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Abstract

A simple Interaction by Exchange with the Mean (IEM) mixing model is implemented to

describe the glucose concentration segregations in industrial and laboratory scale bioreactors.

This approach is coupled with a Population Balance Model (PBM) for the growth rate adap-

tation and a metabolic model dependent on the individuals state, both from the literature [1].

The model formulation is validated against different published experiments and it is shown that

the IEM model reduces the computational costs when just the segregation of few species is of

interest. A model for the maintenance costs of Escherichia coli subject to glucose concentra-

tion fluctuation is also presented and implemented in the context of the IEM mixing model. An

Eulerian formulation of the effects of the substrate fluctuations on the maintenance rate is pro-

posed and tied to a more intuitive Lagrangian vision. The study of these metabolic changes due

to substrate heterogeneities helps the understanding of the relationships between hydrodynam-

ics and cells metabolism and it improves the agreement between numerical and experimental

data.
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1. Introduction1

The effect of mixing on bioreactions has been identified many years ago by Hansford and2

Humphrey [2]. Cultivating yeast in a continuous fermenter, these pioneers observed that the3

number and location of the injection points influence the glucose into biomass conversion yield.4
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The highest yields were observed when multiple injection points located in the vicinity of the5

impeller were used. Dunlop and Ye [3] observed that the biomass dry weight in a continu-6

ous fermenter increases when glucose is fed through an inlet port characterized by a smaller7

Kolmogorov length scale. In other words, well-micromixed bioreactors allow higher yields8

whereas poorly micromixed devices lead to lower yields and favour by-product formation. It is9

remarkable that these conclusions perfectly match the modern vision of the interaction between10

reaction and mixing developed by Bourne, Bałdyga and Villermaux, among others, in the 80’s11

[4, 5, 6]. The basic explanation is that mixing precedes the reaction. Since these two processes12

occur in series, the apparent rate of a chemical reaction as well as the formation of by-products13

are controlled by the rate of (turbulent) mixing. Following the microbiological explanation14

proposed by Hansford and Humphrey [2], Ye and Dunlop explained that cells which encoun-15

tered region of high sugar concentration diverted [..] a greater proportion of substrate carbon16

into extracellular product via endogenous metabolism [7]. Thus, it appears that the substrate17

concentration distribution in a bioreactor impacts the yields as well as the rates of biochemical18

reactions. On the other hand, the interaction between mixing and bioreactions is more complex19

than in chemical reactors due to additional metabolic pathways triggered by repeated exposure20

to high and low concentrations (e.g. overflow metabolism for Escherichia coli or short-term21

Crabtree effect for yeasts). Nowadays, the commonly accepted idea regarding the effect of22

concentration heterogeneities is that they induce the activation of a large number of genes23

which causes an increase in the energy demand for maintenance as well as various metabolic24

responses, one of them being the formation of undesired by-products [8, 9, 10, 11]. In order25

to investigate these effects, several lab scale experimental devices, reviewed by Neubauer and26

Junne [12], were used to mimic the fluctuating environment encountered by the cells along27

their trajectory in an imperfectly mixed bioreactor [13, 14, 15, 16, 17]. Among these, the most28

popular device is a two-stage bioreactor, generally a Continuous Stirred Tank Reactor (STR)29

connected to a Plug Flow Reactor (PFR). Displacing the feed point in one or the other reactor30

allows creating a variety of configurations leading to distinct biological responses.31

The interaction between mixing and bioreactions was also investigated by modelling meth-32

ods. In the early 70’s, a series of work from Tsai and co-workers investigated this question33

using the concepts of complete segregation and maximum mixedness [18, 19, 20]. In the work34

of Bajpai and Reuss, some refinements were introduced to account for the circulation time dis-35
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tribution [21]. However, these authors considered an unstructured kinetic model for bioreaction36

that basically assumes that bioreaction rates are determined from local concentrations using37

constant biological parameters. Clearly, kinetic or metabolic structured models are mandatory38

for they introduce internal variables, linked to the biotic phase, which dynamically adapt to the39

external environment. Thus, bioreactions rate may now depend on the cell state also. Quite40

naturally, it appears necessary to consider some diversity among a population of living cells.41

This can be achieved using either probability density functions, PDF, (leading to continuous42

Population Balance Equations, PBE) [22, 23, 24] or discrete formulations (cell based models43

along with Monte Carlo techniques to deal with large cell ensembles ) [25, 26, 27].44

Beside the description of the biological phase, one has to consider the heterogeneity of the45

concentration field. The trend, in the last decades was to rely upon Computational Fluid Dy-46

namics [28, 29, 30] or Compartment Model Approach to do so [31, 1, 32, 33, 34, 35]. In both47

cases, the spatial distribution of concentration is assessed. This knowledge, complemented48

with a Lagrangian particle tracking, can produce a temporal signal that is used as the boundary49

condition for a biological model (generally a set of ordinary differential equations) [36, 37, 38].50

Thus, the effect of concentration fluctuations on the rate of biological reactions is obtained but51

the reverse coupling (modification of the concentration field due to bioreactions) is computa-52

tionally very demanding and results are sensitive to the interaction of numerical parameters53

which makes such simulations unstable in their predictions. However, in order to address the54

subject of interest here, i.e. the interaction between mixing and bioreaction, a full two-way cou-55

pling is necessary. This requires the transport of the biological phase in the three-dimensional56

space of the bioreactor. This is possible using a Eulerian description for the biological phase57

(transport of PDF) but the number of biological variables in the model is then limited [1, 35].58

So, the general trend is an ever-growing complexity, associated to a high level of expertise and59

prohibitively large numerical costs, which make these modelling tools inaccessible for indus-60

trial applications since the effort is not producing significant added value.61

In this work, we investigate the possibility to rely upon the statistical description of the con-62

centration distribution only, disregarding the spatial dimensions. A popular model of this type63

is the Interaction by Exchange with the Mean model (IEM) originally introduced by Villermaux64

to address micromixing issues [39]. In such models, the reacting volume is divided into two65

or more environments (or zones) and a characteristic time relative to mass exchange between66
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the zones is introduced. Considering only two environments suggests that the concentration67

distribution will be approximated by two Delta functions. It was shown that this can constitute68

a fair approximation of the actual concentration PDF in the limit of fast reactions. In fed-batch69

bioreactors, the characteristic time of substrate uptake generally decreases with time and be-70

comes much smaller than the macromixing time [1, 40]. Hence, a fed-batch fermenter subject71

to mixing issue is usually strongly segregated and exhibits a highly concentrated zone near the72

feed point and a very low concentration zone elsewhere.73

Considering the various time scales of the biological response to concentration fluctuations,74

we developed and validated the idea that the disequilibrium between the uptake and utilization75

rates provides a good estimate of the flux of substrate that must be diverted into by-products76

[30, 1]. However, up to now, the metabolic rate calculations assumed a growth rate dependent77

yield (namely a Pirt’s law [41]) along with a constant maintenance rate. The idea of tying78

the maintenance rate to the process variables was already suggested by Holms [42] and by79

Meadows et al. [43], although they linked the maintenance rate to the growth rate. Since80

substrate fluctuations are known to produce a metabolic stress on bacteria and thus contribute81

to increasing the cells energy demand, it is proposed to relate the maintenance rate to the82

variance of the glucose concentration distribution. This rate dynamically updates the substrate83

into biomass yield, introducing in the model a coupling between the degree of mixing in the84

bioreactor and the glucose conversion efficiency.85

This article presents the formulation of a segregation dependent maintenance rate. The86

Interaction by Exchange with the Mean (IEM) model is implemented in ADENON, an in-house87

developed bioreactor simulation software combining CMA, kinetic or mode based metabolic88

model and PBE approaches. Simulations results using the IEM model will be compared to the89

experimental observations published by Xu et al. [44] in a 20 m3 reactor and by Neubauer et90

al. [16] in a STR+PFR scale-down reactor. Spatially refined simulation using CMA [1] (for the91

