515

S i(t) + xi(t) (i = 1, 2) then, we have the following system 516

(A.1)

ż1 = D
r

(
S in − z1

)
ẋ1 = −D

r x1 + f (z1 − x1)x1

ż2 = D
1−r (z1 − z2)

ẋ2 = D
1−r (x1 − x2) + f (z2 − x2)x2.
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One can easily show that lim
t→+∞

zi(t) = S in (i = 1, 2). Therefore (x1(t), x2(t)) satisfies an517

asymptotically autonomous dynamics, whose limiting system518

(A.2)
ẋ1 = −D

r x1 + f (S in − x1)x1

ẋ2 = D
1−r (x1 − x2) + f (S in − x2)x2.

is defined in the square Σ := [0, S in] × [0, S in]. System (A.2) has a cascade structure. It
admits at most three equilibria:

e0 = (0, 0), e1 =
(
0, S in − λ (D/(1 − r))

)
and e2 =

(
S in − λ (D/r) , x∗2

)
with x∗2 ∈

(
0, S in

)
a solution, if it exists, of equation519

(A.3) ϕ(x2) = S in − λ (D/r) with ϕ(x2) = x2 − (1 − r)D−1 f (S in − x2)x2.

The equilibria E0, E1 and E2 of (2.6) corresponding to e0, e1 and e2, respectively, have the
same values xi, i = 1, 2, and their corresponding S i are given by S i = S in − xi, i = 1, 2.
Note that e0, e1 and e2 give

(S 1, S 2) =
(
S in, S in

)
, (S 1, S 2) =

(
S in, λ (D/(1 − r))

)
and (S 1, S 2) =

(
λ (D/r) , S ∗2

)
,

where S ∗2 = S in − x∗2. This proves that one has S 2 = λ (D/(1 − r)) and S ∗1 = λ (D/r)520

as stated in the theorem. The equilibrium e0, and hence the corresponding equilibrium521

E0, always exists. The equilibrium e1, exists if and only if S in − λ (D/(1 − r)) > 0, that522

is D < (1 − r) f (S in), which is the condition of existence of E1 in the theorem. For the523

existence and uniqueness of e2, note that x∗2 is a solution of (A.3), if and only if S ∗2 = S in−x∗2524

satisfies f (S ∗2) = h(S ∗2), which proves (2.9). Recall that h is positive, strictly decreasing525

and h(S ∗1) = 0, where S ∗1 = λ(D/r), if and only if S in > λ (D/r), see Figure 2. Thus, as f526

is strictly increasing (see Assumption 1), there exists a unique solution of h(S 2) = f (S 2)527

denoted S ∗2 in [0, S ∗1). Therefore, the equilibrium e2 exists if and only if S in > λ (D/r), that528

is D < r f (S in), which is the condition of existence of E2 in the statement of the Theorem.529

A.2. Local stability. For the local stability, the Jacobian matrix associated to system (A.3)
is defined by

J =

(
−D/r + f (S in − x1) − f ′(S in − x1)x1 0

D/(1 − r) −D/(1 − r) + f (S in − x2) − f ′(S in − x2)x2

)
The eigenvalues of this triangular matrix are its diagonal elements. For e0 the eigenvalues530

are −D/r + f (S in) and −D/(1 − r) + f (S in). Therefore e0, and hence E0, is LES if and531

only if D > max{r, 1− r} f (S in). For e1 the eigenvalues are −D/r + f
(
S in

)
and f ′(λ(D/(1−532

r)))
(
S in − λ(D/(1 − r))

)
. The second eigenvalue is positive if and only if D < (1−r) f (S in),533

that is, e1 exists. Therefore e1, and hence E1, is LES if and only if r f (S in) < D < (1 −534

r) f (S in). Similarly we prove that e2, and hence E2 is LES if and only if it exists, that is535

D < r f (S in).536

A.3. Global stability. For the global asymptotic stability we use phase plane arguments,
as in the proof of Proposition 7 in [22], or in Section 2.1.2.3 of [4]. We give the details of
the proof when e2 exists. The case where e2 does not exist but e1 exists and the case where
neither e2 nor e1 exist are similar. The isoclines x1 = S in − λ(D/r) and x1 = ϕ(x2), where
ϕ is defined by (A.3), separate the interior of Σ into four region defined by

