Skip to Main content Skip to Navigation
Journal articles

Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds

Abstract : In this study, we analyzed the effect of the radiative interaction between neighboring pixels on the high-resolution radiant flux of bounded cascade inhomogeneous clouds by using a one-layer mapping : neural network as generalized regression analysis. The analysis was done for reflectance : transmittance, and absorptance at different wavelengths under different conditions of illumination. The sign and magnitude of output coefficients indicate how neighboring pixels contribute to the radiant flux of a target pixel. We found that the variation of output, coefficients with the distance from the target pixels changes significantly in its shape and horizontal extent not only with the type of radiant flux we consider but also with the wavelength and solar zenith angle. The mapping neural network clearly reveals the asymmetric feature of radiative interaction between neighboring pixels under oblique illumination, which illustrates the shadowing : and enhancing effects of local cloud inhomogeneity. The present analysis shows that , the mapping neural network is a flexible method of analysis when used as a generalized regression analysis.
Mots-clés : CEMAGREF LISC CNRS
Document type :
Journal articles
Complete list of metadata

https://hal.inrae.fr/hal-02580296
Contributor : Migration Irstea Publications <>
Submitted on : Thursday, May 14, 2020 - 8:19:17 PM
Last modification on : Friday, May 15, 2020 - 2:35:26 AM

Identifiers

  • HAL Id : hal-02580296, version 1
  • IRSTEA : PUB00009974

Collections

Citation

Thierry Faure, H. Isaka, B. Guillemet. Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds. Journal of geophysical research-atmospheries, 2001, pp.59. ⟨hal-02580296⟩

Share

Metrics

Record views

24