, Let us define the function H : 0, m 2 ? R such that H(D) = ?(2D) ? g(D)

J. Monod, La technique de culture continue: theorie et applications, Annales de l'Institut Pasteur, vol.79, pp.39-410, 1950.

A. Novick and L. Szilard, Description of the chemostat, Science, American Association for the Advancement of Science, vol.112, pp.715-716, 1950.

D. Herbert, R. Elsworth, and R. C. Telling, The Continuous Culture of Bacteria; a Theoretical and Experimental Study, Microbiological Research Establishment, vol.3, issue.14, pp.601-622, 1956.

J. Harmand, C. Lobry, A. Rapaport, and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01539446

P. A. Hoskisson and G. Hobbs, Continuous culture-making a comeback?, Microbiology-Sgm, vol.151, pp.3153-3159, 2005.

H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, p.13, 1995.

M. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou et al., Perspectives in Mathematical Modelling for Microbial Ecology, vol.321, pp.64-74, 2016.

L. Grady, G. Daigger, N. G. Love, and D. C. Filipe, Biological wastewater treatment, 2011.

D. Dochain and P. A. Vanrolleghem, Dynamic Modelling & Estimation in Wastewater Treatment Processes, 2001.

C. M. Kung and B. Baltzis, The growth of pure and simple microbial competitors in a moving and distributed medium, Mathematical Biosciences, vol.111, pp.295-313, 1992.

B. Tang, Mathematical investigations of growth of microorganisms in the gradostat, Journal of Mathematical Biology, vol.23, pp.319-339, 1986.

C. D. De-gooijer, W. A. Bakker-wilfried, H. H. Beeftink, and J. Tramper, Bioreactors in series: An overview of design procedures and practical applications, Enzyme and Microbial Technology, vol.18, pp.202-219, 1996.

G. Hill and C. Robinson, Minimum tank volumes for CFST bioreactors in series, The Canadian Journal of Chemical Engineering, vol.67, issue.5, pp.818-824, 1989.

E. Scuras, A. Jobbagy, and L. Grady, Optimization of activated sludge reactor configuration:: kinetic considerations, Water Research, vol.35, issue.18, pp.4277-4284, 2001.

A. Rapaport, Some non-intuitive properties of simple extensions of the chemostat model, Ecological complexity, vol.34, pp.111-118, 2018.

I. Haidar, A. Rapaport, and F. Gérard, Effects of spatial structure and diffusion on the performances of the chemostat, Mathematical Biosciences and Engineering, vol.8, issue.4, pp.953-971, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00536647

J. Harmand, Contributionà l'analyse et au contrôle des systèmes biologiques application aux bio-procédés de dépollution, Habilitationà diriger des recherches, 2004.

J. Zambrano and B. Carlsson, Optimizing zone volumes in bioreactors described by Monod and Contois growth kinetics, Proceeding of the IWA World Water Congress & Exhibition, p.6, 2014.

J. Zambrano, B. Carlsson, and S. Diehl, Optimal steady-state design of zone volumes of bioreactors with Monod growth kinetics, Biochemical engineering journal, vol.100, pp.59-66, 2015.

D. Herbert, Multi-stage continuous culture. Continuous cultivation of microorganisms, Microbiological Research Establishment, pp.23-44, 1964.

I. Haidar, Dynamiques Microbiennes Et Modélisation Des Cycles Biogéochimiques Terrestres, 2011.

R. Fekih-salem, C. Lobry, and T. Sari, A density-dependent model of competition for one resource in the chemostat, Mathematical Biosciences, vol.286, pp.104-122, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01359078