Xu experiment) and a two-stage STR+PFR (for the Neubauer experiment) are also performed92

to serve as references. The challenges posed by the two sets of experiments considered in93

this work are related to the presence of spatial inhomogeneities or segregation that trigger94

a suboptimal operation of the fermentation process. In the Xu et al. [44] experiment, the95

segregation is entirely due to the large scale of the reactor and the injection conditions that96

result in a poorly meso-mixed process. On the contrary, in the Neubauer et al. [16] experiment,97
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a segregated environment was intentionally designed by means of a multi-stage reactor, with98

localized injections.99

In the final part of this work, some details are given regarding the formulation of an Eulerian100

expression of the maintenance rate starting from a Lagrangian perspective. It is shown that101

one can reconcile the Lagrangian and Eulerian visions of the biological response to external102

fluctuations.103

2. The experiments104

In this work two different sets of experiments found in the literature were simulated, one105

studying a fed-batch culture in an industrial scale bioreactor, described by Xu et al. [44] and106

lately simulated by Vrabel et al. [31] and Pigou and Morchain [1], and one by Neubauer et al.107

[16] dealing with a fed-batch culture in a pilot scale bioreactor.108

Xu et al. [44] investigated the acetate production in an industrial scale fed-batch bioreactor109

with E. coli. The fermentation was performed in a 20m3 stirred tank reactor equipped with110

Rushton impellers. The initial concentration of glucose was equal to 0.29gG/L, the initial111

concentration of acetate was equal to zero and the initial biomass concentration was X(t =112

0) = 0.1gX/L. After an initial batch phase of 0.92h, a feed solution of glucose (454gG/L) was113

injected well above the upper impeller at variable flow rate with an exponential curve for 8.5h,114

changed to a constant value of 180L/h for 2.5h and then to 170L/h for 28.02h. The sampling115

of glucose, acetate and biomass concentration was performed at three different sampling points116

located at the top, in the middle and at the bottom of the reactor. Glucose gradients were117

identified as the result of insufficient mixing. Acetate was produced in the upper part of the118

reactor and a reduction of the glucose to biomass yield of 25 % was observed with respect to119

the homogeneous 20L fermenter. This experimental observation could not be reproduced by120

Vrabel et al. but was correctly predicted by Pigou and Morchain owing to the use of a Pirt’s121

law with a maintenance rate equal to 0.250mmolG.g−1
X .h−1 (45mgG.g−1

X .h−1).122

Neubauer et al. [16] investigated the E. coli responses to substrate fluctuations in a two-123

stages bioreactor of 10L consisting in a closed loop of a STR connected to a PFR of 0.695L,124

Fig.1. The initial glucose concentration was 10gG/L and the system was operated in batch125

to the complete depletion of glucose (∼ 8h). Once completed the batch phase, the system126

was operated in fed-batch for 8h, with the injection of glucose-rich solution (600gG/L) at a127
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(a) (b) (c)

Figure 1: Schemes of the reactor configurations used in the Neubauer et al. [16] experiment: (a) injection of

substrate (red arrow) in the STR operated without the PFR loop, Case A, (b) STR+PFR with injection in the PFR,

Case B1, (c) STR+PFR with substrate injection in the PFR and aeration with oxygen enriched air (blue arrow),

Case B2.

constant flow rate of 50ml/h either in the STR or just before the PFR. The fed-batch results128

were collected for three different configurations: without the external PFR loop and injection129

in the STR (referred to as Case A or Control, in the publication, Fig.1a) and with the external130

loop and injection in the PFR (referred to as Case B in the publication, Fig.1b). The authors131

also investigated the use of oxygen enriched air as aeration gas in the PFR ( Fig.1c) to test the132

hypothesis that microaerobiosis would develop due to high susbtrate uptake. In the following133

we will refer to Case B configuration aerated with air as Case B1, Fig.1b, and to the same134

configuration aerated with oxygen enriched air as Case B2, Fig.1c. In each Case, the medium135

volume was kept constant to 10L. The biomass concentration and growth rate as well as the136

glucose and acetate profiles in the PFR, were monitored in the Neubauer et al. [16] experiment.137

The residence time was 113s for the PFR, τPFR, and 27min for the STR, τST R. It was observed138

that the repeated exposure to high glucose concentration in the PFR, interrupted by prolonged139

periods of glucose limitation in the STR, led to an over-assimilation of glucose at the PFR140

inlet coupled with acetate production due to overflow metabolism and a reduced glucose to141

biomass yield in comparison to the homogeneous Case A. Some acetate was also produced in142

the upper part of the PFR because of oxygen limitation (fermentative catabolism). The addition143

of enriched air, Case B2, did not change the initial response at the PFR inlet but led to a lower144

formation of acetate in the upper part and a yield similar to that observed in case Case A. As145
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far as the authors know, these experimental results have not been simulated to date.146

3. Mathematical model147

3.1. General aspects148

A detailed explanation of the population balance model and the metabolic model formula-149

tions, the solution strategies and their implementation in ADENON were already published in150

previous works [1, 30, 45, 40]. However they are briefly outlined here to allow a clear iden-151

tification of the novelties provided in this work. The mass balance equation for a generic k152

component in a generic homogeneous control volume, V , reads:153

dCk

dt
=

1
V

(∫
Ω

Cin
k | v |

in ·dω−
∫

Ω

Ck | v |out ·dω

)
+Rk (1)

154

where Ck is the concentration, Ω is the surface enveloping the control volume, | v |in and155

| v |out are the norms of the velocity vector entering and exiting the control volume, respectively,156

and Rk is the volumetric reaction rate. Velocities in Eq.1 come out from the solution of a157

hydrodynamic model. The Compartment Model Approach (CMA) falls into this category and158

the fluxes are calculated either from general considerations on the fluid dynamics of the system159

([31, 1]) or retrieved from the CFD simulations ([32, 33, 34, 35]).160

The microbial population is considered as segregated with respect to the specific growth161

rate µ . Hence, the volumetric reaction rate in Eq.1 is expressed as an integral over the µ space:162

Rk =
∫

∞

0
rk(µ,CCC)X(µ)dµ (2)

163

Where X(µ)dµ is the mass of cells able to grow at µ per unit volume, rk represents the net164

specific reaction rate and C is the concentration vector of the species, considered as constant165

inside the generic homogeneous control volume V, as already assumed in the derivation of166

Eq. 1. The equation for the cell density function X(µ) is obtained under the assumptions that167

daughter cells inherit the growth rate of their mother [46].168

∂X (µ, t)
∂ t

=− ∂

∂ µ

(
X (µ, t)ζ (µ)

)
+µX (µ, t) (3)
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where the rate of change of X in the µ-space, ζ (µ), in its general form is:169

ζ (µ) ∝
1

T u/d
(µ∗−µ) (4)

170

with T u/d being a time constant which value depends on the direction of the rate of change171

of the specific growth rate and µ∗ being the growth rate at equilibrium that generally takes172

the form of a Monod equation. The adoption of a segregated model with the growth rate173

capability as the internal coordinate, Eq.3, was introduced to decouple the actual growth rate174

of the population from the local reactant concentrations, Eq.4. This decoupling introduces an175

out-of-equilibrium metabolic behaviour resulting in the production/depletion of by-products.176

The net reaction rate rk results from a call to a metabolic model that can be regarded as a177

function f .178

(rk,µ
a) = f

(
µ,C,Yk,l 6=k

)
(5)

The metabolic model adopted in this work corresponds to that already presented in[1] and179

combines mass and energy balances. It considers four categories of biological reactions namely180

the production of biomass through substrate and energy consumption (Anabolism), energy pro-181

duction either by means of an oxidative pathway (Oxidative catabolism) or by fermentation182

(Fermentative catabolism) and the production of acetate due to the overconsumption of glu-183

cose (Overflow metabolism) or fermentative metabolism. It is worth recalling here that acetate184

production takes place either if the energetic need for growth is not fulfilled through the oxida-185

tive pathway (acetate production through fermentation) or if a cell uptakes more glucose than186

the amount used in the anabolic reactions (acetate production though overflow metabolism).187