I : ẋ1 < 0, ẋ2 < 0, II : ẋ1 > 0, ẋ2 < 0, III : ẋ1 > 0, ẋ2 > 0, IV : ẋ1 < 0, ẋ2 > 0,
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(a) ϕ′(0) ≥ 0
e0

x1

x2

e2

I

II

III

IV

(b) ϕ′(0) < 0
e0

x1

x2

e1

e2

I

II

III

IV

Figure 16. Global stability of the equilibrium e2. (a): e1 does not exist.
(b) e1 exists.

Two cases must be distinguished, according to the existence, or not of e1, see Figure 16. We
consider the case where e1 exists. The case where it does not exist is similar. The isocline
x1 = ϕ(x2) is as shown in Figure 16 (b), that is, it is the graph of a strictly increasing
function. Indeed, using the definition (A.3) of ϕ, we have

ϕ′(x2) = 1 −
1 − r

D
f
(
S in − x2

)
+

1 − r
D

f ′
(
S in − x2

)
x2.

Note that ϕ′(0) = 1 − D
1−r f

(
S in

)
. Therefore e1 exists if and only if ϕ′(0) < 0 as shown in

the figure. For x2 ∈ (x2, S in), where x2 = S in − λ(D/(1 − r)) is the x2 component of e1, we
have

ϕ′(x2) > 1 −
1 − r

D
f
(
S in − x2)

)
> 1 −

1 − r
D

f
(
S in − x2

)
= 0,

which proves that ϕ is strictly increasing. The vector field associated to (A.2) is horizontal 537

if x1 = ϕ(x2) and vertical if x1 = 0 or x1 = S in − λ(D/r). It is directed as shown in the 538

Figure. Assume first that (x1(0), x2(0)) ∈ I ∪ III. These regions are positively invariant. 539

Since in I [resp. III], x1(t) and x2(t) are strictly decreasing [resp. increasing], the following 540

limits exist: 541

(A.4) lim
t→+∞

x1(t) = x1∞, lim
t→+∞

x2(t) = x2∞.

Therefore, (x1∞, x2∞) is an equilibrium of (A.2), which belongs to the closure I or the 542

closure III. Since e0, e1 and e2 (resp. e2) are the only steady states in I (resp. III) and, 543

since e1 attracts only solution with x1(0) = 0 and e0 attracts no solutions with positive 544

initial conditions, it follows that 545

(A.5) e2 = (x1∞, x2∞) .

Assume now that (x1(0), x2(0)) ∈ IV . If (x1(t), x2(t)) remains in IV for all t > 0 then x1(·) 546

is strictly decreasing and x2(·) is strictly increasing. Thus, the limits (A.4) exist. Hence, 547

(x1∞, x2∞) is an equilibrium of (A.2), which belongs to the closure IV . Since e2 is the only 548

equilibrium in IV , we conclude that (A.5) holds. If (x1(t), x2(t)) leaves the region IV , then 549

it can only enter in the region I. Hence, as shown previously it necessarily tends to e2 550

and hence, (A.5) holds. The same argument shows that any solution starting with initial 551

condition in II always remains in II and then converges to e2 or leaves the region II, then 552

enters necessarily in region III, and then, as shown previously it tends to e2. Therefore e2 553
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is GAS in the interior of Σ. Using the theory of asymptotically autonomous systems (see554

Appendix F in [6]), we deduce that E2 is GAS if and only it exists.555

Appendix B. Output substrate concentration556

B.1. Proof of Proposition 1. Let S ∗i2 = S ∗2(S in,i,D, r), i = 1, 2. Suppose that S ∗12 ≥ S ∗22 .557

Since f is increasing then, we have f (S ∗12 ) ≥ f (S ∗22 ). Since f (S ∗12 ) = h1(S ∗12 ) and f (S ∗22 ) =558

h2(S ∗22 ) then, we have h1(S ∗12 ) ≥ h2(S ∗22 ). Since h2 > h1 then, we have h2(S ∗22 ) > h1(S ∗22 ).559

Since h1 is decreasing then, we have h1(S ∗22 ) ≥ h1(S ∗12 ). Therefore, we have h1(S ∗12 ) >560

h1(S ∗12 ) which is a contradiction. Hence S ∗12 < S ∗22 .561

B.2. Proof of Theorem 2. Recall that S ∗2(S in,D, r) is the unique solution of equation562

(2.9). Let us first prove that563

(B.1) S ∗2(S in,D, r) < λ(D) if and only if S in > gr(D).

