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Abstract

This paper deals with robust point features selection
for tracking. The aim is to identify unreliable fea-
tures since the first frame so to track them in all
the sequence. We extend a recent version of the
well-known Kanade-Lucas-Tomasi tracker [18] by
introducing an automatic scheme for rejecting spu-
rious features. We employ a simple and efficient re-
jection rule based on grey levels co-occurrence en-
tropy and show that its empirically assumptions are
satisfied in the scenario of feature tracking. Exper-
iments with real and synthetic images confirm that
this approach makes better features tracking. We il-
lustrate quantitatively the benefits introduced by the
proposed algorithm.

1 Introduction

As many algorithms rely on the accurate computa-
tion of correspondences through a sequence of im-
ages, feature tracking has proved to be an essential
component of vision-based systems. It remains a
difficult problem on which depend many high level
tasks as motion estimation, 3D reconstruction, dy-
namic vision or visual servoing, and, these can con-
cern a variety of applications ranging from medical
imaging or continuous inspection to surveillance or
road traffic scenes analysis [1] [7] [8] [10] [12] [13].
A usual technique for feature tracking is to min-
imise the Sum of Squared Differences (SSD) of im-
ages intensities. In [19], Tomasi and Kanade in-
troduced a feature tracker based on SSD match-
ing and assuming translational frame-to-frame dis-
placements. Subsequently, in order to take into ac-
count more complex displacements, Shi and Tomasi
proposed in [17] an affine model which proved ad-
equate for region matching over longer time spans.

Their system classified a tracked feature as reliable
or unreliable according to the residue of the match
between the associated image region in the first and
current frames, if the residue exceeded a defined
threshold, the feature was rejected. Visual inspec-
tion of results demonstrated a well discrimination
between good and bad features. Nevertheless, the
authors did not specify how to reject bad features
automatically. This problem has been solved by
Tommasini andal. [20] by employing a simple
outlier rejection rule. However, this kind of track-
ing algorithms usually assume that the changes in
the scene appearance are only due to geometric de-
formations. Thus, when changes in illumination
are relevant, these approaches perform poorly. In
[4], Hager and Belhumeur describe an SSD-based
tracker that compensates illumination changes. In
their approach, first a target region is defined, then a
basis of appearance reference templates for the illu-
mination change is acquired and stored, and finally
tracking is performed based on the prior knowl-
edge of the appearance templates. Recently, with-
out intervention ofa priori knowledges, Soatto and
al. presented in [18] an extension of Shi-Tomasi
tracker which take into account changes in illumi-
nation and reflection.

In this paper, following works of Lucas and Kanade
[11] which mentioned the importance of the robust
selection in the first frame of the features to be
tracked, we extend the approach of Soatto andal.
by introducing an automatic scheme for the selec-
tion of significant features in the first frame of the
sequence. This approach of processing imposes it-
self for various components using visual servoing
and/or dynamic vision (see [2] for example). We
employ a rejection rule based on an entropy crite-
rion, and show that this way to proceed yields to
a better behaviour of the tracking process for the
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selected points. Experiments with real images con-
firm that our algorithm makes well features track-
ing, in the sense that outliers are located reliably.
By using the global residual criterion, we present
quantitative examples of the benefits introduced by
the proposed approach.
This paper is organised as follows: we describe in
section 2 the proposed approach for the detection
and the selection of thevisual features. Then, we
present in section 3 the method developed by Soatto
andal. which will allow us to carry out the tracking
of the selected features. Experimental results and
method evaluation on different sequences are then
detailed in section 4. Finally, in section 5, a conclu-
sion recalls the principal results and the limits of the
method and proposes some research perspectives.