The essential feature of our metabolic approach is that the maximum value for the anabolic188

reaction rate is the cell property µ . In a given environment some cells may be limited and189

some others not. Indeed, any limitation is actually relative to the cell state rather than defined190

in an absolute manner through concentration thresholds. In case of insufficient resources, the191

actual growth rate of some cells may be limited to µa ≤ µ . The term rk consists of a summa-192

tion of the specific reaction rates for each of the aforementioned biological reaction, weighted193

by the corresponding stoichiometric coefficients. Among these coefficients, the substrate to194

biomass yield was up to now determined using the well known Pirt’s law [41], Eq.6, leading to195

a growth-dependent glucose to biomass yield, YXG(µ
a
j ,m).196
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1
YXG(µ

a
j ,m)

=
m
µa

j
+

1
Y max

XG
(6)

197

In Eq.6, Y max
XG is the maximum conversion yield of glucose into biomass, m is the mainte-198

nance rate (treated as a constant) and µa is the actual growth rate of the cell.199

3.2. New considerations200

3.2.1. Effect of substrate fluctuation on the maintenance rate201

Having in mind the effects of imperfect mixing on cell physiology mentioned in the intro-202

duction, it is proposed to introduce a variable maintenance rate and express it as a function of203

the variance of the substrate concentration distribution in the system.204

m̄ = m0 +α

∫
p(CG)(CG−〈CG〉)2 dCG (7)

where m0 is the minimum maintenance rate of the cells, α is the model parameter, CG205

is the substrate concentration, 〈CG〉 is the volume average of the substrate concentration in206

the fermenter and p(CG)dCG is the volume fraction of the reactor with a concentration CG.207

Hypothesizing that the cells are uniformly distributed inside the reactor volume and dividing208

the reactor into NC sub-volumes of equal size a discrete expression can be formulated :209

m̄ = m0 +α
1

NC

NC

∑
i=1

(
CG,i−〈CG〉

)2 (8)

Eq.8 provides an Eulerian integral correlation between the sub-volumes concentration devi-210

ation from the volumetric average in the whole reactor and the average maintenance rate of any211

cell travelling in an heterogeneous concentration field. The derivation of Eq.8 from the effects212

of substrate fluctuations on a single cell and on a swarm of Lagrangian cells is described in213

Section 6.2.214

3.2.2. The Interaction by Exchange with the Mean Mixing Model215

In the IEM approach, the composition space of the species is discretized rather than the216

physical space of the reactor. The space of composition can be divided into two or more en-217

vironments, Fig.2b, that interact due to mixing. In the experiments presented, the bioreactors218

are strongly segregated and a description of the concentration distribution based on two envi-219

ronments (with high and low substrate concentration) constitutes a reasonable approximation.220
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Let us consider a generic concentration distribution inside a reactor during a fed-batch fermen-221

tation, Fig.2a. In this distribution it is possible to encounter two different peaks, one at a lower

(a) (b) (c)

Figure 2: Hypothesized concentration distribution in a fed-batch reactor (a), its description by means of two

environments (b) and discretization through elementary probability units (c).

222

concentration, Ck,low, with a higher probability, p
(
Ck,low

)
, and one at a higher concentration,223

Ck,high, with a lower probability, p
(
Ck,high

)
, corresponding to the bulk of the reactor and the224

poorly meso-mixed region in the vicinity of the species injection, respectively. The interaction225

of the species compositions in the different environments occurs by means of a mixing model226

[47].227

The environments can be discretized in a number of elementary probability units, Fig.2c,228

that can be thought as presumed sub-volumes in case the environments probabilities remain229

constant in time. A fundamental assumption in the IEM model is that each elementary sub-230

volume has the same probability to exchange mass with each and every elementary sub-volume,231

including those of the same environment. Therefore, the results of these exchanges can be232

represented by a single exchange with a fictitious volume at the volume average concentration233

〈Ck〉. The resulting equations for the segregated species are:234

dCk,low

dt
=

1
τm

(〈Ck〉−Ck,low)+Rk,low (9)

dCk,high

dt
=

1
τm

(〈Ck〉−Ck,high)+Rk,high +Sk (10)

235

Sk is a source term for the species under consideration representing the feed. The volume236

average concentration of any distributed species is computed as :237

〈Ck〉= p(Ck,low)Ck,low + p(Ck,high)Ck,high (11)
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Having described the inhomogeneities in the system in terms of concentration space segre-238

gation instead of physical space segregation, the term τm is the only parameter of the model,239

related to some mixing time constant, which defines the rate of exchange between sub-volumes.240

The IEM model distributes just the species that cannot be considered as homogeneously241

dispersed in the volume. The reaction rates are calculated in each sub-volume and the con-242

centrations of the homogeneously dispersed species are then volume-averaged to retain just243

one value per species. The concentration of the homogeneously dispersed species is then a244

composition of all the concentrations in the sub-volumes (which change differently due to the245

different reaction rates), whereas the concentration of the distributed species is a vector with as246

many elements as the total number of sub-volumes.247

3.3. Implementation in ADENON248

All simulations were performed with ADENON, a simulation software developed in the249

MATLAB R2016a environment by this research group. The software focus is mostly directed at250

the simulation of bioreactors, by solving biological models within a fluid dynamics framework251

(compartment models, plug-flow reactors, stirred tank reactors, interconnected multi-stage re-252

actors, batch or fed-batch cultures as well as accelerostat cultures). ADENON formulates a253

system of ODEs in terms of mass and volume balances, based on the user defined case config-254

uration. This set of ODEs is then solved using the Runge-Kutta 2,3 explicit scheme for time255

integration.256

In the previous section, two environments were considered. Dividing each of these envi-257

ronments into elementary subvolumes of the same size allows a direct calculation of the proba-258

bilities p(Ck,low) and p(Ck,high) as the ratio of the number of sub-volumes in each environment259

to the total number of sub-volumes.260

p(Clow) =
Nlow

C
NC

(12a)

261

p
(
Chigh

)
=

Nhigh
C
NC

(12b)

262

In this work we hypothesized that the environment probabilities remain constant during the263

fermentation.264
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Each environment being made of a collection of identical elementary sub-volumes, the265

average concentration now writes :266

〈Ck〉=
1

NC

NC

∑
i=1

Ck,i (13)

Figure 3: Scheme of an Interaction by Exchange with the Mean model. The scheme represents the two environ-

ments made of a collection of sub-volumes that exchange with their mean at the top. For any sub-volume, the sum

of mass exchanged with the other sub-volumes is equivalent to a single exchange with a fictitious volume at the

mean concentration. In the top left corner, the concentration distribution described by means of two environments

discretized through elementary probability units.

The implementation of the IEM model in the framework a compartment based code is267

presented in Fig.3. As an illustration, the system consists of NC = 20 sub-volumes (the 20268

squares composing the larger square) and two environments, corresponding to the fraction of269

the total volume at a given composition (represented by the total number of red, Nhigh
C , and270

the total number of white squares, Nlow
C ). The arrows represent the exchange between each271

sub-volume and the mean. The corresponding environment distribution is represented as well.272

By changing the number of sub-volumes in which there is an injection, Nhigh
C , and the number273

of total sub-volumes, NC, the probabilities of the environments with low and high concentra-274

tion can be adjusted to any experimental configuration. It is of practical interest to consider a275
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collection of sub-volumes in the view of implementing the IEM model in the framework of a276

multi-compartment based simulator. At first sight, solving NC equations instead of two looks277

like a waste of time, a step back due to the code structure. However, the benefit is that all278

simulations presented in this work, irrespective of the hydrodynamic model (CMA or IEM),279

are performed under the same modeling framework, using the same models for population and280

metabolic aspects of the problem.281

4. Simulation set-up282

4.1. Large scale Fed-Batch283

The 20m3 fed-batch experiment was simulated using the CMA with 70 compartments (284

as in [1] and [31] ) in order to assess the IEM model against it. The initial conditions of285

the simulation were set to replicate the experiment and the initial biomass concentration was286

initialized at µ(t = 0)= 0.63h−1. The authors reported that “the dissolved oxygen signal did not287

show any oxygen limitation” but hypothesized that the acid production was due to high substrate288

concentration inducing local oxygen limitations. Simulation due to Pigou and Morchain [1]289

showed that the acetic acid was indeed produced through the overflow metabolism rather than290

through fermentative pathways. Consequently, the oxygen inter-phase mass transfer rate was291

neglected and the concentration of the dissolved oxygen in the liquid was always considered292

at saturation (∼ 10mgO/L). The general situation where both sugar and oxygen gradients are293

present is not covered here. It certainly raises new challenges and some considerations are294

proposed at the end of the discussion part.295

In our IEM simulation, the injection occurred in 1 of 70 sub-volumes, in the same way as296