Since f is strictly increasing and h is strictly decreasing then, S ∗2(S in,D, r) < λ(D) is
equivalent to h(λ(D)) < f (λ(D)) = D. Thus, using the definition of h, the condition
h(λ(D)) < D is written as

D (λ(D/r) − λ(D))
(1 − r)

(
S in − λ(D)

) < D,

which is equivalent to S in > λ(D) + (λ(D/r) − λ(D)) /(1 − r). Hence, according to the564

definition (3.3) of gr, this is equivalent to S in > gr(D). Notice also that the function gr,565

defined by (3.3), satisfies566

(B.2) gr(D) = λ (D/r) +
r (λ(D/r) − λ (D))

1 − r
.

Therefore, one has gr(D) > λ(D/r).567

Let us go now to the proof of the Theorem. Assume that S in > gr(D). Then, S in >568

λ(D/r) > λ(D), so that, as shown by (2.5) and (3.1), we have569

(B.3) S out
r (S in,D) = S ∗2(S in,D, r) and S out(S in,D) = λ(D).

Therefore, using (B.1), we have S out
r (S in,D) < S out(S in,D). Assume now that S in ≤ gr(D).570

When r < 1/2, three cases must be distinguished. First, if λ(D) < λ(D/r) < S in ≤ gr(D),571

then, by (2.5) and (3.1), we obtain (B.3). Hence, using (B.1), we have S out
r (S in,D) ≥572

S out(S in,D). Secondly, if λ(D) < λ(D/(1 − r)) < S in ≤ λ(D/r) then, by (2.5) and (3.1),573

S out
r (S in,D) = λ(D/(1− r)) and S out(S in,D) = λ(D). Therefore S out

r (S in,D) > S out(S in,D).574

Finally, if S in ≤ λ(D), then S out
r (S in,D) = S out(S in,D) = S in. When r ≥ 1/2, the proof575

is similar, excepted that we must distinguish only two cases, λ(D) < S in ≤ λ(D/r) and576

S in ≤ λ(D).577

In conclusion, for any r ∈ (0, 1), S out
r (S in,D) < S out(S in,D) if and only if S in > gr(D).578

B.3. Proof of Lemma 2. Let D < m. From Assumptions 2, the function r ∈ (D/m, 1) 7→579

gr(D) is strictly decreasing. From Assumption 1, we have limr→D/m λ(D/r) = λ(m) = +∞.580

Thus, limr→D/m gr(D) = +∞. Using L’Hôspital’s rule one has limr→1 gr(D) = g(D). Then,581

using Intermediate Value Theorem, we deduce that for S in > g(D) there exists a unique582

r1 = r1(S in,D) in (0, 1) such that S in = gr1 (D). Since the function r 7→ gr(D) is strictly583

decreasing then, r > r1(S in,D) if and only if S in = gr1 (D) > gr(D) which ends the proof of584

the Lemma.585
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B.4. Proof of Theorem 3. 586

• From Assumptions 1 and 2, the function r ∈ (D/m, 1) 7→ gr(D) is strictly decreas- 587

ing. Thus, for any r ∈ (0, 1), g(D) < gr(D). If S in ≤ g(D) then S in < gr(D) and 588

according to Theorem 2 we deduce that S out
r (S in,D) > S out(S in,D). 589

• If S in > g(D) then according to Lemma 2, there exists a unique r1 = r1(S in,D) in 590

(0, 1) such that S in = gr1 (D), where for all r > r1, we have S in > gr(D). Thus, 591

according to Theorem 2 we deduce that S out
r (S in,D) < S out(S in,D). 592

The equality in the limiting cases r = 0 and r = 1 is already verified, see (3.2). 593

