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STUDY OF PERFORMANCE CRITERIA OF SERIAL CONFIGURATION OF
TWO CHEMOSTATS

MANEL DALI YOUCEF, ALAIN RAPAPORT AND TEWFIK SARI

Abstract. This paper deals with thorough analysis of serial configurations of two chemostats.
We establish an in-depth mathematical study of all possible steady states, and we compare
the performances of the two serial interconnected chemostats with the performances of a
single one. The comparison is evaluated under three different criteria. We analyze pursuant
to the minimization of the output substrate concentration, the productivity of the biomass
and the biogas flow rate. We determine specific conditions, which depend on the biological
parameters, the operating parameters of the model and the distribution of the total volume.
These necessary and sufficient conditions provide the most efficient serial configuration of
two chemostats versus one. Complementarily, this mainly helps to discern when it is not
advisable to use the serial configuration instead of a simple chemostat, depending on: the
considered criterion, the operating parameters fixed by the operator and the distribution of
the volumes into the two tanks.

1. Introduction

The chemostat device was invented concomitantly by Monod [1] and Novick & Szi-
lard [2] in 1950. Widely used as a biochemical laboratory-pilot, it consists essentially in a
continuously-fed bioreactor characterized by the equality of the input and the output flow
rates. It is designed as a vessel in which different microorganisms grow, also called con-
tinuous culture of microorganisms. Its importance for the continuous culture of microor-
ganisms has been reported in several books and publications, among them [3, 4, 5, 6, 7].
In other words, the classical model of the chemostat consists of a perfect mixed media at a
constant temperature, a constant pH, a filtered feed and a unique flow rate. Although this
model is used for industrial applications with continuously-fed bioreactors such as waste-
water treatment, see for instance [8], in physical reality, industrial applications which use
large bioreactors hardly satisfy the assumption of the perfect mixed media. Several mathe-
matical representations of the spatial heterogeneity have been studied in the literature with
partial differential equations, see for instance [9, 10]. However, discrete spatial representa-
tions, such as the gradostat model [6, 11], are also a way to represent spatial heterogeneity
[12, 13, 14]. Serial configurations, as a simple gradostat, have received a great interest in
the literature in view of optimizing bioprocesses. Indeed, it has been shown that having
two tanks (or more) in series (each of them being assumed to be perfectly mixed) can pro-
duce the same substrate conversion than a single vessel, but with a significant lower total
volume, and thus a lower residence time. Serial configurations have been also studied in
view of ecological insight, see for instance [15, 16]. In this paper, we propose to revisit the
serial configuration of two chemostats in series with a constant total volume V , as shown in
Figure 1. We focus on the analysis of the performance at steady-state for different criteria
with the aim of drawing comparisons with the single chemostat. Notice that these different
criteria of comparison are known in the literature, see for instance [3]. However, to our
knowledge, a complete and deep analysis of all possible configurations for a general class
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of growth functions and the various criteria is missing in the literature, which is the aim of
the present work.

It is well known [4, 6] that, for the simple chemostat, the output concentration at steady
steady S out is independent of the input concentration S in, provided that there is no washout,
see also (2.5). This property is no longer satisfied when there is a spatial structure, see for
instance [15] and the references therein. Since S out measures the performances of the
chemostat to convert the substrate S , our purpose is to distinguish which configuration
guarantees the minimal output substrate concentration at steady state. Actually, reducing
the output substrate concentration is one of the biological objectives in waste-water treat-
ments and this minimizing problem is well known in the literature. The novelty of our
work is that S out is considered as a function which depends on the three operating parame-
ters: the input substrate concentration, the dilution rate and the volume of each chemostat.
In fact, what has already been treated, see for instance [17, 18, 19], corresponds to the case
where the input substrate concentration S in is fixed and the total volume V can be chosen.
Thus, we give conditions which involve the input substrate concentration S in and ensure
the optimal way to slice the two serial reactors volume. These conditions can ensure a
lower output substrate concentration.

Our study is somehow a generalization of the main results presented in [16]. The condi-
tions that we found are necessary and sufficient to reduce the output substrate concentration
in contrast of the result in [16] where the given conditions are only sufficient. In addition,
the originality of this article consists in comparing both configurations according to two
other performance indexes which are the productivity of the biomass and the biogas flow
rate. The biogas flow rate represents the quantity of natural gas per unit of time produced
by the decomposition of organic matter in absence of oxygen and the productivity of the
biomass represents the amount of biomass per unit of time produced by the decomposi-
tion of organic matter. The productivity of the biomass of several configurations including
the serial device of two interconnected chemostats has been graphically and numerically
analyzed in [12, 20]. However, these two criteria have not yet been deeply mathemati-
cally analyzed. The global analysis shows that the different performance criteria involve
the same performance threshold. This threshold is explicitly defined by a function which
depends on the dilution rate D. It defines the set of the values of S in and D that allow or not
a better performance of the serial configuration with two chemostats. Several numerical
applications are given to illustrate all the results of the study.

This paper is organized as follows. Section 2 presents the model. Subsequently, the
main part of the paper constituting Section 3 is dedicated to the study of the equilibria and
the performance analysis of the configuration. Indeed, the output substrate concentration,
the productivity of the biomass and the biogas flow rate are respectively treated in Sections
3.1, 3.2 and 3.3. Next, the operating diagram of the model is depicted in Section 4. After-
wards, several numerical simulations illustrating the results of our analysis and using some
specific growth functions are represented in Section 5. Finally, Section 6 contains a global
conclusion. Most of the proofs corresponding of the theorems and propositions stated
along the paper are proved in Appendixes A, B, C and D. Firstly, Appendix A contains
the proof related to the existence and the stability of steady states. Secondly, Appendixes
B and C contain respectively the proofs related to the output substrate concentration, the
productivity of the biomass and the biogas flow rate. Finally, Appendix D contains proofs
related to some of technical results of the paper.
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2. Mathematical model

If S and X denote respectively the substrate and the biomass concentration in a single
chemostat of volume V , the input flow rate Q and the input concentration of substrate S in,
their time evolution are modeled by the following system of ordinary differential equations:

(2.1) Ṡ = D
(
S in − S

)
− f (S ) X/Y

Ẋ = −DX + f (S ) X

where Y is the yield conversion of substrate into biomass, f (·) the specific growth rate of
the microorganisms that is assumed null at S = 0 and to be increasing for S > 0, and
D = Q/V is the dilution rate. Without loss of generality, one can assume Y = 1 in equation
(2.1) by using the change of variable x = X/Y . System (2.1) become

(2.2) Ṡ = D
(
S in − S

)
− f (S ) x

ẋ = −Dx + f (S ) x

The detailed mathematical analysis of the model (2.2) may be found in [4, 6]. Let us recall
classical results about the asymptotic behavior of (2.2). We define

(2.3) m := sup
S>0

f (S ), (m may be +∞).

As f is increasing then the break-even concentration is defined by

(2.4) λ(D) = f −1(D) when 0 ≤ D < m.

When S in > λ(D) (or, equivalently, f
(
S in

)
> D), any solution of (2.2) with S (0) ≥ 0

and x(0) > 0 converges toward the positive steady state E1 =
(
λ(D), S in − λ(D)

)
. On the

contrary, when D ≥ m or S in ≤ λ(D) (or, equivalently, f
(
S in

)
≤ D), any solution of (2.2)

with S (0) ≥ 0 and x(0) ≥ 0 converges toward the wash-out steady state E0 =
(
S in, 0

)
.

Thus, the output concentration at steady state S out(S in,D) is given by

(2.5) S out
(
S in,D

)
=

 S in if D ≥ f
(
S in

)
λ (D) if D < f

(
S in

)
We consider now the serial interconnected chemostats, where the volume V is divided into
two volumes, rV and (1 − r)V with r ∈ (0, 1), as shown in Figure 1, with Q the flow rate
and S in the input substrate concentration in the first chemostat. The mathematical model
is given by the following equations:

(2.6)

Ṡ 1 = D
r (S in − S 1) − f (S 1) x1

ẋ1 = −D
r x1 + f (S 1)x1

Ṡ 2 = D
1−r (S 1 − S 2) − f (S 2)x2

ẋ2 = D
1−r (x1 − x2) + f (S 2)x2

The dilution rate D is defined by D = Q/V . For the limiting cases r = 0 and r = 1,
these equations are not valid. Indeed, the limiting cases correspond to the single chemostat
model defined by (2.2).

In [16], the mathematical analysis of (2.6) was performed for a linear growth function
f (S ) = aS (a > 0) and numerical simulations were given for a Monod growth function
f (S ) = mS/(K + S ). The results of [16] were extended to Monod growth function and for
increasing and concave growth function in [21].
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S in

Q

Q

Q

rV (1 − r)V

S out
r

(
S in,D

)

S 1
x1

S 2
x2

Figure 1. The serial configuration of two chemostats. The output sub-
strate concentration at steady state S out

r measures the performance of the
system to convert the substrate S in.

Remark 1. The main result in [16, 21], see also [15], predicts that there exists a threshold
S in

1 such that for S in ≤ S in
1 , the output S out

r

(
S in,D

)
, which is the output density of the

substrate at steady state, satisfies S out
r (S in,D) > λ(D), for all r ∈ (0, 1) and, if S in > S in

1 ,
there exists a threshold r1 ∈ (0, 1), such that S out

r (S in,D) < λ(D) if and only if r1 < r < 1.

As it was noticed in (2.5), for a single chemostat, one has S out(S in,D) = λ(D). There-
fore, if S in ≤ S in

1 , the serial configuration is always less efficient than the single chemostat
of the same total volume V . In contrast, for S in > S in

1 and r large enough (i.e. r > r1), the
serial configuration is more efficient than the single chemostat.

In this paper, we extend this result to general increasing growth functions where the con-
cavity of f is not required and we provide explicit formulas for the thresholds S in

1 (D) and
r1

(
S in,D

)
. Hence, we consider a growth function satisfying only the following qualitative

property:

Assumption 1. The function f is C1, with f (0) = 0 and f ′(S ) > 0 for all S > 0.

The following result is classical in the mathematical theory of the chemostat and is left
to the reader.

Lemma 1. The solutions (S 1(t), x1(t), S 2(t), x2(t)) of (2.6) with nonnegative initial condi-
tions, exist for all t ≥ 0, are positive, bounded and lim

t→+∞
(S i(t) + xi(t)) = S in for i = 1, 2.