2 Features Extraction and Selection

Among the visual features, the interest points prove
to have the most general character. Indeed, those
can be found in the majority of the images and their
extraction can be applied to simple objects as well
as to complex objects. These points correspond
generally to bi-dimensional variations of the inten-
sities of the image [3] [6] [14] [15] [16] [22].
Intuitively one conceives easily that a point lying
in an area of homogeneous grey levels has less
chances to be well matched that a point belong-
ing to a rich area of information. Moreover, more
textures present around a point is rich and varied,
more information in the image is discriminating. To
evaluate the quantity of visual information present
around a point, the information theory offers prob-
abilistic tools based on entropic measures. These
measurements have revealed well adapted for the
characterisation of the objects of complex and tex-
tured nature [5], and, can give an indication on the
order of textures in the analysed area of the image,
and so, allows to locate the areas where information
is richest. Based on these considerations, we pro-
pose the use of zones of interest located by measure-
ment of the entropies of co-occurrence of the grey
levels of the image in order to select the points can-
didates to the tracking task. The proposed method
is composed of the two following steps:
• A detection of the interest points following the

approach of Shi and Tomasi [17]. This de-
tector is characterised by a good repeatabil-
ity rate [16]. A feature is defined as a region

that can be tracked easily from one frame to
the other. In practice, since the larger eigen-
value is bounded by the maximum allowable
pixel value, the requirement is that the smaller
eigenvalue is sufficiently large. Callingλ1 and
λ2 the eigenvalues of the matrixH with :

H =
∑
W

[
I2

x IxIy

IxIy I2
y

]
(1)

We accept the corresponding feature if
min(λ1, λ2) > λ, whereλ is a user-defined
threshold,W is a window of interest in the
imageI and [Ix Iy]T = [∂I/∂x ∂I/∂y]T .
Typical values ofλ are in [0.1..1.0].

• A selection of the interest points by optimis-
ing the criterion of entropy. The most discrim-
inating points according to these values corre-
spond to the points whose illumination varia-
tions are large in several different directions.
In order not to use all the grey levels of the
image and to reduce computational cost, we
simplify it by classifying the grey levels auto-
matically in a reduced number using a multi-
thresholding technique [9]. Then, we calculate
the entropy of the co-occurrences of the grey
levels of the segmented image around the in-
terest points detected in the first step.
Given a displacement vector(∆x, ∆y)T and
the number of grey levelsG of the image
I, for two grey levelsk and l, the value of
the co-occurrence matrix notedM , at position
(k, l), is given by the number of pixels(x, y)
such thatI(x, y) = k and I(x + ∆x, y +
∆y) = l. Typical displacements correspond to
(∆x, ∆y) ∈ {(1, 0), (1, 1), (0, 1), (−1, 1)}.
The entropy value around an interest points is
given by :

EntP = −
∑
k∈G

∑
l∈G

pkl log(pkl) (2)

wherepkl =
M [k, l]

W 2
h

. Typical value for the

size of the window of analysisWh × Wh is
16× 16.

Only the points having an entropy greater than a
threshold, function of the entropies of the interest
points, are preserved. In the case of an image coded
on a dozen of grey levels, the 2D entropy values
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vary in an interval going from 0 to 2.56, and, typi-
cally, 70% of the maximal value of entropies repre-
sents a good compromise for this threshold value.

3 Features Tracking

This section presents the model of the deformation
undergone by the image as a consequence of the rel-
ative motion between a rigid scene and a camera,
and of illumination changes. Our aim is to develop
a model that treads generally with computational ef-
ficiency, leading to a real-time implementation.
Let X be a point on a surfaceS in the scene and
x = π(X) the projection of point on the image
plane. LetI(x, t) denotes the intensity value at the
locationx of an image acquired at timet. The im-
age deformations of a surfaceS at timet+τ can be
described as :

