J. Monod, La technique de culture continue: theorie et applications, Annales de l'Institut Pasteur, vol.79, pp.690-729, 1950.

A. Novick and L. Szilard, Description of the chemostat, Science, American Association for the Advance-692 ment of, Science, vol.112, pp.715-716, 1950.

D. Herbert, R. Elsworth, and R. C. Telling, The Continuous Culture of Bacteria; a Theoretical and Exper-694 imental Study, Microbiological Research Establishment, vol.3, issue.14, pp.695-601, 1956.

J. Harmand, C. Lobry, A. Rapaport, and T. Sari, The Chemostat: Mathematical Theory of Microorganism 697 Cultures, p.698, 2017.

P. A. Hoskisson and G. Hobbs, Continuous culture-making a comeback?, Microbiology-Sgm, Microbiology 699 Society, vol.151, pp.3153-3159, 2005.

H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, vol.13, p.702, 1995.

M. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou et al., , p.703

A. Boudjemaa, T. Rapaport, R. Sari, and . Arditi, Perspectives in Mathematical Modelling for Microbial 704 Ecology, Ecological Modelling, vol.321, pp.64-74, 2016.

L. Grady, G. Daigger, N. G. Love, and D. C. Filipe, Biological wastewater treatment, p.706, 2011.

D. Dochain and P. A. Vanrolleghem, Dynamic Modelling & Estimation in Wastewater Treatment Processes, 707 IWA publishing, 2001.

C. M. Kung and B. Baltzis, The growth of pure and simple microbial competitors in a moving and distributed 709 medium, Mathematical Biosciences, vol.111, pp.295-313, 1992.

B. Tang, Mathematical investigations of growth of microorganisms in the gradostat, Journal of Mathemati-711 cal Biology, vol.23, pp.319-339, 1986.

C. D. De-gooijer, W. A. Bakker-wilfried, H. H. Beeftink, and J. Tramper, Bioreactors in series: An 713 overview of design procedures and practical applications, Biochemical 714 engineering journal, vol.18, pp.202-219, 1996.

G. Hill and C. Robinson, Minimum tank volumes for CFST bioreactors in series, The Canadian Journal of 716 Chemical Engineering, vol.67, issue.5, pp.818-824, 1989.

E. Scuras, A. Jobbagy, and L. Grady, Optimization of activated sludge reactor configuration:: kinetic con-718 siderations, Water Research, vol.35, issue.18, pp.4277-4284, 2001.

A. Rapaport, Some non-intuitive properties of simple extensions of the chemostat model, Ecological com-720 plexity, vol.34, pp.111-118, 2018.

I. Haidar, A. Rapaport, and F. Gérard, Effects of spatial structure and diffusion on the performances of the 722 chemostat, Mathematical Biosciences and Engineering, vol.8, issue.4, pp.953-971, 2011.

J. Harmand, Contributionà l'analyse et au contrôle des systèmes biologiques application aux bio-procédés 724 de dépollution, Habilitationà diriger des recherches, p.725, 2004.

J. Zambrano and B. Carlsson, Optimizing zone volumes in bioreactors described by Monod and Contois 726 growth kinetics, Proceeding of the IWA World Water Congress & Exhibition, 2014.

J. Zambrano, B. Carlsson, and S. Diehl, Optimal steady-state design of zone volumes of bioreactors with 728 Monod growth kinetics, Biochemical engineering journal, vol.100, pp.59-66, 2015.

D. Herbert, Multi-stage continuous culture. Continuous cultivation of microorganisms, Microbiological Re-730 search Establishment, pp.23-44, 1964.

I. Haidar, Dynamiques Microbiennes Et Modélisation Des Cycles Biogéochimiques Terrestres, p.733, 2011.

R. Fekih-salem, C. Lobry, and T. Sari, A density-dependent model of competition for one resource in the 734 chemostat, Mathematical Biosciences, vol.286, pp.104-122, 2017.