The existence and stability of steady states of (2.6) are given by the following result.
We use the abbreviation LES for locally exponentially stable and GAS for globally asymp-
totically stable in the positive orthant.

Theorem 1. Assume that Assumption 1 is satisfied. The steady states of (2.6) are:
• The washout steady state E0 = (S in, 0, S in, 0) which always exists. It is GAS if and

only if

(2.7) D ≥ max{r, 1 − r} f (S in).

It is LES if and only if: D > max{r, 1 − r} f (S in).
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• The steady state E1 =
(
S in, 0, S 2, S in − S 2

)
of washout in the first chemostat but

not in the second one, where S 2 is given by S 2 = λ (D/(1 − r)). This steady state
exists if and only if D < (1 − r) f (S in). It is GAS if and only if

(2.8) r f (S in) ≤ D < (1 − r) f (S in).

It is LES if and only if: r f (S in) < D < (1 − r) f (S in).
• The steady state E2 = (S ∗1, S

in − S ∗1, S
∗
2, S

in − S ∗2) of persistence of the species in
both chemostats, where S ∗1 is given by S ∗1 = λ (D/r) and S ∗2 = S ∗2(S in,D, r) is the
unique solution of the equation

(2.9) h(S 2) = f (S 2) with h(S 2) =
D

(
S ∗1 − S 2

)
(1 − r)

(
S in − S 2

) .
This steady state exists if and only if D < r f (S in). It is GAS and LES whenever it
exists.

Proof. The proof is given in Appendix A. �

Remark 2. Transcritical bifurcations occur in the limit cases D = r f (S in) and D = (1 −
r) f (S in).

(1) For 0 < r < 1/2, we have a transcritical bifurcation of E0 and E1 when D =

(1 − r) f (S in) and a transcritical bifurcation of E1 and E2 when D = r f (S in).
(2) For 1/2 < r < 1, we have a transcritical bifurcation of E0 and E2 when D =

r f (S in) and a transcritical bifurcation of E0 and E1 when D = (1 − r) f (S in).
(3) For r = 1/2 and D = f (S in)/2, we have transcritical bifurcations of E0 and E1,

and E0 and E2, simultaneously.

y

0
S 2

S ∗1S ∗2

y = f (S 2)

y = h(S 2)
DS ∗1

(1−r)S in

(a)

S 2

y

0 S ∗1

DS ∗1
(1−r)S in,2

DS ∗1
(1−r)S in,1

y = f (S 2)

y = h2(S 2)

y = h1(S 2)

S ∗12 S ∗22 (b)

Figure 2. (a): Graphical illustration of equation (2.9). (b): The result of
Proposition 1 with S ∗i2 = S ∗2(S in,i,D, r), i = 1, 2.

Figure 2 (a) shows the functions f and h and the solution S ∗2 = S ∗2(S in,D, r) of the
equation (2.9), which is unique since f is strictly increasing and the graph of h is a hyper-
bola. If S in,1 > S in,2, then hi(S 2) =

D(S ∗1−S 2)
(1−r)(S in,i−S 2) , i = 1, 2, satisfies h2(S 2) > h1(S 2), for all

S 2 ∈ (0, S ∗1), as shown in Figure 2 (b). Therefore, we have the following result:

Proposition 1. Let S in,1 and S in,2 be two different input substrate concentrations. If S in,1 >

S in,2 > 0 then for all r ∈
(
D/ f (S in,2), 1

)
and D > 0, one has S ∗2(S in,1,D, r) < S ∗2(S in,2,D, r).
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Proof. The proof is given in Appendix B.1. �

3. The three performance criteria

In this section we give the expressions of the output substrate concentration at steady
state, the productivity of the biomass and the biogas flow rate, for the serial configuration
of two chemostats.

3.1. Output substrate concentration. Let us consider the dependency of the output sub-
strate concentration with respect to the dilution rate D and the input concentration S in. As
stated in Theorem 1, for 0 < r < 1, the output substrate concentration at steady state is
given by the formulas:

(3.1) S out
r (S in,D) =


S in if max{r, 1 − r} f (S in) ≤ D
λ(D/(1 − r)) if r f (S in) ≤ D ≤ (1 − r) f (S in)
S ∗2(S in,D, r) if D < r f (S in).

Although S out
r (S in,D) is defined by (3.1) only for 0 < r < 1, we extend it, by continuity,

for r = 0 and r = 1 by

(3.2) S out
0 (S in,D) = S out

1 (S in,D) = S out(S in,D).

The continuity follows from the facts that limr→1 S ∗2(S in,D, r) = λ(D) and the second case,
where S out

r (S in,D) = λ(D/(1 − r)), is possible only if 0 ≤ r ≤ 1/2.
We have to compare S out

r (S in,D), given by (3.1) and (3.2), with S out(S in,D), given by
(2.5). Let r ∈ (0, 1) be fixed. Let gr : [0, rm) → R, where m is given by (2.3), be defined
by

(3.3) gr(D) = λ (D) +
λ(D/r) − λ (D)

1 − r
.

The following result asserts that the serial configuration of two chemostats of volumes rV
and (1 − r)V respectively, shown in Figure 1, is more efficient than the simple chemostat
of volume V , if and only if S in > gr(D).

Theorem 2. For any r ∈ (0, 1), one has S out
r (S in,D) < S out(S in,D) if and only if S in >

gr(D).

Proof. The proof is given in Appendix B.2 �

We need the following assumption, which is satisfied by any concave growth function,
but also by Hill function, which is not concave, as it is shown in Section 5.

Assumption 2. For every D ∈ [0,m), the function r ∈ (D/m, 1) 7→ gr(D) ∈ R is strictly
decreasing.

Let g : [0,m[ 7→ R be defined by

(3.4) g(D) = λ (D) +
D

f ′ (λ (D))
.

We have the following result:

Lemma 2. Assume that Assumptions 1 and 2 are satisfied. For all (S in,D) verifying the
condition S in > g(D), there exists a unique r1 = r1(S in,D) ∈ (0, 1) such that S in = gr1 (D).
One has r > r1(S in,D) if and only if S in > gr(D).

Proof. The proof is given in Appendix B.3. �
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We can state now our main result which compares S out
r (S in,D) and S out(S in,D).

Theorem 3. Assume that Assumptions 1 and 2 are satisfied.
• If S in ≤ g(D) then for any r ∈ (0, 1), S out

r (S in,D) > S out(S in,D).
• If S in > g(D) then S out

r (S in,D) < S out(S in,D) if and only if r1(S in,D) < r < 1 with
r1(S in,D) defined in Lemma 2.

The equality is fulfilled for r = 0, r = r1 and r = 1.

Proof. The proof is given in Appendix B.4. �

Lemma 2 and Theorem 3 give analytical expression for the thresholds S in
1 and r1 men-

tioned in Remark 1. Indeed, we have S in
1 = g(D) and r1 depends on D and S in, and is given

implicitly by equation S in = gr1 (D). In Section 5, we give explicit formulas for r1(S in,D)
in the cases of linear growth functions, see (5.1), or Monod growth functions, see (5.2).
To have a better understanding of the role of the parameter r, we also analyze the function
r 7→ S out

r (S in,D) when S in and D are fixed. According to the conditions on S in and D,
related to the global stability of the equilibria, several cases must be distinguished. The
following result encompasses the whole possible cases.

Proposition 2. Let D > 0 and S in > 0. We denote by r0 the ratio r0 = D/ f (S in).
1) If S in ≤ λ(D) then for any r ∈ [0, 1], one has S out

r (S in,D) = S out(S in,D) = S in.
2) If λ(D) < S in < λ(2D) then one has 1

2 < r0 < 1 and

(3.5) S out
r (S in,D) =


λ(D/(1 − r)) if 0 ≤ r ≤ 1 − r0
S in if 1 − r0 ≤ r ≤ r0
S ∗2(S in,D, r) if r0 ≤ r ≤ 1

3) If λ(2D) ≤ S in then one has 0 < r0 ≤
1
2 and

(3.6) S out
r (S in,D) =

{
λ(D/(1 − r)) if 0 ≤ r ≤ r0
S ∗2(S in,D, r) if r0 ≤ r ≤ 1

Proof. The proof is given in Appendix B.5. �

For a deeper analysis, we consider the functions D 7→ S out
r (S in,D) and D 7→ S out(S in,D)

where we fix the input substrate density S in and the parameter r. We add the following
assumption, which is satisfied by concave growth functions and also by Hill functions as it
is shown in Section 5.

Assumption 3. For every r ∈ (0, 1), the function D ∈ (0, rm) 7→ gr(D) ∈ R is strictly
increasing.

We have the following result:

Proposition 3. Assume that Assumptions 1 and 3 are satisfied. For any r ∈ (0, 1) and
S in > 0, there exists a critical value Dr = Dr(S in), which is the unique solution of the
implicit equation S in = gr(D), such that the serial configuration of two interconnected
chemostats is more efficient than a simple chemostat if and only if 0 < D < Dr(S in). That
is to say, for any 0 < D < Dr(S in), one has S out

r (S in,D) < S out(S in,D).

Proof. The proof is given in Appendix B.6. �

The result of Proposition 3 is illustrated by Figure 3. In this figure the critical value
Dr = Dr(S in) is depicted for various value of r and S in, illustrating then Proposition 1
which assert that, for a fixed dilution rate D, the output substrate concentration decreases
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D

S out, S out
r

S in,1

S in,2

f (S in,1)f (S in,2)0 D1
rD2

r
(a) 0 < r < 1

2

D

S out, S out
r

S in,1

S in,2

0 f (S in,1)f (S in,2)D1
rD2

r
(b) 1

2 < r < 1
Figure 3. The output substrate concentration of the serial device and the
simple chemostat are respectively represented by the red and the blue
curves. Di

r is the implicit solution of S in,i = gr(D), i = 1, 2. The output
substrate concentration of the serial device (in red) decreases as S in in-
creases.

when increasing S in increases.