I(x, t) = I(δ(x), t + τ) ∀x ∈ W (3)

whereδ(.) is generally a non-linear time-varying
function which depends on a number of parameters.
In the case of an affine model,δ(x) = Ax + d;
whereA is a general linear transformation of the
plane co-ordinatesx andd is the 2D displacement.
The geometrical model defined by the relation (3)
has the advantage of being simple and general
enough. Nevertheless, in practice, the conditions
of acquisition of the images can not always be con-
trolled. It can yield to discontinuities of illumina-
tion and therefore to the violation of (3). Moreover,
it generates areas with weak contrast which con-
tribute in the degradation of the images and conse-
quently of the tracking. In order to take into account
the variations of lighting of the scene and to operate
in more general situations, the combination of the
geometrical model with a photometric modelling
seems to be necessary. Indeed, between two frames
acquisition, the conditions of lighting are different.
A pixel in a frame can be clearer than in the other,
because of the change of the lighting or the opening
of the iris. This change can be approximated by an
addition of a grey level. Also, because of the dif-
ferences of dynamic of the camera, the contrast in a
frame can be stronger than in the other. This varia-
tion can be approximated by a scale factor [11].
If we consider a light source Ł in the 3-D space
and suppose that we observe a smooth surfaceS.
The intensity value of each point on the image plane
depends on the portion of incoming light from the

source Ł that is reflected by the surfaceS, and is
described by the Bi-directional Reflectance Distri-
bution Function (BRDF). When we assume that for
a pointp on the smooth surfaceS, it is possible to
consider a neighbourhoodU aroundp such that nor-
mal vectors toS do not change withinU . Under the
above assumptions, and assuming that the surface is
Lambertian, the BRDF simplifies considerably and
the intensity observed at the pointx can be mod-
elled as [18]:

I(x, 0) = νEE(X) + ξE ∀x ∈ WU (4)

where E(X) is the albedo lying onS, WU =
π(U), νE andξE are constant and can be thought
as parameters that represent respectively the con-
trast and brightness changes of the image. When
either the camera or the scene is subject to motion,
these parameters will change according to the new
geometric setting, and henceνE andξE vary along
of the time. The model for illumination changes can
be written as follows [18]:

I(x, 0) = ν(t)I(x, t) + ξ(t) ∀x ∈ WU (5)

where ν(t) and ξ(t) are recursively defined as:
ν(t) = νE(t)

νE(0)
, ξ(t) = ξE(t) − νE(t)

νE(0)
ξE(0) for

t > 1

The combination of the affine and illumination
deformations models together gives the following
model:

I(x, 0) = ν(t)I(Ax+ d, t) + ξ(t) ∀x ∈ W (6)

Because of noise and because the affine motion
model and the affine illumination model are ap-
proximations, equation (6) is generally not satisfied.
Therefore, the solution is to move the problem to an
optimisation one to find the parametersA, d, ν and
ξ, which minimise the following residue:

ε =

∫
W

[I(x, 0)−νI(Ax+d, t)+ξ]2w(x)dx (7)

wherew(.) is a weight function depending on the
application. In the simplest case,w(x) = 1.
To carry out the minimisation, the model of inten-
sity is approximated by using a first-order Taylor
expansion aroundA = Id, d = 0, ν = 1 andξ = 0:

νI(y, t)+ξ ' νI(x, t)+ξ+∇I
∂y

∂u
(u−u0) (8)
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∇I is the gradient ofI(x, t), y = Ax + d , u
collects the geometric parametersA = {dij} and
d = [d1 d2]

T , u = [d11 d12 d21 d22 d1 d2]
T and

u0 = [1 0 0 1 0 0]. Rewriting (8) in the matrix
form, we obtain

I(x, 0) = F (x, t)T z (9)

with F (x, t) = [xIx yIx xIy yIy Ix Iy I 1]T , z =
[d11 d12 d21 d22 d1 d2 ν ξ]T , and,x andy are the
co-ordinates ofx.
The problem reduces to determining z for each
patch. Multiplying (9) byF (x, t)T on both sides,
and integrating over the whole windowW with the
weight functionw(.), we obtain the following lin-
ear8× 8 systemSz = a where :

a =

∫
W

F (x.t)T I(x, 0)w(x)dx (10)

and

S =

∫
W

F (x.t)T F (x.t)w(x)dx (11)

When we consider the pixel quantization,S be-
comes in block-matrix form as:

S =
∑
x∈W

[
T U

UT V

]
w(x) (12)

where

T =


x2I2

x xyI2
x x2IxIy xyIxIy xI2

x xIxIy
xyI2

x y2I2
x xyIxIy y2IxIy yI2

x yIxIy
x2IxIy xyIxIy x2I2

y xyI2
y xIxIy xI2

y
xyIxIy y2IxIy xyI2

y y2I2
y yIxIy yI2

y
xI2

x yIxIy xIxIy yIxIy I2
x IxIy

xIxIy yI2
y xI2

y yI2
y IxIy I2

y


U

T
=

[
xIxI yIxI xIyI yIyI IxI IyI
xIx yIx xIy yIy Ix Iy

]
and

V =

[
I2 I
I 1

]
T is the matrix computed in the algorithm of Shi
and Tomasi, which is based on geometry only,V
comes from the model of photometry andU is the
cross terms between geometry and photometry. Fi-
nally, whenS is invertible,z can be computed as:

z = S−1a (13)

By solving (13), it is possible to compute all the
parameters. However, because of the first-order ap-
proximation in (8), it will only give a rough approxi-
mation forz even if the model is correct. To achieve

a higher accuracy, a Newton-Raphson-style itera-
tion is used. This can be done by approximating
(6) around the previous solution, and iterating (13)
until the variation in all the parameters is negligible.

4 Experimental Results

In this section, two complementary experiments are
presented: the first is applied to a scene of a com-
plex object, and the second one to a scene of tex-
tured images.

4.1 Sequence on complex object

The proposed algorithm was tested on several real
sequences of complex objects. We present here
some results obtained on a sequence resulting from
the observation of a food product (sequence FP, fig-
ure 1). The 25 frames of the sequence were ac-
quired by a CCD camera fixed on a robot. In this
experiment, the camera turns from left to right and
during rotation the illumination changes substan-
tially. All the results presented here were obtained
under the same experimental conditions: the thresh-
old applied to the eigenvalues (parameterλ defined
in section 2) is equal to 0.1 and the threshold of the
entropy (also defined in section 2) is fixed at70% of
the value of the maximum entropy. In order to ob-
tain an accurate estimation of the deformations, we
have introduced a threshold on the residual values
ε, only points having anε < 0.2 are tracked.
The figure 2 represents the image of the entropies
of co-occurrences of the 12 grey levels obtained by
the multi-thresholding of the first image. One can
notice that the strongest values (clear grey levels) of
this attribute correspond well to representative areas
of interest of the image.
The results of extraction and selection of the inter-
est points are respectively presented in figures 3(a)
and 3(b). For this example, among the 118 detected
points, only 69 are localised in areas with strong
entropy and thus considered as good candidates for
the tracking.
To evaluate quantitatively the developed approach,
we applied the tracking algorithm by using a first
version where the extraction of the interest points
is made according to the only criterion related to
the eigenvalues defined in section 2 (Method EV)
while the second version is made according to the
criterion of entropy (Method ENT). The figure 4
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shows trajectories of the points selected by the two
approaches and tracked along the sequence. One
can note that for a considerable number of points
(generally corresponding to points located on areas
with low entropy), the tracking stops before the end
of the sequence.
The figure 5 shows that the evolution of the global
normalised residues (sum of the residues divided by
the number of points tracked after the processing of
each frame) according to the number of the frame in
the sequence is weaker when one carries out a track-
ing of the points selected according to the entropy
criterion.
In the same way, table 1 recapitulates the results ob-
tained. In particular, it shows that a relative profit,
about15%, on the residues is obtained thanks to
the introduction of the criterion of entropy. In addi-
tion, in a context of visual servoing, where a small
number of points as visual features is used, the ex-
perimentation shows that80% of the best sorted
points according to values of entropy are correctly
tracked, whereas only60% of the points are cor-
rectly tracked when the sorting is performed accord-
ing to the eigenvalues.