Vrabel et al. [31] and Pigou and Morchain [1] did in the context of a compartment model. Sim-297

ulating the Xu et al. [44] mixing time experiment with the IEM model allows the identification298

of τm leading to the same macromixing time of 250s, Fig.4. The IEM model, of course, loses299

the spatial information regarding the tracer concentration, but, using an IEM model parameter300

equal to τm = 36s, it is able to reproduce the macromixing time.301

In Fig.4 the evolution of the tracer concentration at the three monitored locations as pre-302

dicted by Pigou and Morchain [1] is shown. The macromixing time is calculated as the time303

needed by the tracer to reach a concentration of ±5% of the final concentration and Fig.4304

shows that the non-dimensional concentration at the bottom probe reaches the ±5% interval305
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Figure 4: The open symbols represent the passive tracer evolution in time at the top (top), middle (mid) and

bottom (bot) of the fermenter as predicted by Pigou and Morchain [1] with the CMA. The tracer evolution in time

as predicted by the IEM is plotted with the solid line and the mixing time of 250s is highlighted by the dashed

line.

after ∼ 250s.306

4.2. Two stage bioreactor STR+PFR307

Considering the Neubauer et al. [16] experiment, the reference case is a spatially re-308

fined simulation performed considering a STR connected to a PFR. The initial conditions309

were set to replicate the experiments and the initial biomass concentration was initialized at310

µ(t = 0) = 0.65h−1. When the IEM model is used, the biomass, the acetate and the oxygen311

were treated as perfectly mixed species. In both cases, the oxygen inter-phase mass transfer312

rate was neglected considering the concentration of the dissolved oxygen in the liquid always313

at saturation (∼ 10mgO/L). This condition, according to the authors, would be valid for most314

of their experimentally characterized reactor configurations. The injection being located in315

the PFR, Fig.5a, this configuration resembles a poorly mesomixed fed-batch in a stirred tank316

reactor in which the injection plume is segregated from the bulk of the volume and the fresh317
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substrate has to travel the whole length of the jet before being released in the bulk (zone model),318

Fig.5b.

(a) (b) (c)

Figure 5: Reactor configuration of Case B in the Neubauer et al. [16] experiment (a). Poorly mesomixed fed-batch

in a stirred tank reactor (b) and its description by means of the IEM model (c).

319

The IEM model, Fig.5c, further simplifies the system dropping the spatial information. The320

model only deals with the two environments, the plume and the bulk with high and low substrate321

concentration respectively and assumes that the characteristic interaction time between these322

two environments is equal to the PFR residence time, equal to 113s, therefore this time was323

chosen for τm. A total number of 187 sub-volumes was defined in the simulations and the324

injection in the PFR was reproduced through a source term in 13 sub-volumes, obtaining a325

ratio of 13/187 = 0.0695 that closely matches the ratio between the experimental volumes326

0.695L/10L = 0.0695.327

4.3. Biological constants328

All simulations are performed using the same metabolic model. A detailed presentation of329

the model can be found in [1] (Appendix A). The same notations are used in this work. In330

that previous study, the constants for the Xu et al. [44] experiment were determined and their331

values are used in this work. The constants of the Neubauer et al. [16] experiment were tuned332

to match the homogeneous Case A results. A sensitivity analysis was performed on the most333

influential constants shown in Tab.1 and it is reported in Appendix A. The constants that have334

the highest influence on the results of the simulations considered in this work are:335

• φ max
O , the maximum oxygen uptake rate;336

• Ki,A, the acetate inhibition constant (in the expression of growth on glucose);337
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• Ko
i,A, the acetate inhibition constant (in the oxygen uptake rate);338

• m, the maintenance rate (see Eq.6);339

• YAG, the glucose to acetate conversion yield (see Eq.5);340

• Y max
XG , the maximum glucose to biomass conversion yield (see Eq.6).341

The constant values for the two sets of simulations are reported in Tab.1.342

Table 1: Model constants and their values used to simulate the Xu et al.[44] experiment and the Case A of the

Neubauer et al. [16] experiment.

Constant Xu et al. [44] Neubauer et al. [16] Units

φ max
O 15.60 14.00 mmolO/gX ·h

Ki,A 3.00 3.50 gA/L

Ko
i,A 3.00 3.00 gA/L

m 0.250 0.150 mmolG/gX ·h
∗Y f erm

AG 3.00
3.00 molA/molG

∗Y over
AG 2.00 molA/molG

Y max
XG 1.32 1.50 molX/molG

*The conversion yield of glucose in acetate in the Neubauer et al. [16] experiment was divided depending on the

acetate production mechanism, i.e. fermentation (ferm) and overflow (over)

Although Y max
XG is slightly different, the impact on simulated results is moderate due to the343

dominating role of maintenance, m, in equation Eq.6344

5. Results345

In this Section the results obtained with the IEM model in the two experimental set-ups346

described in Section 2 are shown and compared with the experimental data and the results from347

the compartment model [1]. Results obtained considering the reactor as perfectly homogeneous348

are shown as well. The dimensions of the spaces used in the simulations of the experiments349

are presented in Tab.2. The first set of results corresponds to a constant maintenance rate, the350

second set is obtained with a variable maintenance rate.351
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Table 2: Dimensions of the spaces used in the simulations.

Physical space µ space C space

Homogeneous model 0 1 0

Compartment model 3 1 0

IEM model 0 1 1

5.1. Constant maintenance rate352

5.1.1. Simulating the Xu experiment353

Fig.6 shows the average biomass, the glucose and the acetate concentration time evolution354

obtained with a maintenance rate equal to 0.250mmolG/gX ·h.355

Concerning the average biomass concentration, Fig.6a, all the three modeling strategies356

achieve a satisfactorily agreement with the experimental data. Taking into account spatial het-357

erogeneities and biological diversity is not critical in predicting the total biomass. Indeed,358

the total amount of biomass is essentially driven by the substrate feed rate and the substrate359

into biomass conversion yield. Minor differences in the biomass concentrations are however360

observed because different amounts of acetate are produced and re-consumed depending on361

the fact that substrate heterogeneity is described or not. In Fig.6b, the evolution of the sub-362

strate concentration is reported. The glucose concentration profiles of the IEM, compartment363

and even the homogeneous case up to ∼ 7h perfectly overlap. As the spatial inhomogeneities364

become more important, three trends appear in the compartment model, depending on the sam-365

pling position. This aspect is overlooked by the IEM model, nonetheless, it produces results366

that are the same order of magnitude as the compartment model results and the use of this367

simplified model does not worsen the agreement with the experimental data, with respect to368

the more accurate compartment model. Fig.6c shows the time evolution of the concentration369

of acetate. IEM and compartment model results are in good agreement up to ∼ 8h and, as for370

the data in Fig.6b, the agreement between experimental and numerical concentration profile371

as predicted by the compartment and IEM model does not change appreciably. Considering372

the system as perfectly mixed, on the other hand, lead to an underestimation of the acetate373

concentration that is identically zero between 9h and 32h from the beginning of the process.374

This latter result is in line with the fact that acetate is produced by overflow metabolism which375
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(a) (b)

(c)

Figure 6: Average Biomass (a), Glucose (b) and Acetate (c) concentration evolution in the Xu et al. [44] exper-

iment. Experimental data (filled symbols) and Compartment model results (open symbols) are collected at the

top (top), middle (mid) and bottom (bot) of the fermenter, IEM model results (solid line), Homogeneous model

(dashed line). All the numerical data are obtained with m̄ = 0.250mmolG/gX ·h.

results from the cell exposure to concentration heterogeneities only.376

The results obtained from the numerical simulation of the Xu et al. [44] experiment show377

that the IEM model produces results that are in substantial agreement with the averaged global378

experimental data, while the homogeneous model results deviate appreciably but not signifi-379

cantly from the IEM and compartment models, with the largest differences found in the produc-380

tion of acetate. This latter result confirms that acetate is produced through overflow metabolism.381

In the model, this metabolic response is due to the local disequilibrium between uptake and382

growth rates. Therefore, the distribution of glucose must be considered, either from a spatial383

point of view (CMA) or a statistical point of view (IEM), to account for by-product formation.384
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(a) (b)

(c) (d)

Figure 7: Biomass (a), Growth rate (b), Glucose (c) and Acetate (d) concentration evolution in the Neubauer et al.