The following Lemmas 3 and 4 provide sufficient conditions for Assumption 2 and 3 to
be satisfied. These conditions are useful for the applications given in section 5. For this
purpose we consider the function γ defined by

(3.7) γ(r,D) = gr(D) where dom(γ) = {(r,D) : 0 < r < 1, 0 < D < rm},

which consists simply in considering gr(D), given by (3.3), as a function of both variables
r and D. If ∂γ

∂r (r,D) < 0 for all (r,D) ∈ dom(γ), then Assumption 2 is satisfied. Similarly, if
∂γ
∂D (r,D) > 0 for all (r,D) ∈ dom(γ), then Assumption 3 is satisfied. The following lemmas
gives equivalent conditions, and also sufficient conditions, for partial γ derivatives to have
their signs as indicated above.

Lemma 3. For D ∈ (0,m), let lD be defined on (D/m, 1] by lD(r) = λ(D/r). The following
conditions are equivalent

(1) For all (r,D) ∈ dom(γ), ∂γ
∂r (r,D) < 0.

(2) For all D ∈ (0,m) and r ∈ (D/m, 1), lD(1) > lD(r) + (1 − r)l′D(r).
If lD is strictly convex on (D/m, 1], then the condition 2 is satisfied. If, in addition, f is
twice derivable, then lD is twice derivable and the following conditions are equivalent

(1) For all D ∈ (0,m) and r ∈ (D/m, 1], l′′D(r) > 0.
(2) For all S > 0, f (S ) f ′′(S ) < 2 ( f ′(S ))2.

Proof. The proof is given in Appendix D.1. �

Lemma 4. The following conditions are equivalent

(1) For all (r,D) ∈ dom(γ), ∂γ
∂D (r,D) > 0.

(2) For all (r,D) ∈ dom(γ), f ′ (λ(D/r)) < f ′ (λ(D)) /r2.
If f ′ is decreasing, then the condition 2 is satisfied.

Proof. The proof is given in Appendix D.2. �
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Remark 3. If the growth function is twice derivable and satisfies f ′′(S ) ≤ 0 for all S > 0,
then the condition 4 in Lemma 3 and the condition 2 in Lemma 4 are satisfied. Thus, As-
sumptions 2 and 3 are satisfied. Therefore, our results apply for concave growth functions.
The previous lemmas allow to consider a non-concave growth function such as the Hill
function as shown in Section 5.3.

3.2. Biomass productivity. Let us consider the dependency of the productivity of the
biomass with respect to the dilution rate D and the input concentration S in. Recall that for
a simple chemostat the output biomass at steady state is given by xout = S in − S out. Thus,
the productivity of a single chemostat is defined by

(3.8) P(S in,D) := Qxout(S in,D) =

{
0 if D ≥ f (S in)
VD(S in − λ(D)) if D < f (S in)

Let Dopt(S in) be the dilution rate which maximizes P(S in,D) i.e.

(3.9) Dopt(S in) := argmax
0≤D≤ f (S in)

P(S in,D).

Assumption 4. The dilution rate Dopt(S in) defined by (3.9) is unique.

Proposition 4. The dilution rate Dopt(S in) defined by (3.9) is the solution of equation
S in = g(D) where g is defined by (3.4).

Proof. The proof is given in Appendix C.1. �

The productivity of the two serial interconnected chemostats at steady-state is

(3.10) Pr(S in,D) := Qxout
r (S in,D).

Using the definitions (3.1) of S out
r (S in,D) and xout

r = S in − S out
r , for r ∈ (0, 1), we have

(3.11) Pr(S in,D) =


0 if max{r, 1 − r} f (S in) ≤ D
VD

(
S in − λ(D/(1 − r))

)
if r f (S in) ≤ D ≤ (1 − r) f (S in)

VD
(
S in − S ∗2

(
S in,D, r

))
if D < r f (S in)

and Pr(S in,D) = P(S in,D), when r = 0 and r = 1. As a consequence of Theorem 3 we
obtain the following result.

Corollary 1. Assume that Assumptions 1 and 2 are satisfied.

• If S in ≤ g(D) then for any r ∈ (0, 1), Pr(S in,D) < P(S in,D).
• If S in > g(D) then Pr(S in,D) > P(S in,D) if and only if r ∈ (r1, 1), where r1 =

r1(S in,D) is the unique solution of S in = gr(D)

and Pr(S in,D) = P(S in,D) for r = 0, r = r1 and r = 1.

Proof. The proof is given in Appendix C.2. �

This Corollary ensures that if S in > g(D) and for any r1 < r < 1, the productivity of the
biomass of the serial configuration is larger than the one of the simple chemostat. These
conditions, related to the productivity of the biomass, are the same conditions that arose
in the case of the minimization of the output substrate concentration, see Section 3.1. We
illustrate this Corollary in Section 4 in Figure 8.
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3.3. Biogas flow rate. Let us consider the dependency of the biogas flow rate with respect
to the dilution rate D and the input concentration S in. Recall that for a simple chemostat
the output biomass at steady state is given by xout = S in − S out. Classically, the biogas flow
rate at steady-state of the simple chemostat model is given by

(3.12) G
(
S in,D

)
:= V xout f (S out) =

 0 if D ≥ f
(
S in

)
VD

(
S in − λ (D)

)
if D < f

(
S in

)
The biogas flow rate of the serial configuration of two chemostats is the sum with the

same propositional coefficient kept equal to one

(3.13) Gr

(
S in,D

)
:=

2∑
i=1

Vixout,i f (S out,i).

with Vi the volume, xout,i the output steady-state biomass and S out,i the output steady-state
substrate concentration, all corresponding to the tank i = 1, 2. In this respect, for r = 0 and
r = 1 we have Gr

(
S in,D

)
= G(S in,D) and when r ∈ (0, 1) it is formulated by

(3.14)

Gr

(
S in,D

)
=


0 if max{r, 1 − r} f (S in) ≤ D
VD

(
S in − λ(D/(1 − r))

)
if r f (S in) ≤ D ≤ (1 − r) f (S in))

VD
(
S in − λ(D/r)

)
+ V(1 − r) f

(
S ∗2

) (
S in − S ∗2

)
if D < r f (S in)

Proposition 5. For any D ∈ [0,m[, S in > 0 and r ∈ (0, 1), one has Gr(S in,D) = Pr(S in,D).

Proof. The proof is given in Appendix C.3. �

We know that for a single chemostat, the biogas flow rate and the productivity of the
biomass at steady state are identical. Proposition 5 asserts this same conclusion in the
case of two serial interconnected chemostats. Thereby, we deduce that analyzing the pro-
ductivity of the biomass or the biogas flow rate at the steady state of two interconnected
chemostats are equivalent. In this respect, Corollary 1 and the following result are verified
for both performance criteria.

Proposition 6. Let S in > 0. Let Gmax(S in) = maxD∈(0, f (S in)) G(S in,D). For any D > 0 and
r ∈ (0, 1), one has Gr(S in,D) < Gmax(S in).

Proof. The proof is given in Appendix C.4 . �

The two functions D 7→ Gr(S in,D) and D 7→ G(S in,D) are depicted in Figure 4. It
shows that, for fixed values S in and r, the biogas production of the serial configuration
of two chemostats is more efficient than the one of the single chemostat if and only if
0 < D < Dr with Dr solution of S in = gr(D), as it was proved in Proposition 3. In addition,
Proposition 6 guarantees that the biogas flow rate of the serial device will never exceed the
maximal biogas flow rate of the single chemostat. In other words, the extrema of the blue
curve of the serial configuration will never exceed the extremum of the black curve of the
simple chemostat.

This result has been graphically shown in [12] and [20] for the productivity of the
biomass in the particular case of the Monod growth function. The simulations depicted
in these references predicted that spatialization as we proposed it, does not give a better
productivity of the biomass than a simple chemostat. According to Proposition 5, we know
that at steady-state, the biogas flow rate and the productivity of the biomass are the same,
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D
0

G,Gr

Dr
(a) 0 < r < 1

2

D
0

G,Gr

Dr
(b) r = 1

2

D
0

G,Gr

Dr
(c) 1

2 < r < 1
Figure 4. The biogas flow rate of the serial configuration of two
chemostats (in light blue) and the one of the single chemostat (in black).

which explains why predictions of the authors of [12] and [20] correspond to Proposition
6.

4. Operating Diagram

The operating diagram is the bifurcation diagram for which the values of the biological
parameters are fixed. The various regions of the operating diagram reflect qualitatively
different dynamics. The operating parameters which are the input concentration S in and
the dilution rate D of the chemostat can be chosen by the practitioners and the behavior
of the model is discussed with respect to them. In contrast, the biological parameters are
the ones of the growth function since they depend on the organisms, the substrates and the
conversion rate Y , and are usually estimated in the laboratory.

Let the curves Φr and Φ1−r in the (S in,D) positive plane be defined by

(4.1) Φr :=
{(

S in,D
)

: D = r f (S in)
}

and Φ1−r :=
{(

S in,D
)

: D = (1 − r) f (S in)
}
.

The curves Φr and Φ1−r split the positive plane (S in,D) in several regions denoted I0(r),
I1(r), I2(r) and I3(r) defined by:

I0(r) :=
{(

S in,D
)

: max{r, 1 − r} f (S in) ≤ D
}
,

I1(r) :=
{(

S in,D
)

: r f (S in) ≤ D < (1 − r) f (S in)
}
, 0 ≤ r < 1

2 ,

I2(r) :=
{(

S in,D
)

: 0 < D < min{r, 1 − r} f (S in)
}
,

I3(r) :=
{(

S in,D
)

: (1 − r) f (S in) ≤ D < r f (S in)
}
, 1

2 < r ≤ 1.

We fix r in (0, 1) and we depict in the plane (S in,D) the regions in which the solution of
system (2.6), with positive initial condition, globally converges towards one of the steady
states E0, E1 or E2. In the case 0 ≤ r < 1

2 [res. 1
2 < r ≤ 1], the regions I0(r), I1(r) and

I2(r) [res. I0(r), I2(r) and I3(r) ] form a partition of the positive plane. The region I1(r) for
1
2 ≤ r ≤ 1 [res. I3(r) for 0 ≤ r ≤ 1

2 ] is empty. The behavior of the system in each region is
given in Table 1.

Let the curve Γr in the positive plane (S in,D) be defined by

(4.2) Γr :=
{
(S in,D) : S in = gr(D)

}
with gr defined by (3.3).
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I0(r) I1(r) I2(r) I3(r)
E0 GAS U U U
E1 GAS U
E2 GAS GAS

Table 1. Stability of the steady states in the various regions of the oper-
ating diagram. The letter U means that the steady state is unstable. The
letters GAS means that the steady state is globally asymptotically stable
in the positive orthant. No letter means that the steady state does not
exist.