4.2 Sequence of textured images

The developed algorithm was also tested on a num-
ber of sequences of textured images among the
well-known sequence ”Flower Garden” (Sequence
FG, figure 6). The difficulty in this sequence is
due to the presence of non homogeneous textures
in the images. This can hugely contributes to pro-
duce inter-frame false matching. In this experiment,
the thresholdλ applied to the eigenvalues has been
fixed to 0.5 (to limit the number of detected points),
the threshold on the entropy remains unchanged.
The results for this experiment are given in figures
7, 8 and 9. They respectively represent: results of
detection and selection of the interest points, the tra-
jectory of tracking of the points detected according
to two methods (EV and ENT) and the evolution
of the normalised residues versus frame numbers.
Table 2 quantitatively summarises the obtained re-
sults.
Similar remarks to those for the previous section
can be made for this sequence. In particular, fig-
ure 9 and table 2 show, that in this case also, a
better global residue is obtained after selection of
the points using the entropies, and, the percentage
of tracked points is increasingly more significant

when a sorting of points according to the values
of entropies is made. The profit obtained on the
residues is about 6%, and, on the other hand, the
gain obtained on the percentage of the points cor-
rectly tracked in all the sequence is about 25%. The
tracking of the ten best sorted points according to
the two methods is identical (80% of points are cor-
rectly tracked). These results show, here again, that
our approach contributes to a good selection of the
points extracted from the first image, and so, to a
good tracking.

5 Conclusion

We have presented an extension of the Soatto andal.
tracker by introducing a selection of interest points
on the initial frame of the sequence, based on grey
level co-occurrence entropy attribute. Point fea-
tures are thus rejected according to their grey level
structures. The experimental results on real images
of complex objects, textured or not, allowed to il-
lustrate, by using the criterion based on the global
residue, the contribution of our method with regard
to that of Shi-Tomasi-Kanade classically used. On
average, a gain about 10% on residues is obtained
thanks to the introduction of the entropy criterion.
Although the discussed algorithm do yield good re-
sults in most cases, some points localised on con-
tours are preserved and tracked without being sig-
nificant. A perspective of this work is thus to im-
prove the proposed method by making it less sen-
sitive to this kind of points. To alleviate in part
this problem, we plan to take into account, besides
the entropy criterion, information related to the gra-
dient of the image and therefore to eliminate such
points.
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Figure 1:Examples of frames from the sequence FP.
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a)

b)

Figure 2:a) Result of the multi-thresholding of the
first image. b) Image of the entropies of the co-
occurrences of the grey levels issued from the multi-
thresholding.

a)

b)

Figure 3: a) Result of extraction of the interest
points using eigenvalues criterion. b) Result of se-
lection of the interest points using entropy criterion
(only unmasked points will be tracked). Sequence
FP.

a)

b)

Figure 4:a) Tracking trajectories of the first classi-
fied interest points based on the eigenvalues sorting.
b) Selected points tracking trajectories. Sequence
FP.
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Figure 5: Evolution of global residues vs. frame
number. Sequence FP.

Meth. NbIni NbSel NbTrk PTP SR

EV 118 69 32 46 0.0719
ENT 118 69 36 52 0.0608

Table 1: NbIni: The number of points detected in
the initial image. NbSel: The number of selected
points. NbTrk: The number of points tracked along
all the sequence. PTP: Percentage of the tracked
points correctly. SR: Sum of normalised residues
on the final image. Sequence FP.
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Figure 6: Examples of frames from the sequence
FG.

a)

b)

Figure 7: a) Result of the detection of the interest
points using eigenvalues criterion. b) Result of se-
lection of the interest points using entropy criterion.
Sequence FG.

a)

b)

Figure 8:a) Tracking trajectories of the first classi-
fied interest points based on the eigenvalues sorting.
b) Selected points tracking trajectories. Sequence
FG.
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Figure 9: Evolution of global residues vs. frame
number. Sequence FG.

Meth. NbIni NbSel NbTrk PTP SR

EV 116 109 36 33 0.0445
ENT 116 109 48 44 0.0418

Table 2: NbIni: The number of points detected in
the initial image. NbSel: The number of selected
points. NbTrk: The number of points tracked along
all the sequence. PTP: Percentage of the points cor-
rectly tracked. SR: Sum of normalised residues on
the final image. Sequence FG.
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