. Fao and . La, Situation Mondiale des Pêches et de l'aquaculture, Atteindre Les Objectifs de Développement Durable, 2018.

G. Francis, H. P. Makkar, and K. Becker, Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish, Aquaculture, vol.199, pp.526-535, 2001.

A. G. Tacon, M. R. Hasan, and M. Métian, Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans, Trends and Prospects, 2011.

R. Magalhães, A. Sánchez-lópez, R. S. Leal, S. Martínez-llorens, A. Oliva-teles et al., Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax), Aquaculture, vol.476, pp.79-85, 2017.

T. Stadtlander, A. Stamer, A. Buser, J. Wohlfahrt, F. Leiber et al., Hermetia illucens meal as fish meal replacement for rainbow trout on farm, vol.3, pp.165-175, 2017.

E. R. Lock, T. Arsiwalla, and R. Waagbø, Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt, Aquac. Nutr, vol.22, pp.1202-1213, 2016.

S. St-hilaire, C. Sheppard, J. K. Tomberlin, S. Irving, L. Newton et al., Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss, J. World. Aquac. Soc, vol.38, pp.59-67, 2007.

K. B. Barragan-fonseca, M. Dicke, and J. J. Van-loon, Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed-A review, J. Insects Food Feed, vol.3, pp.105-120, 2017.

M. Henry, L. Gasco, G. Piccolo, and E. Fountoulaki, Review on the use of insects in the diet of farmed fish: Past and future, Anim. Feed Sci. Technol, vol.203, pp.1-22, 2015.

A. Aksnes, B. Hope, E. Jönsson, B. T. Björnsson, and S. Albrektsen, Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I: Growth, growth regulation and feed utilization, Aquaculture, vol.261, pp.305-317, 2006.

Y. Wei, M. Liang, K. Mai, K. Zheng, and H. Xu, 1H NMR-based metabolomics studies on the effect of sizefractionated fish protein hydrolysate, fish meal and plant protein in diet for juvenile turbot, Scophthalmus maximus L.). Aquac. Nutr, vol.23, pp.523-536, 2017.

S. Refstie, J. J. Olli, and H. Standal, Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet, Aquaculture, vol.239, pp.331-349, 2004.

Y. Hou, Z. Wu, Z. Dai, G. Wang, and G. Wu, Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance, J. Anim. Sci. Biotechnol, vol.8, p.24, 2017.

J. Wang, X. Yan, R. Lu, X. Meng, and G. Nie, Peptide transporter 1 (PepT1) in fish: A review, vol.2, pp.193-206, 2017.

T. Verri, G. Terova, K. Dabrowski, and M. Saroglia, Peptide transport and animal growth: The fish paradigm, Biol. Lett, vol.7, pp.597-600, 2011.

B. D. Glencross, M. Booth, and G. L. Allan, A feed is only as good as its ingredients: A review of ingredient evaluation strategies for aquaculture feeds, Aquac. Nutr, vol.13, pp.17-34, 2007.

F. Geay, S. Ferraresso, J. L. Zambonino-infante, L. Bargelloni, C. Quentel et al., Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet, BMC Genomics, vol.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01019771

S. Panserat, G. A. Hortopan, E. Plagnes-juan, C. Kolditz, M. Lansard et al., Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver, Aquaculture, vol.294, pp.123-131, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01193491

F. Casu, A. M. Watson, J. Yost, J. W. Leffler, T. G. Gaylord et al., Investigation of graded-level soybean meal diets in red drum (Sciaenops ocellatus) using NMR-based metabolomics analysis, Comp. Biochem. Physiol. Part D Genom. Proteom, vol.29, pp.173-184, 2018.

T. B. Schock, S. Newton, K. Brenkert, J. Leffler, and D. W. Bearden, An NMR-based metabolomic assessment of cultured cobia health in response to dietary manipulation, Food Chem, vol.133, pp.90-101, 2012.

R. Abro, A. A. Moazzami, J. E. Lindberg, and T. Lundh, Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy, Int. Aquat. Res, vol.6, pp.6-63, 2014.