Lemma 5. For all r ∈ (0, 1) the curve Φr defined by (4.1) is always above the curve Γr

defined by (4.2) in the plane (S in,D).

Proof. The proof is given in Appendix D.3. �

S in

D

0

I0(r)

I1(r)

I2(r)

Γr

Φr

Φ1−r

(a) 0 < r < 1
2

S in

D

0

I0(r)

I3(r)

I2(r)

Γr

Φr

Φ1−r

(b) 1
2 < r < 1

Figure 5. The operating diagram of two interconnected chemostats in
serial depending on the parameter r.

In this respect, for any growth function f verifying Assumption 1, the operating diagram
of system (2.6) looks like Figure 5. Thus, according to Theorem 2, for the minimization of
the output substrate concentration criterion, the serial configuration is more efficient than
the simple chemostat if and only if S in > gr(D) i.e. if and only if (S in,D) is strictly below
the curve Γr, see Figure 5. Let use the operating plane to give a better understanding of
the results of Proposition 2 on the behavior of the function r 7→ S out

r

(
S in,D

)
, according to

(S in,D). To this end, we consider the curves Φ1, Γ and Φ1/2 in the operating plane defined
by:

(4.3) Φ1/2 =
{
(S in,D) : S in = λ(2D)

}
, Φ1 =

{
(S in,D) : S in = λ(D)

}
(4.4) and Γ =

{
(S in,D) : S in = g(D)

}
with g defined by (3.4).
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Curves Γ and Φ1/2 lie below curve Φ1. Therefore, curves Γ, Φ1/2 and Φ1 split the
operating plane into at most five regions defined by:

(4.5)

J0 =
{
(S in,D) : S in ≤ λ(D)

}
,

J1 =
{
(S in,D) : λ(D) < S in ≤ min (g(D), λ(2D))

}
,

J2 =
{
(S in,D) : g(D) < S in < λ(2D)

}
,

J3 =
{
(S in,D) : max (g(D), λ(2D)) ≤ S in

}
,

J4 =
{
(S in,D) : λ(2D) < S in < g(D)

}
.

These regions are shown in Figure 6 which is given for an illustrative example but does
not correspond to any particular growth function. Regions J0, J1 and J3 always exist and

S in

D

0

J0

J1

J2

J3
J4

Γ

Φ1/2

Φ1

Figure 6. Regions in the operating plan with different behaviors of the
mapping r 7→ S out

r (S in,D) where (S in,D) is fixed.

are connected. However, regions J2 and J4 do not necessarily exist and if they exist, in
general, they are not necessarily connected, depending on the relative positions of curves
Γ and Φ1/2. For instance, for linear growth rates, Γ = Φ1/2 and regions J2 and J4 do not
exist (see Section 5.1); for Monod growth function, curve Γ is above curve Φ1/2 and region
J4 does not exist (see Section 5.2); for Hill growth function, regions J2 and J4 both exist
(see Section 5.3) and are connected. Notice that for plotting operating diagrams we must
choose the growth function f and the values of the biological parameters, see Figures 9
and 14. We can state now the main result on function r 7→ S out

r

(
S in,D

)
, for (S in,D) ∈ Ji,

i = 0, ..., 4.

Proposition 7. Let Ji, i = 0, 1, ...4 be defined by (4.5). The behavior of function r 7→
S out

r

(
S in,D

)
, according to (S in,D) is as follows:

• If (S in,D) ∈ J0, then for all r ∈ [0, 1], S out
r (S in,D) = S out(S in,D) = S in.

• If (S in,D) ∈ J1 then when λ(D) < S in < λ(2D), S out
r (S in,D) is given by (3.5) and

when S in = λ(2D), S out
r (S in,D) is given by (3.6). In addition, for all r ∈ (0, 1),

S out
r (S in,D) > S out(S in,D). The equality is fulfilled for r = 0 and r = 1, see Figure

7 (a).
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• If (S in,D) ∈ J2 then S out
r (S in,D) is given by (3.5) and S out

r (S in,D) < S out(S in,D) if
and only if r ∈ (r1, 1) where r1 = r1(S in,D) is the unique solution of S in = gr(D).
The equality is fulfilled for r = 0, r = r1 and r = 1, see Figure 7 (b).

• If (S in,D) ∈ J3 then S out
r (S in,D) is given by (3.6) and S out

r (S in,D) < S out(S in,D) if
and only if S in > g(D) and r ∈ (r1, 1) where r1 = r1(S in,D) is the unique solution
of S in = gr(D). The equality is fulfilled for r = 0, r = r1 and r = 1, see Figure 7
(c).

• If (S in,D) ∈ J4 then S out
r (S in,D) is given by (3.6) and for all r ∈ (0, 1), S out

r (S in,D) >
S out(S in,D). The equality is fulfilled for r = 0 and r = 1, see Figure 7 (d).

Proof. The proof is given in Appendix B.7 �

r

S out,S out
r

0

S in

λ(D)

1 − r0 r0 1
(a) (S in,D) ∈ J1

r

S out,S out
r

S in

λ(D)

0 1 − r0 r0 r1 1
(b) (S in,D) ∈ J2

r

S out,S out
r

S in

λ(D)

0 r0 r1 1
(c) (S in,D) ∈ J3

r

S out,S out
r

S in

λ(D)

0 r0 1
(d) (S in,D) ∈ J4

Figure 7. The map r 7→ S out
r (S in,D) (in red) in the regions J1, J2, J3 and

J4 compared to r 7→ S out(S in,D) (in blue). The value r1 is the unique
solution of S in = gr(D) and r0 = D/ f (S in).

According to the regions depicted in Figure 6, we obtain Figure 7 which covers the
whole possible cases of the behavior of the function r 7→ S out

r (S in,D). Thusly, we can
minimize the output substrate concentration at the steady state by using a serial configura-
tion of two interconnected chemostats instead of one chemostat if (S in,D) is fixed in the
regions J2 or J3 (i.e. S in > g(D)) and for r1 < r < 1.

We have previously shown that Corollary 1 is a consequence of Theorem 3 and one can
see in Proof C.2 of Corollary 1 that comparing the two quantities Pr(S in,D) and P(S in,D)
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r

P, Pr

0 11 − r0 r0

VD(S in − λ(D))

(a) (S in,D) ∈ J1

r

P, Pr

0 11 − r0 r0 r1

VD(S in − λ(D))

(b) (S in,D) ∈ J2

r

P, Pr

0 1r0 r1

VD(S in − λ(D))

(c) (S in,D) ∈ J3

r

P, Pr

0 1r0

VD(S in − λ(D))

(d) (S in,D) ∈ J4

Figure 8. The map r 7→ Pr(S in,D) (in light blue) in the regions J1, J2,
J3 and J4 compared to r 7→ P(S in,D) (in black). The value r1 is the
unique solution of S in = gr(D) and r0 = D/ f (S in).

involves the comparison of the two quantities S out
r (S in,D) and S out(S in,D). That is why,

the curves representing the productivity of the biomass depicted in Figure 8 are analo-
gous to the curves of Figure 7. In Figure 8, we fix r ∈ (0, 1) and we plot the functions
r 7→ Pr(S in,D) and r 7→ P(S in,D) for (S in,D) fixed in the regions J1, J2, J3 and J4. As
in the case of the output substrate concentration, it is shown that the productivity of the
biomass or the biogas flow rate of the serial configuration is larger than the one of the
simple chemostat if and only if r ∈ (r1, 1) and (S in,D) is fixed in one of the regions J2 or
J3.

5. Applications and numerical illustrations

In this section, we consider three different kinetics: the linear function, the Monod
function and the Hill function. Table 2 gives the analytical expressions of most of the re-
sults previously presented. These expressions show that an analytical study of the different
performance criteria is possible.

5.1. Linear function. We consider f as a linear function defined by f (S ) = aS . Ac-
cording to Table 2, remark that λ(2D) = g(D) then, the curves Φ1/2 and Γ defined respec-
tively by (4.3) and (4.4) merge and constitute only one curve. The behavior of the maps
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Functions gr(D) g(D) λ(2D)

f (S ) = aS , a > 0 D(1+r)
ar

2D
a

2D
a

f (S ) = mS
K+S , DK(m(1+r)−D)

(m−D)(mr−D)
KD(2m−D)

(m−D)2
2KD

m−2D

f (S ) = mS 2

K2+S 2
K
√

D
1−r

(
1

√
rm−D

− r
√

m−D

)
K
2

√
D

(m−D)3 (3m − 2D) K
√

2D
m−2D

Table 2. Analytical expressions obtained for a linear, Monod and Hill
(with p = 2) growth functions.

r 7→ S out
r (S in,D) and r 7→ S out(S in,D) or r 7→ Pr(S in,D) and r 7→ P(S in,D) depends on

the position of (S in,D) in the three regions Ji, i = 0, 1, 3 represented in Figure 9 (a). These
regions are defined by

J0 =
{
(S in,D) : S in ≤ λ(D)

}
, J1 =

{
(S in,D) : λ(D) < S in ≤ λ(2D)

}
, J3 =

{
(S in,D) : λ(2D) ≤ S in

}
.

S in

D Φ1

Φ1/2 = Γ
J0

J1

J3

S in
0 S in

1
(a)

S in

D Φ1

Γ
Φ1/2

J0

J1 J2

J3

S in
0 S in

1 S in
2
(b)

Figure 9. Regions in the operating plane with f defined by f (S ) = S in
(a) and f (S ) = 6S/(5 + S ) in (b). The dashed blue line D = 1 indicates
the respective critical values S in

0 , S in
1 and S in

2 of Figures 10 and 11.

For a fixed value of D, the passageway form the region J0 to J1 is defined by the critical
value S in

0 = λ(D) and the passageway form the region J1 to J3 is defined by the critical
value S in

1 = g(D) = λ(2D) as shown in Figures 9 (a) and 10 (b). As stated in Lemma 2,
for any S in > S in

1 there exists a threshold r1 = r1(S in,D) solution of S in = gr(D) which is
explicitly defined by

(5.1) r1(S in,D) =
D

aS in − D
.