If r = r1 then S in = gr1 (D). According to (B.2), one has λ(D/r1) < gr1 (D), that is, 594

λ(D/r1) < S in. Thus, one has S out
r1

(S in,D) = S ∗2(S in,D, r1) where S ∗2(S in,D, r1) is the 595

unique solution of h(S 2)|r=r1 = f (S 2). Consequently, one has S ∗2(S in,D, r1) = λ(D) if and 596

only if h(λ(D))|r=r1 = f (λ(D)), which is equivalent to D (λ(D/r1) − λ(D)) /
(
(S in − λ(D))(1 − r1)

)
=597

D, that is, λ(D/r1) − λ(D) = (1 − r1)
(
(S in − λ(D))

)
. Consequently, one obtains that 598

λ(D) + (λ(D/r1) − λ(D)) /(1− r1) = S in, which is equivalent to gr1 (D) = S in. This ends the 599

proof of the Theorem. 600

B.5. Proof of Proposition 2. Let us consider r0 = D/ f (S in) i.e. S in = λ(D/r0). 601

1) When S in ≤ λ(D) one has, for all r ∈ (0, 1), λ(D) ≤ min{λ(D/(1 − r)), λ(D/r)} i.e. 602

S in ≤ min{λ(D/(1 − r)), λ(D/r}. Then, according to (3.1) one has S out
r (S in,D) = S in. 603

2) When λ(D) < S in < λ(2D), one has r0 ∈ (1/2, 1). Firstly, if 0 ≤ r ≤ 1 − r0, one has 604

λ(D/(1 − r)) ≤ λ(D/r0) ≤ λ(D/r) i.e. λ(D/(1 − r)) ≤ S in ≤ λ(D/r). This is equivalent 605

to r f (S in) ≤ D ≤ (1 − r) f (S in). According to (3.1), one has S out
r (S in,D) = λ(D/(1 − r)). 606

Secondly, if 1 − r0 ≤ r ≤ r0, one has λ(D/r0) ≤ min{λ(D/(1 − r)), λ(D/r)} i.e. S in ≤ 607

min{λ(D/(1 − r)), λ(D/r)}. According to (3.1), one has S out
r (S in,D) = S in. Finally, if 608

r0 < r ≤ 1, one has λ(D/r) ≤ λ(D/r0) i.e. λ(D/r) ≤ S in then, according to (3.1), one has 609

S out
r (S in,D) = S ∗2(S in,D, r). These all prove (3.5). 610

3) When λ(2D) ≤ S in one has r0 ∈ (0, 1/2]. If 0 ≤ r ≤ r0 then λ(D/(1 − r)) ≤ λ(D/r0) ≤ 611

λ(D/r) i.e. λ(D/(1 − r)) ≤ S in ≤ λ(D/r). According to (3.1), one has S out
r (S in,D) = 612

λ(D/(1 − r)). If r0 ≤ r ≤ 1 then λ(D/r) ≤ λ(D/r0) i.e. λ(D/r) ≤ S in. According to (3.1), 613

one has S out
r (S in,D) = S ∗2(S in,D, r). These all prove (3.6). 614

B.6. Proof of Proposition 3. Let r ∈ (0, 1). Form Assumptions 3, the function D ∈ 615

[0, rm) 7→ gr(D) is strictly increasing. From Assumption 1, we have lim
D→rm

λ(D/r) = λ(m) = 616

+∞. Thus, lim
D→rm

gr(D) = +∞ and gr(0) = 0. Then, using Intermediate Value Theorem, we 617

deduce that for S in > 0 there exists a unique Dr = Dr(S in) in [0, rm) such that S in = gr(Dr). 618

Since the function D 7→ gr(D) is strictly increasing then, 0 < D < Dr(S in) if and only if 619

0 < gr(D) < gr(Dr) = S in. Consequently, according to Theorem 2 gr(D) < S in if and only 620

if S out
r (S in,D) < S out(S in,D) which end the proof of the proposition. 621

B.7. Proof of Proposition 7. The result is a direct consequence of Proposition 2 and 622