[16] experiments. Experimental data of Case A (squares) and B (circles) are shown together with the results of the

homogeneous simulations (dashed line), the STR+PFR model (dotted line) and the IEM model (solid line). All

the numerical data are obtained with m̄ = 0.150mmolG/gX ·h.

5.1.2. Simulating the Neubauer experiment385

The experimental results of Neubauer et al. [16] and the simulation results are shown in386

Fig.7. Fig.7a, shows the evolution of the biomass concentration in the bioreactor for the Case387

A and Case B. The single STR Case A is simulated using a homogeneous model, while the388

Case B is simulated using either a two-stage bioreactor (STR+PFR) or the IEM model. The389

constants of the metabolic model reported in Tab.1 were tuned in order to reach an agreement390

between the perfectly mixed Case A and the homogeneous model. As explained in Appendix A,391

the most influential parameter are, with little surprise, the maintenance rate and the maximum392

glucose into biomass yield. Thanks to this tuning, the numerical results of the homogeneous393

model closely match the perfectly mixed experimental data. It is interesting to note that the394
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constant maintenance rate is now equal to 0.150mmolG/gX ·h, much lower than the value nec-395

essary to simulate the highly segregated Fed-batch of Xu et al. Regarding the simulation of396

Case B, the biomass concentration profiles as predicted by the IEM and the STR+PFR models397

almost perfectly overlap, indicating that considering the biomass as perfectly mixed could be398

an acceptable hypothesis when examining integral results, even in this reactor configuration.399

The IEM and the STR+PFR model, on the other hand, both over-predict the amount of biomass400

produced in Case B1 (open circles) during the fed-batch phase, although exhibiting a trend401

that qualitatively agrees with this experimental set-up, i.e. a non-linear reduced production of402

biomass in time.403

The mean growth rate evolution in time is shown in Fig.7b, where a very good agreement404

between the experimental and numerical results is achieved throughout most of the process.405

Between t = −5h and t = 0 a noticeable deviation between the numerical and experimental406

data occurs, but, considering the strongly non-linear biomass growth in the same time interval407

(Fig.7a), this deviation can be explained by the fact that a constant growth was hypothesized408

during the batch phase by the authors of the experiment.409

Considering the glucose consumption dynamics, shown in Fig.7c, the overall trend and the410

quantitative agreement in the fermentation is very convincing. In the overall growth rate evo-411

lution and in the glucose consumption almost no differences exist between the homogeneous,412

the IEM and the STR+PFR models. Nonetheless, a deviation between experiments and simu-413

lations appears between the beginning of the process and ∼−3h. In Neubauer et al. [16], it is414

said that the culture medium used for the batch phase of the fermentation contained 10.0g of415

glucose per liter, whereas the experimental data are slightly lower. Therefore the misalignment416

between simulated and experimental data may be due to inaccuracies in the acquisition of the417

latter set of data.418

Concerning the evolution of the acetate concentration, Fig.7d shows two distinct trends.419

The acetate produced during the batch phase is rapidly re-consumed when the residual con-420

centration of glucose becomes low. During the fed-batch phase, no acetate is produced in the421

Case A whereas it accumulates when injection is performed in the PFR. As stated earlier in the422

description of experiments, acetate is produced through overflow metabolism when cells enter423

the PFR and face a high glucose concentration. It is also produced through fermentation at the424

end of the PFR because of oxygen limitation case B1. This second source of acetate production425
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vanishes if enriched air is used in the PFR Case B2. In any case, acetate is also re-consumed in426

the STR where the glucose concentration is low. These multiple sources of acetate production427

and re-consumption are taken into account in our metabolic model. In our simulations, the428

acetate in the homogeneous model is completely depleted after few hours from the beginning429

of the fresh substrate injection. This is a consequence of our metabolic model which consid-430

ers that acetate is uptaken if the amount of glucose is insufficient to satisfy the cell needs for431

growth. The initial re-consumption also takes place in Case B and it is correctly represented432

by the IEM and the STR+PFR models. Moreover both models predict a remaining low but not433

negligible amount of acetate that is confirmed by the experimental data collected in the Case434

B1 configuration.435

The model predictions are consistent for glucose, acetate and growth rate but still some436

discrepancy remains regarding the calculation of the biomass concentration. One of the major437

unsolved aspects in the discussion presented above is the over-prediction of biomass in the438

Case B1 of the Neubauer et al. [16] experiment. Neubauer et al. [16] report a reduction of the439

conversion yield of glucose in biomass, YXG, from 0.5 to 0.38 gX .gS (-25 % roughly). Similarly,440

Xu et al. [44] had to reduce by 25 % the value of YXG identified in an homogeneous lab scale441

reactor in order to fit their results in the heterogeneous large scale fed-batch bioreactor. As a442

matter of fact, despite the description of the spatial inhomogeneities in the reactor, a constant443

m value, fitted from the perfectly mixed case data, proved to be inadequate in capturing the loss444

in biomass production observed in segregated bioreactors.445

To sum up, it is possible to reproduce the experimental results using the IEM model with446

the same accuracy as spatially refined models. However, whatever the approach (spatial or sta-447

tistical) it is necessary to increase the maintenance rate ( or reduce YXG) in order to account for448

the effect of concentration heterogeneities on the substrate to biomass yield. These considera-449

tions led us to consider that the maintenance rate might increase with the heterogeneity of the450

glucose concentration field.451

5.2. Changes in the maintenance rate452

As stated in Section 3.2.1, substrate gradients may be responsible for the increased mainte-453

nance costs and, as seen in Tab.1 and in Tab.A.5, m is the parameter that is subject to the largest454

change with the degree of mixing. As proposed in Section 3.2.1, Eq.7 was implemented in the455

code obtaining an on-line calculation of the maintenance rate. The two constant in this law are456
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identified as follows. The m0 value is set to 0.150mmolG/gX ·h, having hypothesized that in the457

most homogeneous conditions (such as the Case A of the Neubauer et al. [16] experiment) this458

value represents a base level for m. Exploiting the data collected from the fed-batch simulations459

of the large scale fed-batch reactor, the variance of the substrate distribution was computed and460

its time averaged value used to set to α = 4.86× 104L2/gX ·mmolG · h such that the resulting461

maintenance rate is m̄ = 0.250mmolG/gX · h. All the simulations were performed again, with462

the m̄ value linked to the degree of mixing in the bioeactor and compared to those using a con-463

stant value, fitted for each case study. Results of the Xu et al. [44] experiment coupled with464

Eq.7 are shown in Fig.8.465

(a) (b)

Figure 8: Average Biomass (a) and Acetate (b) concentration evolution in the Xu et al. [44] experiment. Experi-

mental data (symbols) are collected at the top (top), middle (mid) and bottom (bot) of the fermenter. IEM model

results are reported for simulations with constant (solid line) and variable (dashed line) maintenance rate.

Fig.8 shows that tying the local mean substrate concentration fluctuations to the mainte-466

nance rate does not produce substantial changes in the biomass concentration, shown in Fig.8a,467

where noticeable but small differences exist between the data obtained with a constant value468

of m̄ or with a variable m̄. Fig.8b shows that different acetate profiles are obtained between469

about 3h and 9h from the beginning of the simulation. Before and after this time interval,470

the two acetate profiles obtained with constant and variable m̄ perfectly overlap. In partic-471

ular, the simulation where the maintenance rate was allowed to change due to the substrate472

fluctuation produced a lower acetate concentration peak, due to a reduced fermentation rate.473

Indeed, Pigou and Morchain showed that substrate gradients develop from 7h onward as the474

substrate consumption characteristic time gets smaller than the mixing time [1]. The biore-475
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actor is quite homogeneous up to 9h and the maintenance rate as predicted by Eq.7 is about476

0.150mmolG/gX ·h, much lower than the value used for the constant maintenance rate simula-477

tions (0.250mmolG/gX ·h). Therefore less glucose is needed by the cells that find more oxygen478

to catabolize the substrate, resulting in less acetate production. The glucose concentration pro-479

files as obtained with a constant and a variable value of maintenance rate are not shown since480

they almost perfectly overlap.481

The benefit of using a variable maintenance rate is more obvious when simulating the482

Neubauer et al. [16] experiment, mainly because the cultivation consists in a batch (homo-483

geneous) and a fed-batch (segregated) period of equal duration. The results are shown in Fig.9.484

(a) (b)

Figure 9: Total biomass (a) and Acetate (b) concentration evolution in the Neubauer et al. [16] experiment.