Then, according to the three performance criteria which are the minimization of the output
substrate concentration, the maximization of the productivity of the biomass and the max-
imization of the biogas flow rate, the serial configuration is more efficient than the simple
chemostat if and only if S in > S in

1 and r ∈ (r1, 1). This result is illustrated in Figure 10
for minimization of the output substrate concentration criterion. Figure 10 (a) should be
compared with Figure 6 of [16], where the part of the curves represented in Figure 10 (a)
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corresponding to r > r0, for which S out
r (S in,D) = S ∗2(S in,D, r), are depicted. Indeed, in

[16], the authors were only interested in the case where the positive equilibrium E2 is GAS.
The threshold S in

1 = 2 shown in Figure 6 of [16] is given by S in
1 = g(1) and for any S in > 2

the threshold r1(S in,D) is explicitly given by (5.1).

r

S out, S out
r

(a) (S in,D) ∈ J1 ∪ J3

r

S out, S out
r

S in
0

S in
1

(b)

Figure 10. (a): The function r 7→ S out
r (S in,D) with f (S ) = S , D = 1,

r1(4, 1) = 0.333, r1(3, 1) = 0.5 and r1(2.5, 1) = 0.666. (b): For D = 1,
the critical values corresponding to the passageways between the regions
Ji, i = 0, 1, 3 are S in

0 = 1 and S in
1 = 2.

5.2. Monod function. The Monod function is defined by f (S ) = mS/(K + S ), see the
second line of Table 2.

Lemma 6. The curve Γ is located strictly above the curve Φ1/2 in the (S in,D) plane.

Proof. The proof in given in the Appendix D.4 �

Thus, considering a Monod function induces four regions Ji, i = 0, 1, 2, 3 in the oper-
ating plane, that describe the behaviors of the maps r 7→ S out

r (S in,D) and r 7→ Pr(S in,D),
which depend on the position of (S in,D) in these regions, as depicted in Figure 9 (b). The
behavior of the map r 7→ S out

r (S in,D) through these regions is depicted in Figure 11 (a).
For a fixed dilution rate D, the limit curves Φ1, Γ and Φ1/2 define critical values denoted
S in

0 = λ(D), S in
1 = g(D) and S in

2 = λ(2D), that respectively characterize the passageways
between the regions Ji, i = 0, 1, 2, 3, see Figures 9 (b) and 11 (b). As stated in Lemma 2,
for any S in > S in

1 there exists a threshold r1 = r1(S in,D) solution of S in = gr(D) which is
explicitly defined by

(5.2) r1(S in,D) =
D(K + S in)(m − D)

m(S inm − D(K + S in))
.

Then, according to the three studied performance criteria, the serial configuration is more
efficient than the simple chemostat if and only if S in > S in

1 and r1 < r < 1. Figure 11
(a) should be compared with Figure 9 of [16], where the part of the curves represented in
Figure 11 (a) corresponding to r > r0, for which S out

r (S in,D) = S ∗2(S in,D, r), are depicted.
Indeed, in [16], the authors were only interested to the case where the positive equilibrium
E2 is GAS. If D = 1 as shown in Figure 9 (b), the threshold S in

1 is given by S in
1 = g(1) = 2.2

and for any S in > 2.2 the threshold r1 is explicitly given by (5.2).
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r

S out, S out
r

(a) (S in,D) ∈ J1 ∪ J2 ∪ J3

r

S out, S out
r

S in
0

S in
2

S in
1

(b)

Figure 11. (a): The function r 7→ S out
r (S in,D) with f (S ) = 6S/(5 + S ),

D = 1, r1(4, 1) = 0.5, r1(3, 1) = 0.666 and r1(2.5, 1) = 0.833. (b): The
critical values corresponding to the passageways between the regions Ji,
i = 0, 1, 2, 3 are S in

0 = 1, S in
1 = 2.2 and S in

2 = 2.5.

Notice that Figures 10 (a) and 11 (a) illustrate Proposition 1. As stated in this Proposi-
tion, when D is fixed, one can remark that when increasing S in, the output substrate con-
centration at the steady state decreases. Thus, the minimum of the curve r 7→ S out

r (S in,D),
representing the optimal point that gives the best possible serial configuration, decreases
as S in > S in

1 = g(D) and S in increases.

S in

D

Γr

Φr

Φ1−r

Γ

∆r

(a) 0 < r < 1
2

D

S in

Γr

Φ1−r

Φr

Γ

∆r

(b) 1
2 < r < 1

Figure 12. The curves Φr and Φ1−r are defined by (4.1). The curves
Γr and Γ are respectively defined by (4.2) and (4.4). The curve ∆r of
maximal productivity, defined by (5.3), is obtained numerically with
f (S ) = 6S/(5 + S ), V = 1, and (a): r = 0.295, (b): r = 0.75.

For the purpose of comparing the productivity of the biomass of both configurations, for
a fixed r ∈ (0, 1), we characterize the operating parameters, (S in,D) that allow the optimal
biomass productivity of the serial configuration. Let ∆r be the curve defined by

(5.3) ∆r =

(S in,Dopt
r (S in)

)
: Dopt

r (S in) = argmax
0≤D≤ f (S in)

Pr(S in,D)

 .
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D

Pr
Pmax

r

Dopt
r

(a) S in = 0.4

Pr
Pmax

r

D

(b) S in = 0.84

Pr

Pmax
r

D
Dopt

r

(c) S in = 1.2
Figure 13. The productivity of the biomass, of the serial configuration
with Dopt

r = Dopt
r (S in) defined in (5.3) and Pmax

r = Pr(S in,Dopt
r ), corre-

sponding to the Figure 12 (a).

where Pr is defined by (3.11). This curve is obtained numerically and depicted in the
operating plane (S in,D), see Figure 12 (a) and (b). For the values of the parameters used
in Figure 12 (a), corresponding to the case 0 < r < 1/2, there exits a threshold S in ≈ 0.84
such that for 0 < S in < 0.84, the maximum of Pr(S in,D) is reached when Pr(S in,D) =

VD(S in − S ∗2(S in,D, r)), and for S in > 0.84, it is reached when Pr(S in,D) = VD(S in −

λ(D/(1 − r))), as shown in Figure 13. Therefore, for 0 < S in < 0.84, the maximum of
Pr(S in,D) is reached when E2 is stable, i.e. when D < r f (S in), as illustrated for S in = 0.4
in Figure 13 (a). That is why, for 0 < S in < 0.84, the curve ∆r is strictly below the curve
Φr. In contrast, for S in > 0.84 the maximum of Pr(S in,D) is reached when E1 is stable, i.e.
when D ≥ r f (S in), as illustrated for S in = 1.2 Figure 13 (c). That is why, for S in > 0.84,
the curve ∆r is strictly above the curve Φr. In the limit case S in = 0.84, both maxima of
Pr(S in,D) are equal, as shown in Figure 13 (b). This corresponds to the leap of the curve
∆r, shown in Figure 12 (a). On the other hand, for 1/2 < r < 1, the equilibrium E1 cannot
be stable and Pr(S in,D) = VD(S in − S ∗2(S in,D, r)), whenever it is positive. Therefore, its
maximum is reached when the positive equilibrium E2 is stable, that is why, the curve ∆r

is strictly below the curve Φr, see Figure 12 (b).
According to Proposition 4, Γ is the curve of equation D = Dopt(S in), where Dopt(S in) is

defined in (3.9). In other words, Dopt(S in) is the optimal dilution rate corresponding to the
maximal productivity of the biomass, of the simple chemostat. We observe on Figure 12
that ∆r is strictly below the curve Γ. Hence Dopt(S in) > Dopt

r (S in), as it was also depicted
in Figure 4. We conjecture that this property is always verified.

5.3. Hill function. For all p > 1, the non-concave Hill function is defined by f (S ) =

mS p/(K p + S p).

Proposition 8. The Hill function verifies Assumption 2 and 3.

Proof. The proof is given in Appendix D.5 �

Proposition 8 shows that we can use effectively a non-concave growth function in our
analysis. In the following, we consider the case where p = 2, see third line of Table 2.

Lemma 7. Let us denote D1 = m(3 −
√

5)/4.
If 0 < D < D1 then the curve Φ1/2 defined by (4.3) is strictly above the curve Γ defined

in (4.4). In contrast, if D1 < D < m
2 then the curve Φ1/2 is strictly below the curve Γ.
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Proof. The proof is given in Appendix D.6 �

According to Lemma 7, considering an Hill function with p = 2 induces five regions
Ji, i = 0, 1, 2, 3, 4 in the operating plane, defined in (4.5), that describe the behavior of the
maps r 7→ S out

r (S in,D) and r 7→ S out(S in,D) or r 7→ Pr(S in,D) and r 7→ P(S in,D), which
depends on the position of (S in,D) in these regions (see Figure 14 ). For a fixed dilution
rate D, the limit curves Φ1, Γ and Φ1/2 define critical values denoted S in

0 = λ(D), S in
1 =

g(D) and S in
2 = λ(2D) that characterize the passageways between the different regions Ji,

i = 0, 1, 2, 3, 4. Notice that, if D < D1, as shown in Figure 14 (b), where D1 is defined
in Lemma 7 then, we have S in

1 > S in
2 and the behavior of the maps r → S out

r (S in,D) is as
depicted in Figure 15 (b). Remark that, in this case, the region where S out

r (S in,D) = S in

disappears before the emergence of the threshold r1 solution of S in = gr(D), that is, before
the emergence of the region where the serial configuration is more efficient than the simple
chemostat i.e. S out

r (S in,D) < S out(S in,D). On the other hand, if D > D1, as shown in
Figure 14 (a) then, we have S in

1 < S in
2 and the behavior of the maps r → S out

r (S in,D) is as
depicted in Figure 15 (a).

S in

D
Φ1

Γ

Φ1/2

S in
0 S in

1 S in
2

J0

J1

J4

J2

J3

(a)

S in

D

D1

λ(2D1)S in
0 S in

1S in
2

J4

J0

J1

J3

(b)
Figure 14. The five regions in the operating plane where f (S ) =

8S 2/(5 + S 2). The blue dashed lines D = 3 and D = 1 indicate re-
spectively the critical values S in

0 , S in
1 and S in

2 , of schemes (a) and (b) of
Figure 15.