Theorem 3. We give the details for regions J1 and J2. The proof for other regions is 623

similar. 624

If (S in,D) ∈ J1 then, according to (4.5), λ(D) < S in ≤ min (g(D), λ(2D)). Therefore, 625

λ(D) < S in ≤ λ(2D). When λ(D) < S in < λ(2D), from Proposition 2, S out
r (S in,D) is given 626

by (3.5) and if S in = λ(2D) then S out
r (S in,D) is given by (3.6). Now, using S in ≤ g(D), 627

from Theorem 3, we have for all r ∈ (0, 1), S out
r (S in,D) > S out(S in,D). 628

If (S in,D) ∈ J2 then, according to (4.5), g(D) < S in < λ(2D). Therefore λ(D) < S in < 629

λ(2D) and, from Proposition 2, S out
r (S in,D) is given by (3.5). Now, using g(D) < S in, 630
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from Lemma 2, there exists a threshold r1, defined as the unique solution of S in = gr(D).631

Therefore, from Theorem 3, S out
r (S in,D) < S out(S in,D) if and only if r ∈ (r1, 1) and632

equality holds if and only if r = 0, r = r1 or r = 1.633

Appendix C. Productivity and biogas production634

C.1. Proof of Proposition 4. The equation P(S in,D) = 0 admits the two roots D = 0 and
D = f (S in). For all D > 0, P(S in,D) is positive if and only if S in > λ(D). In addition, for
all D < f (S in) we have

∂P
∂D

(S in,D) = V
(
S in − λ(D) −

D
f ′(λ(D))

)
= V(S in − g(D))

with g defined by (3.4). Thus, ∂P
∂D (S in,D) = 0 is verified if and only if S in = g(D).635

Consequently, using Assumption 4, Dopt defined in (3.9) is the unique solution of S in =636

g(D).637

C.2. Proof of Corollary 1. One knows that xout
r (S in,D) = S in−S out

r (S in,D) and xout(S in,D) =638

S in−S out(S in,D). Firstly, if S in ≤ g(D) then according to Theorem 3, for any r ∈ (0, 1), one639

has S out
r (S in,D) > S out(S in,D). Thus, for any r ∈ (0, 1), one has xout

r (S in,D) < xout(S in,D).640

Consequently, for any r ∈ (0, 1), one has Pr(S in,D) < P(S in,D). Secondly, if S in > g(D)641

then according to Theorem 3, one has S out
r (S in,D) < S out(S in,D) if and only if r1 < r < 1642

with r1 defined in Lemma 2. Then, one has xout
r (S in,D) > xout(S in,D) if and only if643

r1 < r < 1. Consequently, one has Pr(S in,D) > P(S in,D) if and only if r1 < r < 1.644

Finally, if r = 0, r = r1 or r = 1, then one has S out
r (S in,D) = S out(S in,D). Thus, for645

r = 0, r1, 1 one has xout
r (S in,D) = xout(S in,D). Consequently, if r = 0, r = r1 or r = 1 then,646

Pr(S in,D) = P(S in,D) which ends the proof of the Corollary.647

C.3. Proof of Proposition 5. Let V be a fixed volume. In the following, we use the
respective definitions (3.11) and (3.14) of Pr and Gr. In both cases: max{r, 1−r} f (S in) ≤ D
and r f (S in) ≤ D ≤ (1− r) f (S in)) and it is clear that Gr(S in,D) = Pr(S in,D). In addition, if
D < r f (S in) then

Gr(S in,D) = VD
(
S in − λ(D/r)

)
+ V(1 − r) f

(
S ∗2

) (
S in − S ∗2

)
with S ∗2 the unique solution of (2.9). According to this equation, Gr can be written as

Gr(S in,D) = VD
(
S in − λ(D/r)

)
+ VD

(
λ(D/r) − S ∗2

)
.