Experimental data (symbols) and IEM model results obtained with variable m̄ for the Case A (dashed line) and B

(solid line) experimental set-ups.

The biomass concentration profiles as obtained from the IEM model coupled with Eq.7 for485

the three different configurations described in Neubauer et al. [16] and the corresponding exper-486

imental data are shown in Fig.9a. The coupling of Eq.7 does not substantially affect the biomass487

concentration profiles of Case A. In fact, the high concentration feed plume is rapidly dispersed488

in the bulk of the STR, leading to m̄ ∼ m0 = constant. Considering the biomass concentra-489

tion profile in Case B, the IEM model coupled with Eq.7 significantly improves the agreement490

between numerical and experimental results. In this case, the injection in the small plug flow491

reactor volume produces high local concentration peaks that are not promptly relieved. The492

acetate concentration profiles for the Cases A and B are shown in Fig.9b and no relevant differ-493

ences are found with respect to the numerical simulations with constant maintenance rate. Also,494
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with a variable maintenance rate, the residual acetate concentration is consistently predicted for495

the Case B, which is found in the Case B1 experiments as well.496

6. Discussion497

6.1. Time course of the maintenance rate498

Figure 10: m̄, solid line, as obtained from Eq.7 for the Xu et al. [44] experiment (on the left) and Case B of the

Neubauer et al. [16] experiment (on the right). The dotted line represents a constant value of m̄= 0.250mmolG/gX ·

h.

In Fig.10, the evolution of m̄ in time is shown for the Xu et al. [44] and Case B of the499

Neubauer et al. [16] experiment. In the Xu et al. [44] experiment, on the left of Fig.10, assum-500

ing a constant value of m̄ = 0.250mmolG/gX ·h leads to an over-prediction of m̄ in the first∼ 9h501

of fermentation and a under-prediction of the mean maintenance rate in the last part of the pro-502

cess. Ultimately, the overall over- and under-predictions cancel out and considering m̄ constant503

and equal to m̄ = 0.250mmolG/gX · h does not lead to substantial global differences. On the504

other hand, m̄ in Case B of the Neubauer et al. [16] experiment, on the right of Fig.10, exhibit505

two different behaviours. During the batch phase (negative times), the maintenance rate is con-506

stant and equal to its value at rest: m̄ = m0 = 0.150mmolG/gX ·h. Right after the injection, high507
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glucose inhomogeneities develop in the multistage reactor resulting in a sharp peak in the mean508

maintenance rate profile that is slowly relieved in the following part of the fermentation. Hy-509

pothesizing a constant value of m̄ = 0.250mmolG/gX · h leads to an important over-prediction510

of the maintenance cost in the batch phase that results in a lower biomass production during this511

phase. Conversely, during the fed batch phase, a constant m̄ = 0.250mmolG/gX ·h seems to be512

an acceptable fit, with an overall under- and over-prediction that, as in the Xu et al. [44] experi-513

ment, cancels out. On the other hand, hypothesizing a constant value of m̄= 0.150mmolG/gX ·h514

works fine if the bioreactor is actually homogeneous ( Case A of the Neubauer et al. [16]), it515

also perfectly describes the batch phase but highly underestimates the mean maintenance cost,516

resulting in a higher final biomass production (as shown in Fig.7a). The very short batch phase517

in the Xu et al. [44] experiment results in an overall negligible effect of the over-estimation518

of the maintenance cost when considering a constant m̄ = 0.250mmolG/gX ·h, whereas, due to519

a longer batch phase, a single constant value for the batch and fed-batch phase proved to be520

inadequate in describing Case B of the Neubauer et al. [16] experiment.521

The comparisons between the Xu et al. [44] and Neubauer et al. [16] experiments and the522

numerical simulations prove that disregarding the state of mixing and the inhomogeneities lead523

to inaccurate results, especially in terms of total biomass and acetate concentration. The results524

obtained with the IEM model closely match those obtained with the more accurate and more525

computational expensive compartment model, proving that the description of segregation with526

a simplified approach may be sufficient when the growth rate distribution is spatially invariant.527

An accurate biomass prediction heavily depends on the correct estimation of the glucose into528

biomass yield taking into account the increased maintenance due to concentration gradients.529

Further considerations on the metabolic response, such as overflow, are needed to account530

for the acetate production. However the metabolic responses leading to the formation of by-531

products can not, by themselves, explain the loss of biomass productivity evidenced in the532

experiments. Thus, gradients affect the cell on two different levels: the first order effect is the533

decreased yield and the second order effect is the production/consumption of acetate. A simple534

kinetic model using a variable yield given by equation 8 can suffice to account for the first effect535

whereas the addition of a metabolic model is needed to account for the by-product formation.536

Clearly, a vast, consistent and up-to-date data set, including gas phase measurements is needed537

to assess the generality of our proposition for a modified Pirt’s law. The recent work of Anane538
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et al. provides such a database [17].539

6.2. Lagrangian formulation of the m̄ model540

Following a single cell in its path inside the bioreactor, it was hypothesized that the cell,541

subject to instantaneous and localized glucose fluctuations, changes its maintenance rate ac-542

cording to Eq.14, following the formulation proposed by Pigou [35] for the cell stresses.543

dm
dt

=
K
Tσ

(
CG (t)− 1

Tbio

∫ t

t−Tbio

CG (τ)dτ

)2

− m−m0

Trec
(14)

544

In Eq.14, CG, refers to the instantaneous local concentration of glucose found by the cell545

along its path, K is a model constant representing the unit change in maintenance rate due to a546

unit change in the driving force (i.e. the squared concentration fluctuations), Tσ is a response547

time of the cell to external concentration fluctuations, the squared term in parenthesis represents548

the driving force of the change in the maintenance rate, m0 is the minimum maintenance rate of549

the cells and Trec is a relaxation time toward the minimum maintenance rate m0. The expression550

1
Tbio

∫ t
t−Tbio

CG (τ)dτ is a time average of the concentrations previously encountered by the cell.551

This integral quantity is introduced to account for a memory effect, the fact that previously552

encountered concentrations contributed to set the present cell state (including its maintenance553

rate). It represents in some way an estimate of the concentration value to which the cell is554

accustomed. From that angle, Tbio can be interpreted as the time scale of long-term metabolic555

adaptation. The term in parenthesis therefore measures how much the local environment is556

different from the past conditions and thus be perceived as stressing from the cell point of557

view. In an homogeneous bioreactor, the time average is actually constant, equal to CG, the558

environment is stress-less and the maintenance rate would relax toward the base level m0 with559

a dynamic defined by the characteristic time Trec. In an heterogeneous bioreactor, the value of560

the time average concentration depends on the ratio between the mixing time and Tbio. If the561

mixing time is smaller than Tbio, the time average concentration can be regarded as the volume562

average 〈CG〉.563

In addition, changes in the maintenance rate are certainly much slower than the rate of564

change of substrate concentration along the cell trajectory, because the former is a consequence565

of the latter. Thus, in the limit of the derivative dm/dt being negligibly small, Eq.14 simplifies566

to:567
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m = m0 +α (CG (t)−〈CG (t)〉)2 (15)

where the only parameter α , already introduced in Eq.7, is equal to K×Trec
Tσ

. Quite logically,568

α results from the cell responsiveness, its response time and its recovery time to external fluc-569

tuations. As such, the cell based Lagrangian vision helps understanding the integral Eulerian570

model for m̄.571

A fruitful parallel can be made between equation Eq. 14, Eq. 4 and the metabolic model: in572

both cases a difference between the local conditions (µ∗ or CG ) and a cell state variable (µ or573 ∫ t
t−Tbio