As stated in Lemma 2, for any S in > S in
1 , there exists a threshold r1 = r1(S in,D) solution

of S in = gr(D) such that, for r1 < r < 1, the performance of the serial configuration is
more efficient than the one of the simple chemostat. In other words, the output substrate
concentration at steady-state of the serial configuration is lesser than the one of the simple
chemostat if and only if (S in,D) ∈ J2 ∪ J3 and r ∈ (r1, 1).

6. Conclusion

This work presents an in-depth mathematical study of a model of two serial intercon-
nected chemostats with one species and a monotonic growth function. We analyze, at
steady-state, three different performance criteria: the minimization of the output substrate
concentration, the maximization of the productivity of the biomass and the maximization
of the biogas flow rate. The aim is to compare with the performance of the single chemo-
stat. A part of this paper extends some of the results published in [16] and presented in
the thesis [21]. In these both references, the concavity of the function f is a required as-
sumption but this assumption is not necessary in our analysis. The thorough study of our
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r

S out, S out
r

S in
0

S in
1

S in
2

(a) D > D1 (S in,D) ∈ J1 ∪ J2 ∪ J3

r

S out, S out
r

S in
0

S in
2S in

1

(b) D < D1 (S in,D) ∈ J1 ∪ J3 ∪ J4

Figure 15. The function r → S out
r (S in,D) with f (S ) = 8S 2/(

√
5 + S 2)

and D1 = 1.5279. (a): D = 3, r1(9, 3) = 0.43, r1(5, 3) = 0.56,
r1(3.87, 3) = 0.72, S in

0 = 1.73, S in
1 = 3.11 and S in

2 = 3.87. (b):
D = 1, r1(2.5, 1) = 0.28, r1(2, 1) = 0.38, r1(1.5, 1) = 0.70, S in

0 = 0.85,
S in

1 = 1.33 and S in
2 = 1.29.

model reveals three main results. First, we provide an explicit expression depending on the
dilution rate D, that represents the threshold S in

1 = g(D) on the input concentration for the
performance. We deduce that there exists a configuration of two tanks that is better than
a single tank. Actually, through the optimization of the distribution of the volume V and
the threshold S in

1 , we distinguish which configuration is the best. Secondly, we infer that
maximizing the production of the biomass is equivalent to maximize the biogas flow rate
at steady-state even in the case of a serial device of two interconnected chemostats. At the
end, we obtain the same conditions for the three performance criteria. Thus, reducing the
output substrate concentration, maximizing the production of the biomass or maximizing
the biogas flow rate at steady state involve the same conditions and the same threshold
S in

1 . These conditions are necessary and sufficient to allow the best performance, and they
are characterized by the input concentration S in, the dilution rate D and the parameter r.
Finally, for deeper understanding, we depict the corresponding operating diagram of the
model which describes the behavior of the steady states. This diagram presents the condi-
tions which induce an optimal configuration with regions characterized by the parameter r
and the operating parameters S in and D.

To broaden and deepen the present work, a forthcoming paper will present the analysis
of performance, of an extension, of the model of two serial interconnected chemostats, with
death rates. This future work will also include a comparison with the simple chemostat
with death rate.

Appendix A. Proof of Theorem 1

A.1. Existence of equilibria. System (2.6) has a cascade structure. Let us consider zi(t) =

S i(t) + xi(t) (i = 1, 2) then, we have the following system

(A.1)

ż1 = D
r

(
S in − z1

)
ẋ1 = −D

r x1 + f (z1 − x1)x1

ż2 = D
1−r (z1 − z2)

ẋ2 = D
1−r (x1 − x2) + f (z2 − x2)x2.
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One can easily show that lim
t→+∞

zi(t) = S in (i = 1, 2). Therefore (x1(t), x2(t)) satisfies an
asymptotically autonomous dynamics, whose limiting system

(A.2)
ẋ1 = −D

r x1 + f (S in − x1)x1

ẋ2 = D
1−r (x1 − x2) + f (S in − x2)x2.

is defined in the square Σ := [0, S in] × [0, S in]. System (A.2) has a cascade structure. It
admits at most three equilibria:

e0 = (0, 0), e1 =
(
0, S in − λ (D/(1 − r))

)
and e2 =

(
S in − λ (D/r) , x∗2

)
with x∗2 ∈

(
0, S in

)
a solution, if it exists, of equation

(A.3) ϕ(x2) = S in − λ (D/r) with ϕ(x2) = x2 − (1 − r)D−1 f (S in − x2)x2.

The equilibria E0, E1 and E2 of (2.6) corresponding to e0, e1 and e2, respectively, have the
same values xi, i = 1, 2, and their corresponding S i are given by S i = S in − xi, i = 1, 2.
Note that e0, e1 and e2 give

(S 1, S 2) =
(
S in, S in

)
, (S 1, S 2) =

(
S in, λ (D/(1 − r))

)
and (S 1, S 2) =

(
λ (D/r) , S ∗2

)
,

where S ∗2 = S in − x∗2. This proves that one has S 2 = λ (D/(1 − r)) and S ∗1 = λ (D/r)
as stated in the theorem. The equilibrium e0, and hence the corresponding equilibrium
E0, always exists. The equilibrium e1, exists if and only if S in − λ (D/(1 − r)) > 0, that
is D < (1 − r) f (S in), which is the condition of existence of E1 in the theorem. For the
existence and uniqueness of e2, note that x∗2 is a solution of (A.3), if and only if S ∗2 = S in−x∗2
satisfies f (S ∗2) = h(S ∗2), which proves (2.9). Recall that h is positive, strictly decreasing
and h(S ∗1) = 0, where S ∗1 = λ(D/r), if and only if S in > λ (D/r), see Figure 2. Thus, as f
is strictly increasing (see Assumption 1), there exists a unique solution of h(S 2) = f (S 2)
denoted S ∗2 in [0, S ∗1). Therefore, the equilibrium e2 exists if and only if S in > λ (D/r), that
is D < r f (S in), which is the condition of existence of E2 in the statement of the Theorem.

A.2. Local stability. For the local stability, the Jacobian matrix associated to system (A.3)
is defined by

J =

(
−D/r + f (S in − x1) − f ′(S in − x1)x1 0

D/(1 − r) −D/(1 − r) + f (S in − x2) − f ′(S in − x2)x2

)
The eigenvalues of this triangular matrix are its diagonal elements. For e0 the eigenvalues
are −D/r + f (S in) and −D/(1 − r) + f (S in). Therefore e0, and hence E0, is LES if and
only if D > max{r, 1− r} f (S in). For e1 the eigenvalues are −D/r + f

(
S in

)
and f ′(λ(D/(1−

r)))
(
S in − λ(D/(1 − r))

)
. The second eigenvalue is positive if and only if D < (1−r) f (S in),

that is, e1 exists. Therefore e1, and hence E1, is LES if and only if r f (S in) < D < (1 −
r) f (S in). Similarly we prove that e2, and hence E2 is LES if and only if it exists, that is
D < r f (S in).

A.3. Global stability. For the global asymptotic stability we use phase plane arguments,
as in the proof of Proposition 7 in [22], or in Section 2.1.2.3 of [4]. We give the details of
the proof when e2 exists. The case where e2 does not exist but e1 exists and the case where
neither e2 nor e1 exist are similar. The isoclines x1 = S in − λ(D/r) and x1 = ϕ(x2), where
ϕ is defined by (A.3), separate the interior of Σ into four region defined by

I : ẋ1 < 0, ẋ2 < 0, II : ẋ1 > 0, ẋ2 < 0, III : ẋ1 > 0, ẋ2 > 0, IV : ẋ1 < 0, ẋ2 > 0,
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(a) ϕ′(0) ≥ 0
e0

x1

x2

e2

I

II

III

IV

(b) ϕ′(0) < 0
e0

x1

x2

e1

e2

I

II

III

IV

Figure 16. Global stability of the equilibrium e2. (a): e1 does not exist.
(b) e1 exists.

Two cases must be distinguished, according to the existence, or not of e1, see Figure 16. We
consider the case where e1 exists. The case where it does not exist is similar. The isocline
x1 = ϕ(x2) is as shown in Figure 16 (b), that is, it is the graph of a strictly increasing
function. Indeed, using the definition (A.3) of ϕ, we have

ϕ′(x2) = 1 −
1 − r

D
f
(
S in − x2

)
+

1 − r
D

f ′
(
S in − x2

)
x2.

Note that ϕ′(0) = 1 − D
1−r f

(
S in

)
. Therefore e1 exists if and only if ϕ′(0) < 0 as shown in

the figure. For x2 ∈ (x2, S in), where x2 = S in − λ(D/(1 − r)) is the x2 component of e1, we
have

ϕ′(x2) > 1 −
1 − r

D
f
(
S in − x2)

)
> 1 −

1 − r
D

f
(
S in − x2

)
= 0,

which proves that ϕ is strictly increasing. The vector field associated to (A.2) is horizontal
if x1 = ϕ(x2) and vertical if x1 = 0 or x1 = S in − λ(D/r). It is directed as shown in the
Figure. Assume first that (x1(0), x2(0)) ∈ I ∪ III. These regions are positively invariant.
Since in I [resp. III], x1(t) and x2(t) are strictly decreasing [resp. increasing], the following
limits exist:

(A.4) lim
t→+∞

x1(t) = x1∞, lim
t→+∞

x2(t) = x2∞.

Therefore, (x1∞, x2∞) is an equilibrium of (A.2), which belongs to the closure I or the
closure III. Since e0, e1 and e2 (resp. e2) are the only steady states in I (resp. III) and,
since e1 attracts only solution with x1(0) = 0 and e0 attracts no solutions with positive
initial conditions, it follows that

(A.5) e2 = (x1∞, x2∞) .

Assume now that (x1(0), x2(0)) ∈ IV . If (x1(t), x2(t)) remains in IV for all t > 0 then x1(·)
is strictly decreasing and x2(·) is strictly increasing. Thus, the limits (A.4) exist. Hence,
(x1∞, x2∞) is an equilibrium of (A.2), which belongs to the closure IV . Since e2 is the only
equilibrium in IV , we conclude that (A.5) holds. If (x1(t), x2(t)) leaves the region IV , then
it can only enter in the region I. Hence, as shown previously it necessarily tends to e2
and hence, (A.5) holds. The same argument shows that any solution starting with initial
condition in II always remains in II and then converges to e2 or leaves the region II, then
enters necessarily in region III, and then, as shown previously it tends to e2. Therefore e2
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is GAS in the interior of Σ. Using the theory of asymptotically autonomous systems (see
Appendix F in [6]), we deduce that E2 is GAS if and only it exists.