Thus, we deduce that Gr(S in,D) = Pr(S in,D) = VD(S in − S ∗2) and consequently, for any648

r ∈ (0, 1), we have Gr(S in,D) = Pr(S in,D).649

C.4. Proof of Proposition 6. Let V be a fixed volume and S in > 0. Let us consider the
function ϕ(S ) = f (S )(S in − S ). Considering the change of variable S = λ(D), one can
easily verify that ϕ′(S ) = 0 is equivalent to S in − g(D) = 0. According to Assumption
4, ϕ admits a unique maximum. We maximize the biogas flow rate at steady-state with
respect to D. On the one hand, the biogas flow rate of the simple chemostat is defined
by G(S in,D) = Vϕ(S out(D)) with S out defined by (2.5). Then, the maximal biogas flow
rate of the simple chemostat is Gmax(S in) = V maxD∈(0, f (S in)) ϕ(S out(D)). Since the map
λ defines a homeomorphism from [0, f (S in)] to [0, S in] then maxD∈(0, f (S in)) ϕ(S out(D)) =

maxS∈(0,S in) ϕ(S ). On the other hand, as S ∗1 > S ∗2 and using the definition (3.13) of Gr, the
biogas flow rate of the two serial interconnected chemostats at steady-state is defined by
Gr(S in,D) = rVϕ(S ∗1) + (1 − r)Vϕ(S ∗2) with S ∗1 = λ (D/r) and S ∗2 the unique solution of
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(2.9). In addition, as for all D < f (S in) we have ϕ(S ∗i (D)) < maxS∈(0,S in) ϕ(S ), i = 1, 2
then, we have

Gr(S in,D) < rV max
S∈(0,S in)

ϕ(S ) + (1 − r)V max
S∈(0,S in)

ϕ(S ).

Hence, we deduce that Gr(S in,D) < V maxS∈(0,S in) ϕ(S ) which is equivalent to Gr(S in,D) < 650

Gmax(S in). This completes the proof of the Proposition. 651

Appendix D. Technical results 652

D.1. Proof of Lemma 3. Using lD(r) = λ(D/r), γ(r,D) = gr(D), defined by (3.3), is given
by

γ(r,D) = lD(1) +
lD(r) − lD(1)

1 − r
The partial derivative, with respect to r of γ is given then by

∂γ

∂r
(r,D) =

l′D(r)(1 − r) + lD(r) − lD(1)
(1 − r)2 .

Therefore, ∂γ
∂r (r,D) < 0 if and only if lD(1) > lD(r) + (1 − r)l′D(r), which proves the 653

equivalence of conditions 1 and 2 of the Lemma. 654

Moreover, if lD is strictly convex on (D/m, 1] then for all s and r in (D/m, 1], if s , r,
then

lD(s) > lD(r) + (s − r)l′D(r).

Taking s = 1 and r ∈ (D/m, 1) one obtains the condition 2. 655

Assume now that f , and hence lD, are twice derivable. Using λ′(D) = 1/ f ′(λ(D)) and
λ′′(D) = − f ′′(λ(D))/ ( f ′(λ(D)))3, we can write

l′′D(r) =
2D
r3 λ

′ (D/r)+
D2

r4 λ
′′ (D/r) =

D

r3 ( f ′(λ(D/r)))3

(
2
(
f ′ (λ (D/r))

)2
− (D/r) f ′′ (λ (D/r))

)
Therefore, the condition 3 is equivalent to the following condition: 656

(D.1) For all D ∈ (0,m) and r ∈ (D/m, 1],D f ′′ (λ (D/r)) /r < 2 f ′ (λ (D/r))2

Using the notation S = λ(D/r), which is the same as f (S ) = D/r, the condition (D.1) 657

is equivalent to : For all S > 0, f (S ) f ′′(S ) < 2 ( f ′(S ))2, which is the condition 4 in the 658

Lemma. 659

D.2. Proof of Lemma 4. Using λ′(D) = 1/ f ′(λ(D)), the partial derivative, with respect
to D of γ(r,D) = gr(D), defined by (3.3), is given by

∂γ

∂D
(r,D) = λ′(D) +

1
1 − r

(
1
r
λ′(D/r) − λ′(D)

)
=

f ′ (λ(D)) − r2 f ′ (λ(D/r))
r(1 − r) f ′ (λ(D)) f ′ (λ(D/r))

.