CG (τ)dτ) is used to identify and quantify a cascade of biological responses. The short574

term metabolic response leading to overflow, the induced effects resulting in an increased main-575

tenance rate and finally the long term response driving the population growth rate adaptation576

are accounted for at a minimal expense in terms of the number of internal cell variable.577

In order to gain knowledge on the rate of change of maintenance rate for a population of578

cells, Eq.15 should be extended to a large number of particles. Ensemble averaging Eq.15 over579

the total number of cells in the reactor, Ncells, yields to:580

m̄ = m0 +α
1

Ncells

Ncells

∑
j=1

(
C j

G−〈CG〉
)2

(16)

where m̄ is the ensemble average maintenance rate and C j
G is the substrate concentration581

along the trajectory of the jth cell. Eq.7 is readily derived from Eq.16 since the number of cells582

in the reactor is large enough to sample the whole volume. The summation in Eq.16 is indeed583

a Monte Carlo calculation of the integral term in Eq.7584

The parameters introduced in Eq.14 are a modeling choice aimed at describing in the most585

accurate way the different phenomena occurring in a cell subject to substrate concentration fluc-586

tuation, without adding constitutive equations for each of them. A comprehensive description587

of the effect of the substrate concentration fluctuations on the cell metabolism would require588

ad hoc experiments and insight on the single cell metabolic responses (such as in [11, 26, 48]),589

that is beyond the scope of this work. The modelling of the metabolic changes due to substrate590

concentration fluctuations put forward in this work has the goal to implement a simple Eulerian591

integral description for fast numerical simulations of heterogeneous bioreactors.592

The single cell equation Eq.14 was solved for the Xu et al. [44] experiment and for Case593

B of the Neubauer et al. [16] experiments and, in both cases, it was hypothesized that the594

27



cell spent a time exactly equal to τCS,max at higher substrate concentration and τCS,min at lower595

substrate concentration. Ideally, a distribution of residence time in the low concentration zone596

should be considered. The time trace of the glucose concentration experienced by these ideal597

cells is shown in Fig.11. Having divided the substrate concentration space in 70 sub-volumes598

and occurring the injection of fresh substrate in just one of the sub-volumes, τCS,max was assumed599

equal to ∼ 3.6s for the Xu et al. [49] experiment, being this time equal to one seventieth of the600

macro-mixing time, and τCS,min equal to ∼ 246.4s. In the numerical study concerning Case B601

of the Neubauer et al. [16] experiment, τCS,max was assumed equal to τPFR = 113s and τCS,min602

equal to τST R = 27min. The maximum, CS,max, and minimum, CS,min concentration in each603

simulation were assumed constant and equal to the whole-process-time average of the substrate604

concentration in the injection sub-volume(s) and in the remaining sub-volumes respectively.605

The time trace of the glucose concentration just introduced was used as CG(t) in Eq.14 and the606

other constants are reported in Tab.3.607

Table 3: Constants used in the solution of Eq.14.

Constant Value Units

K 5×103 L2/gX ·mmolG ·h

Tσ 5×10−4 h

Tbio 0.1 h

m0 0.150 mmolG/gX ·h

Trec 5×10−3 h

The characteristic time needed by the cell to adapt its metabolism to the substrate con-608

centration in the surrounding environment, Tbio, was hypothesized to be long with respect to609

the other biological time scales as well as the fluid dynamics time scales. The values of the610

other constants should be determined from dedicated experiments, that is why, in this dis-611

cussion, a systematic analysis of the constants of Eq.14 is overlooked. The constants K, Tσ612

and Trec and their ratio mostly influence the magnitude of the resulting m̄. The constants613

were set in order to get α = K×Trec
Tσ

equal to 5.00× 104L2/gX ·mmolG · h, close to the value614

of α = 4.86×104L2/gX ·mmolG ·h identified through experiments in Section 5.2. The constant615

Tbio and especially the ratio between Tbio and the interval between two consecutive fluctua-616
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tions is what changes the overall integral behaviour of m̄. The solution of Eq.14 for the two617

experiments in shown in Fig.11.618

(a) (b)

Figure 11: Instantaneous and averaged evolution of the glucose concentration experienced by the cells (left y-axis)

and instantaneous and averaged maintenance rate (right y-axis). The simulations were devised to test the change

in the maintenance rate due to substrate fluctuations for the Xu et al. [44]experiment (a) and for the Neubauer et

al. [16] experiment (b).

From Fig.11a, in the zoomed drawing encircled with the dashed line, it is possible to see619

that the instantaneous maintenance rate obtained with the parameters in Tab.3 for the Xu et620

al. [44] experiment, m(t), is subject to periodic peaks (due to the concentration fluctuations)621

after which it recovers its value at rest, m0. Interestingly, the average m obtained over a Tbio622

time interval is almost constant during the fermentation, except for a short initial adjustment623

time immediately after the beginning of the fed-batch phase. As already mentioned, averaging624

in time over Tbio is equivalent to averaging over the volume or ensemble averaging over the625

entire microbial population. It is remarkable that the value of m is correctly predicted, owing to626

condition α = KTrec
Tσ

. This indicates that our proposition to transform the Lagrangian dynamic627

model into an integral Eulerian expression is meaningful.628

On the other hand, the zoomed drawing encircled with the dashed line in Fig.11b shows that629

in Case B of the Neubauer et al. [16] experiment the fluctuation characteristic time is longer630

with respect to Xu et al. [44]. In fact, the presence of the large STR with low substrate con-631

centration adds a long residence time between two consecutive glucose fluctuations. During632

this time, the cells have time to adapt to the new low-concentration environment, producing633

metabolic changes that affect the instantaneous maintenance rate as well as its averaged value.634
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When the cells are transported to the high glucose concentration environment the concentration635

difference triggers a higher metabolic stress with respect to the previous case. This behavior636

is caught by the model in terms of time average glucose concentration (in thick blue line) that637

is almost constant in Fig.11a whereas it pulses due to the fluctuations in Fig.11b. Another im-638

portant aspect is the duration of the concentration fluctuation that in Case B of the Neubauer639

et al. [16] experiment is two orders of magnitude larger than in the Xu et al. [44] experiment.640

This longer exposure to high concentration allows the cell to adjust to the new high concentra-641

tion environment, allowing for a small m recovery in the high concentration environment. This642

single cell behaviour convoluted with the residence time distribution in the STR explains the643

increased maintenance at the population scale leading to a reduced production of biomass with644

respect to Case A of the same experiment.645

6.3. Further considerations on the coupling with oxygen availability646

In our simulations, the dissolved oxygen concentration is constant and equal to∼ 10mgO/L,647

and fermentative metabolism could only take place because of a reduced oxygen uptake rate due648

to inhibition by acetate. Considering Ko
i,A = 4GA/L along with residual acetate concentrations649

below 10mg/L one can conclude that in absence of fermentation, the mixed acid metabolism650

is not responsible for the reduced yield. The reduction was entirely attributed to an increased651

maintenance rate as a results of gradient induced stresses. This corresponds to a possible ex-652

planation proposed in most studies mentioned in the introduction.653

However, several authors also argued that an exposure to insufficient oxygen levels would654

trigger the mixed-acid fermentation pathways resulting in the production of lactate, formate and655

succinate from pyruvate. Thus, these pathways compete with the central metabolism pathway.656

Neubauer et al. [16] interpreted the reduced production of biomass in Case B1 as a result of657

a suboptimal oxygen concentration inducing an acetate production through fermentation at the658

end of the PFR. To support this, they performed Case B2 experiment (with enriched air injec-659

tion in the PFR). The initial acetate production due to overflow metabolism was maintained but660

acetate formation due to fermentation was eliminated. Also, the production of biomass matches661

the biomass production in Case A. This result suggests that overflow, by itself, is not the main662

cause of yield reduction. Xu et al. repeated the experiments of Neubauer, confirming the pre-663

vious results and finding that the various acids are re-assimilated almost entirely in the aerated664