F. Gatesoupe, B. Fauconneau, C. Deborde, B. Madji-hounoum, D. Jacob et al., Intestinal microbiota in rainbow trout, Oncorhynchus mykiss, fed diets with different levels of fish-based and plant ingredients: A correlative approach with some plasma metabolites, Aquac. Nutr, vol.24, pp.1563-1576, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901326

T. Asakura, K. Sakata, S. Yoshida, Y. Date, and J. Kikuchi, Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches, PeerJ, vol.2, p.550, 2014.

M. Mekuchi, K. Sakata, T. Yamaguchi, M. Koiso, and J. Kikuchi, Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper (Plectropomus leopardus), Sci. Rep, vol.7, p.9372, 2017.

S. Roques, C. Deborde, N. Richard, L. Sergent, F. Kurz et al., Characterizing alternative feeds for rainbow trout (O. mykiss) by 1 H NMR metabolomics, Metabolomics, vol.14, p.305, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02141406

M. S. Jasour, L. Wagner, U. K. Sundekilde, B. K. Larsen, H. T. Rasmussen et al., Fishmeal with different levels of biogenic amines in aquafeed: Comparison of feed protein quality, fish growth performance, and metabolism, Aquaculture, vol.488, pp.80-89, 2018.

M. De-la-higuera, Effects of Nutritional Factors and Feed Characteristics on Feed Intake, In Food Intake in Fish

D. Houlihan, T. Boujard, and M. Jobling, , pp.250-268, 2001.

S. J. Kaushik and I. Seiliez, Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs, Aquac. Res, vol.41, pp.322-332, 2010.

P. A. Wright, Nitrogen excretion: Three end products, many physiological roles, J. Exp. Biol, vol.198, pp.273-281, 1995.

Y. K. Ip and S. F. Chew, Ammonia Production, Excretion, Toxicity, and Defense in Fish: A Review, Front. Physiol, 2010.

T. Yamamoto, T. Unuma, and T. Akiyama, Postprandial changes in plasma free amino acid concentrations of rainbow trout fed diets containing different protein sources, Fish. Sci, vol.64, pp.474-481, 1998.

G. P. Salze, D. A. Davis, and . Taurine, A critical nutrient for future fish feeds, Aquaculture, vol.437, pp.215-229, 2015.

M. Yokoyama and J. Nakazoe, Accumulation and excretion of taurine in rainbow trout (Oncorhynchus mykiss) fed diets supplemented with methionine, cystine and taurine, Comp. Biochem. Physiol. A Physiol, vol.102, pp.565-568, 1992.

H. Kataoka and N. Ohnishi, Occurrence of Taurine in Plants, Agric. Biol. Chem, vol.50, pp.1887-1888, 2014.

I. Belghit, N. S. Liland, P. Gjesdal, I. Biancarosa, E. Menchetti et al., Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar), Aquaculture, vol.503, pp.609-619, 2019.

Å. Krogdahl, M. Penn, J. Thorsen, S. Refstie, and A. M. Bakke, Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids, Aquac. Res, vol.41, pp.333-344, 2010.

P. Gómez-requeni, M. Mingarro, J. A. Calduch-giner, F. Médale, S. A. Martin et al., Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata), Aquaculture, vol.232, pp.493-510, 2004.

C. Y. Lin, H. Wu, R. S. Tjeerdema, and M. R. Viant, Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics, Metabolomics, vol.3, pp.55-67, 2007.

D. Jacob, C. Deborde, M. Lefebvre, M. Maucourt, and A. Moing, NMRProcFlow: A graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics, Metabolomics, vol.13, p.36, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01401241

A. Kullgren, L. M. Samuelsson, D. G. Larsson, B. T. Bjornsson, and E. J. Bergman, A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss), Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.299, pp.1440-1448, 2010.

G. Shen, Y. Huang, J. Dong, X. Wang, K. Cheng et al., Metabolic effect of dietary taurine supplementation on Nile tilapia (Oreochromis nilotictus) evaluated by NMR-based Metabolomics, J. Agric. Food Chem, vol.66, pp.368-377, 2018.

L. W. Sumner, A. Amberg, D. Barrett, M. H. Beale, R. Beger et al., Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI), Metabolomics, vol.3, pp.211-221, 2007.