Appendix B. Output substrate concentration

B.1. Proof of Proposition 1. Let S ∗i2 = S ∗2(S in,i,D, r), i = 1, 2. Suppose that S ∗12 ≥ S ∗22 .
Since f is increasing then, we have f (S ∗12 ) ≥ f (S ∗22 ). Since f (S ∗12 ) = h1(S ∗12 ) and f (S ∗22 ) =

h2(S ∗22 ) then, we have h1(S ∗12 ) ≥ h2(S ∗22 ). Since h2 > h1 then, we have h2(S ∗22 ) > h1(S ∗22 ).
Since h1 is decreasing then, we have h1(S ∗22 ) ≥ h1(S ∗12 ). Therefore, we have h1(S ∗12 ) >
h1(S ∗12 ) which is a contradiction. Hence S ∗12 < S ∗22 .

B.2. Proof of Theorem 2. Recall that S ∗2(S in,D, r) is the unique solution of equation
(2.9). Let us first prove that

(B.1) S ∗2(S in,D, r) < λ(D) if and only if S in > gr(D).

Since f is strictly increasing and h is strictly decreasing then, S ∗2(S in,D, r) < λ(D) is
equivalent to h(λ(D)) < f (λ(D)) = D. Thus, using the definition of h, the condition
h(λ(D)) < D is written as

D (λ(D/r) − λ(D))
(1 − r)

(
S in − λ(D)

) < D,

which is equivalent to S in > λ(D) + (λ(D/r) − λ(D)) /(1 − r). Hence, according to the
definition (3.3) of gr, this is equivalent to S in > gr(D). Notice also that the function gr,
defined by (3.3), satisfies

(B.2) gr(D) = λ (D/r) +
r (λ(D/r) − λ (D))

1 − r
.

Therefore, one has gr(D) > λ(D/r).
Let us go now to the proof of the Theorem. Assume that S in > gr(D). Then, S in >

λ(D/r) > λ(D), so that, as shown by (2.5) and (3.1), we have

(B.3) S out
r (S in,D) = S ∗2(S in,D, r) and S out(S in,D) = λ(D).

Therefore, using (B.1), we have S out
r (S in,D) < S out(S in,D). Assume now that S in ≤ gr(D).

When r < 1/2, three cases must be distinguished. First, if λ(D) < λ(D/r) < S in ≤ gr(D),
then, by (2.5) and (3.1), we obtain (B.3). Hence, using (B.1), we have S out

r (S in,D) ≥
S out(S in,D). Secondly, if λ(D) < λ(D/(1 − r)) < S in ≤ λ(D/r) then, by (2.5) and (3.1),
S out

r (S in,D) = λ(D/(1− r)) and S out(S in,D) = λ(D). Therefore S out
r (S in,D) > S out(S in,D).

Finally, if S in ≤ λ(D), then S out
r (S in,D) = S out(S in,D) = S in. When r ≥ 1/2, the proof

is similar, excepted that we must distinguish only two cases, λ(D) < S in ≤ λ(D/r) and
S in ≤ λ(D).

In conclusion, for any r ∈ (0, 1), S out
r (S in,D) < S out(S in,D) if and only if S in > gr(D).

B.3. Proof of Lemma 2. Let D < m. From Assumptions 2, the function r ∈ (D/m, 1) 7→
gr(D) is strictly decreasing. From Assumption 1, we have limr→D/m λ(D/r) = λ(m) = +∞.
Thus, limr→D/m gr(D) = +∞. Using L’Hôspital’s rule one has limr→1 gr(D) = g(D). Then,
using Intermediate Value Theorem, we deduce that for S in > g(D) there exists a unique
r1 = r1(S in,D) in (0, 1) such that S in = gr1 (D). Since the function r 7→ gr(D) is strictly
decreasing then, r > r1(S in,D) if and only if S in = gr1 (D) > gr(D) which ends the proof of
the Lemma.
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B.4. Proof of Theorem 3.
• From Assumptions 1 and 2, the function r ∈ (D/m, 1) 7→ gr(D) is strictly decreas-

ing. Thus, for any r ∈ (0, 1), g(D) < gr(D). If S in ≤ g(D) then S in < gr(D) and
according to Theorem 2 we deduce that S out

r (S in,D) > S out(S in,D).
• If S in > g(D) then according to Lemma 2, there exists a unique r1 = r1(S in,D) in

(0, 1) such that S in = gr1 (D), where for all r > r1, we have S in > gr(D). Thus,
according to Theorem 2 we deduce that S out

r (S in,D) < S out(S in,D).
The equality in the limiting cases r = 0 and r = 1 is already verified, see (3.2).
If r = r1 then S in = gr1 (D). According to (B.2), one has λ(D/r1) < gr1 (D), that is,

λ(D/r1) < S in. Thus, one has S out
r1

(S in,D) = S ∗2(S in,D, r1) where S ∗2(S in,D, r1) is the
unique solution of h(S 2)|r=r1 = f (S 2). Consequently, one has S ∗2(S in,D, r1) = λ(D) if and
only if h(λ(D))|r=r1 = f (λ(D)), which is equivalent to D (λ(D/r1) − λ(D)) /

(
(S in − λ(D))(1 − r1)

)
=

D, that is, λ(D/r1) − λ(D) = (1 − r1)
(
(S in − λ(D))

)
. Consequently, one obtains that

λ(D) + (λ(D/r1) − λ(D)) /(1− r1) = S in, which is equivalent to gr1 (D) = S in. This ends the
proof of the Theorem.

B.5. Proof of Proposition 2. Let us consider r0 = D/ f (S in) i.e. S in = λ(D/r0).
1) When S in ≤ λ(D) one has, for all r ∈ (0, 1), λ(D) ≤ min{λ(D/(1 − r)), λ(D/r)} i.e.
S in ≤ min{λ(D/(1 − r)), λ(D/r}. Then, according to (3.1) one has S out

r (S in,D) = S in.
2) When λ(D) < S in < λ(2D), one has r0 ∈ (1/2, 1). Firstly, if 0 ≤ r ≤ 1 − r0, one has
λ(D/(1 − r)) ≤ λ(D/r0) ≤ λ(D/r) i.e. λ(D/(1 − r)) ≤ S in ≤ λ(D/r). This is equivalent
to r f (S in) ≤ D ≤ (1 − r) f (S in). According to (3.1), one has S out

r (S in,D) = λ(D/(1 − r)).
Secondly, if 1 − r0 ≤ r ≤ r0, one has λ(D/r0) ≤ min{λ(D/(1 − r)), λ(D/r)} i.e. S in ≤

min{λ(D/(1 − r)), λ(D/r)}. According to (3.1), one has S out
r (S in,D) = S in. Finally, if

r0 < r ≤ 1, one has λ(D/r) ≤ λ(D/r0) i.e. λ(D/r) ≤ S in then, according to (3.1), one has
S out

r (S in,D) = S ∗2(S in,D, r). These all prove (3.5).
3) When λ(2D) ≤ S in one has r0 ∈ (0, 1/2]. If 0 ≤ r ≤ r0 then λ(D/(1 − r)) ≤ λ(D/r0) ≤
λ(D/r) i.e. λ(D/(1 − r)) ≤ S in ≤ λ(D/r). According to (3.1), one has S out

r (S in,D) =

λ(D/(1 − r)). If r0 ≤ r ≤ 1 then λ(D/r) ≤ λ(D/r0) i.e. λ(D/r) ≤ S in. According to (3.1),
one has S out

r (S in,D) = S ∗2(S in,D, r). These all prove (3.6).

B.6. Proof of Proposition 3. Let r ∈ (0, 1). Form Assumptions 3, the function D ∈
[0, rm) 7→ gr(D) is strictly increasing. From Assumption 1, we have lim

D→rm
λ(D/r) = λ(m) =

+∞. Thus, lim
D→rm

gr(D) = +∞ and gr(0) = 0. Then, using Intermediate Value Theorem, we

deduce that for S in > 0 there exists a unique Dr = Dr(S in) in [0, rm) such that S in = gr(Dr).
Since the function D 7→ gr(D) is strictly increasing then, 0 < D < Dr(S in) if and only if
0 < gr(D) < gr(Dr) = S in. Consequently, according to Theorem 2 gr(D) < S in if and only
if S out

r (S in,D) < S out(S in,D) which end the proof of the proposition.

B.7. Proof of Proposition 7. The result is a direct consequence of Proposition 2 and
Theorem 3. We give the details for regions J1 and J2. The proof for other regions is
similar.

If (S in,D) ∈ J1 then, according to (4.5), λ(D) < S in ≤ min (g(D), λ(2D)). Therefore,
λ(D) < S in ≤ λ(2D). When λ(D) < S in < λ(2D), from Proposition 2, S out

r (S in,D) is given
by (3.5) and if S in = λ(2D) then S out

r (S in,D) is given by (3.6). Now, using S in ≤ g(D),
from Theorem 3, we have for all r ∈ (0, 1), S out

r (S in,D) > S out(S in,D).
If (S in,D) ∈ J2 then, according to (4.5), g(D) < S in < λ(2D). Therefore λ(D) < S in <

λ(2D) and, from Proposition 2, S out
r (S in,D) is given by (3.5). Now, using g(D) < S in,
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from Lemma 2, there exists a threshold r1, defined as the unique solution of S in = gr(D).
Therefore, from Theorem 3, S out

r (S in,D) < S out(S in,D) if and only if r ∈ (r1, 1) and
equality holds if and only if r = 0, r = r1 or r = 1.

Appendix C. Productivity and biogas production

C.1. Proof of Proposition 4. The equation P(S in,D) = 0 admits the two roots D = 0 and
D = f (S in). For all D > 0, P(S in,D) is positive if and only if S in > λ(D). In addition, for
all D < f (S in) we have

∂P
∂D

(S in,D) = V
(
S in − λ(D) −

D
f ′(λ(D))

)
= V(S in − g(D))

with g defined by (3.4). Thus, ∂P
∂D (S in,D) = 0 is verified if and only if S in = g(D).

Consequently, using Assumption 4, Dopt defined in (3.9) is the unique solution of S in =

g(D).