Therefore, ∂γ
∂D (r,D) > 0 if and only if f ′ (λ(D/r)) < r2 f ′ (λ(D)), which proves the equiva- 660

lence of conditions 1 and 2 of the Lemma. 661

Moreover, since 1/r > 1 and λ is strictly increasing, then λ(D/r) > λ(D). Thus, if f ′ is 662

decreasing, we have f ′ (λ(D/r)) ≤ f ′ (λ(D)) < f ′ (λ(D)) /r2, which proves condition 2 of 663

the Lemma. 664

D.3. Proof of Lemma 5. As 0 < r < 1 and λ is a strictly increasing function then we 665

have D/r > D and λ(D/r) > λ(D). Consequently, using the definition (B.2) of gr, we have 666

gr(D) > λ(D/r). According to the respective definitions (4.1) and (4.2) of the curves Φr 667

and Γr, we deduce that the curve Φr is always above the curve Γr. 668
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D.4. Proof of Lemma 6. The curves Φ1/2 and Γ are respectively defined by (4.3) and669

(4.4). Let us define the function H :
[
0, m

2

)
7→ R such that H(D) = λ(2D) − g(D). Ac-670

cording to Table 2, for a Monod function, the function H is defined explicitly by H(D) =671

KmD2

(m−D)2(m−2D) . Then, for any D ∈
[
0, m

2

)
one has H(D) > 0. Thus, for any D ∈

[
0, m

2

)
, one672

has λ(2D) > g(D) which means that Γ is always located strictly above Φ1/2.673

D.5. Proof of Proposition 8. Let us prove that the Hill function satisfies Assumption 3.
Straightforward computations show that

F(S ) :=
f (S ) f ′′(S )
( f ′(S ))2 =

p − 1 − (p + 1)(S/K)p

p

Hence, for every p ≥ 1, F′(S ) = −
p+1
K p S p−1 < 0 and F(0) =

p−1
p < 1, which proves that674

F(S ) < 1 for all S > 0. Therefore Assumption 4 of Lemma 3 is satisfied, which is a675

sufficient condition for Assumption 2 to hold.676

Let us prove now that the Hill function satisfies Assumption 3. It is equivalent to prove
that it satisfies the condition 2 of Lemma 4. Straightforward computations show that

λ(D) =

(
K pD

m − D

) 1
p

and f ′(λ(D)) =
p
m

(
Dp−1

K p

) 1
p

(m − D)
p+1

p

We have 0 < r < 1 and D < rm then, obviously, we have 0 < m − D/r < m − D and
0 < rm − D < m − D. Thus, we obtain the following inequality(

m −
D
r

)
(rm − D)

1
p < (m − D)(m − D)

1
p .

Straightforward calculations give

1
r2m

(rm − D)
P+1

p <
1

rm
(m − D)

p+1
p .

Consequently, we have

p
r2m

(
Dp−1

K p

) 1
p

(rm − D)
p+1

p <
p

rm

(
Dp−1

K p

) 1
p

(m − D)
p+1

p

which is equivalent to f ′(λ(D/r)) < f ′(λ(D))/r and induces f ′(λ(D/r)) < f ′(λ(D))/r2.677

This completes the proof of the proposition.678

D.6. Proof of Lemma 7. Let the function H :
[
0, m

2

)
7→ R be defined by H(D) = λ(2D) −

g(D). According to the analytical expressions of Table 2, we have

H(D) = K
√

D

√ 2
m − 2D

−
3m − 2D

2(m − D)
3
2

 .
Thus, H(D) > 0 gives 4mD2−6m2D+m3 < 0. The equation Q(D) := 4mD2−6m2D+m3 = 0679

admits the two roots D1 = 3−
√

5
4 m and D2 = 3+

√
5

4 m such that 0 < D1 <
m
2 and m

2 < D2.680

Therefore, for any D ∈
(
D1,

m
2

)
we have, H(D) > 0 which means that, for any D ∈

(
D1,

m
2

)
,681

the curve Φ1/2 is strictly below the curve Γ.682
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