STR. They explained that the repeated production and re-assimilation may be a contributing665
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factor causing biomass loss upon scale-up [44]. Despite the fact that the oxygen sensor did not666

reveal limiting levels in the 20m3 experiments, they concluded that oxygen limitation is cer-667

tainly present or perceived by the micro-organisms. In the end, mixed-acid fermentation lead668

to small amounts of by-products ( a few mg/L) which can not quantitatively explain a decrease669

in biomass production of several g/L.670

A possible explanation for this experimental observation is that the bacteria subject to in-671

tense substrate fluctuation almost instantaneously convert up to 30% of the substrate into CO2672

with a specific uptake rate of O2 that was very similar to the specific rate of CO2 excretion [50].673

This indicates that the oxygen demand increases as a result of over-assimilation. If enough674

oxygen is available, the massive excretion of CO2 limits the flood in the central metabolism675

and this mechanism therefore contributes to a reduction of the metabolic stresses, i.e. lower676

m̄ values. If the oxygen availability is insufficient (or the oxidative capacity of the cells is677

saturated) mixed-acid fermentation is triggered as well as a cascade of genetic and enzymatic678

bioprocesses which contribute to increasing the energetic cost of living from the cell point of679

view. It is therefore promising to consider that both substrate and oxygen distribution can con-680

tribute to a modification of the maintenance rate and extend the proposed approach to multiple681

nutrients.682

7. Conclusions683

In this work a two-environments IEM mixing model was implemented in the context of the684

software ADENON to describe the substrate inhomogeneities in two experimental fed-batch685

processes found in literature. Numerical simulations were performed to test how results ob-686

tained with the IEM model compared to numerical results obtained with a compartment model687

from literature and to the experimental results. A very good agreement was reached between688

the results obtained with the IEM and the compartment model, proving that a simplified de-689

scription of the state of mixing could suffice when just substrate concentration spatial gradients690

are important. The agreement between the experimental and the numerical results is not wors-691

ened by the adoption of the simplified IEM model, in both the experimental set-ups found in692

literature. In comparison to other approaches (CFD and CMA), the use of an IEM model allow693

a fast and inexpensive simulation of highly segregated heterogeneous bioreactors. Considera-694

tions on the increase of the maintenance rate due to concentration fluctuations were necessary695
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to improve the agreement with the experimental data. A modification to the Pirt’s law introduc-696

ing a dependence of the cell maintenance on the variance of the concentration distribution was697

hypothesized, validated against experimental data and discussed both from a Lagrangian and698

from an Eulerian perspective. This proposition constitutes a very simple and presumably gen-699

eral framework to connect concentration gradients to the maintenance rate. To sum up, the cost700

of living in an imperfectly mixed bioreactor increases with the variance of the concentration701

distribution.702
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Appendix A. Sensitivity Analysis on the Neubauer experiment703

A sensitivity study on the constants range highlighted that 6 constants of the metabolic704

model had the highest effects on the Neubauer et al. [16] results. The constants and their705

values can be found in Tab.A.4.706

Table A.4: Model constants and their values used in the sensitivity study.

Constant −30% (-1) Xu et al. [44] value +30% (+1) Units

φ max
O 10.92 15.60 20.28 mmolO/gX ·h

Ki,A 2.10 3.00 3.90 gA/L

Ko
i,A 2.80 4.00 5.20 gA/L

m̄ 0.175 0.250 0.325 mmolG/gX ·h

YAG 2.10 3.00 3.90 molA/molG

Y max
XG 0.92 1.32 1.72 molX/molG

A±30% deviation from the values proposed by Pigou and Morchain [1] to simulate the Xu707

et al. [44] experiment was studied, to map the sensitivity of the Neubauer at al. [16] results708

on the variations. Three response variables were observed, namely, the biomass concentration709

at the end of the fed-batch process, the maximum concentration of acetate found in the system710

during the whole process and the time needed to deplete the initial amount of glucose and711

therefore end the batch phase. The effects of the constants change on the response variables are712

shown if Fig.A.12, where the constant normalized values of ±1 indicate a variation of ±30%713

from the default values and the y-axis values are the percent change of the response variables714

with respect to the simulations with the default constants values (0).715

Fig.A.12 shows that just a decrease in the maintenance rate, m̄, or an increase in the maxi-716

mum conversion yield of glucose in biomass, Y max
XG , may lead to an increase of the final concen-717

tration of biomass. Both constants appear in the Pirt’s formulation of the glucose to biomass718

conversion yield, Eq.6, but m̄ is related both to the bacteria and to the operating conditions,719

whereas Y max
XG is presented as a maximum limit only dependent on the selected strain. Increas-720

ing the biomass concentration at the end of the fed-batch phase by changing the two constants721

presented above lead to a relatively large variation in the production of acetate, that can be722

adjusted with a variation of the other constants.723

33



Figure A.12: Effect of the constants ±30% variation on the response variables.

The sensitivity study was instrumental in tuning the constants in Tab.1 for the Case A of724

the Neubauer et al. [16] experiment. In Tab.A.5 the percent change of the constant values725

tuned for the Neubauer et al. [16] experiment with respect to the values proposed by Pigou and726

Morchain [1] to simulate the Xu et al. [44] experiment is reported. The constant values for the727

two experiments are reported in Tab.1.728

Tab.A.5 shows that the maintenance rate is subject to the largest absolute value variation,729

pointing to the fact that a model to account for the change of m̄ in the two sets of experiments730

may be needed.731
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Table A.5: Model constants and their values used to improve the agreement with the Case A of the Neubauer et

al. [16] experiment.

Constant Percent change

φ max
O −10.3%

Ki,A +16.7%

Ko
i,A 0.0%

m̄ −40.0%
∗Y f erm

AG ∗∗−7.0%
∗Y over

AG

Y max
XG +13.6%

**The average YAG weighted on the acetate production mechanism is 2.79molA/molG

Appendix B. Further comments on model parameter identification732

In section 5.2, the determination of α is based on a fitting of experimental results. m0 =733

0.150mmolG/gxh is obtained from experiments under homogeneous condition. When the734

reactor is heterogeneous and a constant maintenance rate is assumed, the latter has to be735

increased up to 0.250mmolG/gxh. It is proposed, in this work, to relate the maintenance736

rate to the variance of the concentration field. Therefore, the value of α is fitted so that737

m(σC) = m0 +α(σC) = 0.250. The instantaneous variance, σC(t), is obtained from the post-738

processing of spatially resolved simulations using a CMA approach and its time average value739

( σC) is computed. This completely defines the value of α .740

In section 6.2, we provide an explanation for the formulation proposed in equation (7). For741

this, we consider several phenomena such as the cell responsiveness to concentration fluctua-742

tions, K, the time constant of that response Tσ and the recovery time constant Trec. In the end,743

after some mathematical manipulations, it is shown that α can be identified with the expression744

745

α =
KTσ

Trec
(B.1)

And of course there is an infinity of triplet leading to the same value for α . For that section746

however, we need to set a value for each parameter introduced. An arbitrary choice was made747

based on physical and biological considerations. We assumed that the response time Tσ is748
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one order of magnitude larger than the recovery time Trec (the opposite would lead to cells749

being insensitive to external fluctuations). Then the response time should be shorter than the750

exposure time which corresponds to the residence time in the concentrated zone (otherwise cells751

would not perceive gradients). Looking at the concentration profile reported in the Neubauer752

experiment (where τPFR = 113s), we can figure out that the response time to concentration753

change is much shorter than the residence time in the PFR, thus we choose arbitrarily 2 seconds.754

Then we get Trec = 20s and since the targeted value for α is known this sets the responsiveness755

constant K. Because of that choice, the Lagrangian simulation in section 6.2 indicate that cells756

seem to recover the stressing event in the Xu experiment because the residence time in the757

stressing zone is much longer than in Neubauers experiment. To sum up, in section 6.2, we758

choose the parameter value quite arbitrarily (respecting some logical reasoning) in order to759

enlighten the effects of the duration and frequency of concentration changes on the overall760

maintenance rate. However, dynamic experiments such as those reported very recently by761

Anane [17], performed massively on parallel bioreactor platforms, certainly provide enough762

quantitative and informative data to perform a more precise parameter identification.763
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