C.2. Proof of Corollary 1. One knows that xout
r (S in,D) = S in−S out

r (S in,D) and xout(S in,D) =

S in−S out(S in,D). Firstly, if S in ≤ g(D) then according to Theorem 3, for any r ∈ (0, 1), one
has S out

r (S in,D) > S out(S in,D). Thus, for any r ∈ (0, 1), one has xout
r (S in,D) < xout(S in,D).

Consequently, for any r ∈ (0, 1), one has Pr(S in,D) < P(S in,D). Secondly, if S in > g(D)
then according to Theorem 3, one has S out

r (S in,D) < S out(S in,D) if and only if r1 < r < 1
with r1 defined in Lemma 2. Then, one has xout

r (S in,D) > xout(S in,D) if and only if
r1 < r < 1. Consequently, one has Pr(S in,D) > P(S in,D) if and only if r1 < r < 1.
Finally, if r = 0, r = r1 or r = 1, then one has S out

r (S in,D) = S out(S in,D). Thus, for
r = 0, r1, 1 one has xout

r (S in,D) = xout(S in,D). Consequently, if r = 0, r = r1 or r = 1 then,
Pr(S in,D) = P(S in,D) which ends the proof of the Corollary.

C.3. Proof of Proposition 5. Let V be a fixed volume. In the following, we use the
respective definitions (3.11) and (3.14) of Pr and Gr. In both cases: max{r, 1−r} f (S in) ≤ D
and r f (S in) ≤ D ≤ (1− r) f (S in)) and it is clear that Gr(S in,D) = Pr(S in,D). In addition, if
D < r f (S in) then

Gr(S in,D) = VD
(
S in − λ(D/r)

)
+ V(1 − r) f

(
S ∗2

) (
S in − S ∗2

)
with S ∗2 the unique solution of (2.9). According to this equation, Gr can be written as

Gr(S in,D) = VD
(
S in − λ(D/r)

)
+ VD

(
λ(D/r) − S ∗2

)
.

Thus, we deduce that Gr(S in,D) = Pr(S in,D) = VD(S in − S ∗2) and consequently, for any
r ∈ (0, 1), we have Gr(S in,D) = Pr(S in,D).

C.4. Proof of Proposition 6. Let V be a fixed volume and S in > 0. Let us consider the
function ϕ(S ) = f (S )(S in − S ). Considering the change of variable S = λ(D), one can
easily verify that ϕ′(S ) = 0 is equivalent to S in − g(D) = 0. According to Assumption
4, ϕ admits a unique maximum. We maximize the biogas flow rate at steady-state with
respect to D. On the one hand, the biogas flow rate of the simple chemostat is defined
by G(S in,D) = Vϕ(S out(D)) with S out defined by (2.5). Then, the maximal biogas flow
rate of the simple chemostat is Gmax(S in) = V maxD∈(0, f (S in)) ϕ(S out(D)). Since the map
λ defines a homeomorphism from [0, f (S in)] to [0, S in] then maxD∈(0, f (S in)) ϕ(S out(D)) =

maxS∈(0,S in) ϕ(S ). On the other hand, as S ∗1 > S ∗2 and using the definition (3.13) of Gr, the
biogas flow rate of the two serial interconnected chemostats at steady-state is defined by
Gr(S in,D) = rVϕ(S ∗1) + (1 − r)Vϕ(S ∗2) with S ∗1 = λ (D/r) and S ∗2 the unique solution of
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(2.9). In addition, as for all D < f (S in) we have ϕ(S ∗i (D)) < maxS∈(0,S in) ϕ(S ), i = 1, 2
then, we have

Gr(S in,D) < rV max
S∈(0,S in)

ϕ(S ) + (1 − r)V max
S∈(0,S in)

ϕ(S ).

Hence, we deduce that Gr(S in,D) < V maxS∈(0,S in) ϕ(S ) which is equivalent to Gr(S in,D) <
Gmax(S in). This completes the proof of the Proposition.

Appendix D. Technical results

D.1. Proof of Lemma 3. Using lD(r) = λ(D/r), γ(r,D) = gr(D), defined by (3.3), is given
by

γ(r,D) = lD(1) +
lD(r) − lD(1)

1 − r
The partial derivative, with respect to r of γ is given then by

∂γ

∂r
(r,D) =

l′D(r)(1 − r) + lD(r) − lD(1)
(1 − r)2 .

Therefore, ∂γ
∂r (r,D) < 0 if and only if lD(1) > lD(r) + (1 − r)l′D(r), which proves the

equivalence of conditions 1 and 2 of the Lemma.
Moreover, if lD is strictly convex on (D/m, 1] then for all s and r in (D/m, 1], if s , r,

then
lD(s) > lD(r) + (s − r)l′D(r).

Taking s = 1 and r ∈ (D/m, 1) one obtains the condition 2.
Assume now that f , and hence lD, are twice derivable. Using λ′(D) = 1/ f ′(λ(D)) and

λ′′(D) = − f ′′(λ(D))/ ( f ′(λ(D)))3, we can write

l′′D(r) =
2D
r3 λ

′ (D/r)+
D2

r4 λ
′′ (D/r) =

D

r3 ( f ′(λ(D/r)))3

(
2
(
f ′ (λ (D/r))

)2
− (D/r) f ′′ (λ (D/r))

)
Therefore, the condition 3 is equivalent to the following condition:

(D.1) For all D ∈ (0,m) and r ∈ (D/m, 1],D f ′′ (λ (D/r)) /r < 2 f ′ (λ (D/r))2

Using the notation S = λ(D/r), which is the same as f (S ) = D/r, the condition (D.1)
is equivalent to : For all S > 0, f (S ) f ′′(S ) < 2 ( f ′(S ))2, which is the condition 4 in the
Lemma.

D.2. Proof of Lemma 4. Using λ′(D) = 1/ f ′(λ(D)), the partial derivative, with respect
to D of γ(r,D) = gr(D), defined by (3.3), is given by

∂γ

∂D
(r,D) = λ′(D) +

1
1 − r

(
1
r
λ′(D/r) − λ′(D)

)
=

f ′ (λ(D)) − r2 f ′ (λ(D/r))
r(1 − r) f ′ (λ(D)) f ′ (λ(D/r))

.

Therefore, ∂γ
∂D (r,D) > 0 if and only if f ′ (λ(D/r)) < r2 f ′ (λ(D)), which proves the equiva-

lence of conditions 1 and 2 of the Lemma.
Moreover, since 1/r > 1 and λ is strictly increasing, then λ(D/r) > λ(D). Thus, if f ′ is

decreasing, we have f ′ (λ(D/r)) ≤ f ′ (λ(D)) < f ′ (λ(D)) /r2, which proves condition 2 of
the Lemma.

D.3. Proof of Lemma 5. As 0 < r < 1 and λ is a strictly increasing function then we
have D/r > D and λ(D/r) > λ(D). Consequently, using the definition (B.2) of gr, we have
gr(D) > λ(D/r). According to the respective definitions (4.1) and (4.2) of the curves Φr

and Γr, we deduce that the curve Φr is always above the curve Γr.
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D.4. Proof of Lemma 6. The curves Φ1/2 and Γ are respectively defined by (4.3) and
(4.4). Let us define the function H :

[
0, m

2

)
7→ R such that H(D) = λ(2D) − g(D). Ac-

cording to Table 2, for a Monod function, the function H is defined explicitly by H(D) =
KmD2

(m−D)2(m−2D) . Then, for any D ∈
[
0, m

2

)
one has H(D) > 0. Thus, for any D ∈

[
0, m

2

)
, one

has λ(2D) > g(D) which means that Γ is always located strictly above Φ1/2.

D.5. Proof of Proposition 8. Let us prove that the Hill function satisfies Assumption 3.
Straightforward computations show that

F(S ) :=
f (S ) f ′′(S )
( f ′(S ))2 =

p − 1 − (p + 1)(S/K)p

p

Hence, for every p ≥ 1, F′(S ) = −
p+1
K p S p−1 < 0 and F(0) =

p−1
p < 1, which proves that

F(S ) < 1 for all S > 0. Therefore Assumption 4 of Lemma 3 is satisfied, which is a
sufficient condition for Assumption 2 to hold.

Let us prove now that the Hill function satisfies Assumption 3. It is equivalent to prove
that it satisfies the condition 2 of Lemma 4. Straightforward computations show that

λ(D) =

(
K pD

m − D

) 1
p

and f ′(λ(D)) =
p
m

(
Dp−1

K p

) 1
p

(m − D)
p+1

p

We have 0 < r < 1 and D < rm then, obviously, we have 0 < m − D/r < m − D and
0 < rm − D < m − D. Thus, we obtain the following inequality(

m −
D
r

)
(rm − D)

1
p < (m − D)(m − D)

1
p .

Straightforward calculations give

1
r2m

(rm − D)
P+1

p <
1

rm
(m − D)

p+1
p .

Consequently, we have

p
r2m

(
Dp−1

K p

) 1
p

(rm − D)
p+1

p <
p

rm

(
Dp−1

K p

) 1
p

(m − D)
p+1

p

which is equivalent to f ′(λ(D/r)) < f ′(λ(D))/r and induces f ′(λ(D/r)) < f ′(λ(D))/r2.
This completes the proof of the proposition.

D.6. Proof of Lemma 7. Let the function H :
[
0, m

2

)
7→ R be defined by H(D) = λ(2D) −

g(D). According to the analytical expressions of Table 2, we have

H(D) = K
√

D

√ 2
m − 2D

−
3m − 2D

2(m − D)
3
2

 .
Thus, H(D) > 0 gives 4mD2−6m2D+m3 < 0. The equation Q(D) := 4mD2−6m2D+m3 = 0
admits the two roots D1 = 3−

√
5

4 m and D2 = 3+
√

5
4 m such that 0 < D1 <

m
2 and m

2 < D2.
Therefore, for any D ∈

(
D1,

m
2

)
we have, H(D) > 0 which means that, for any D ∈

(
D1,

m
2

)
,

the curve Φ1/2 is strictly below the curve Γ.



STUDY OF PERFORMANCE CRITERIA OF SERIAL CONFIGURATION OF TWO CHEMOSTATS 29

Acknowledgments

The first author thanks the Algerian Government for her PhD grant. The authors thank
the Euro-Mediterranean research network TREASURE (http://www.inra.fr/treasure)
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