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Abstract 

An optimal control problem is formulated for pressure regulating devices using a slow transient model (rigid 
water column) for water distribution networks.  Pipe flows and node heads are sought to (1) minimize deviations 
from pressure targets at pressure control valves and (2) to satisfy the slow transient state equations 
(conservation of mass and energy).  The continuous control variable is the degree of closing of pressure 
regulating devices ranging from zero (fully open) to one (closed).  The control variable time derivative is 
bounded as well.  As in conventional steady state analysis, it is possible to reduce the state equation system so 
that it is loop-based.  Sensitivity equations with respect to the control variable are derived from the state 
equations.  An efficient method is presented to numerically integrate these stiff ordinary differential equations in 
a coupled manner.  The control variables are then updated using Levenberg-Marquardt iterations.  Finally, 
feasibility of the method and efficiency of the proposed algorithm are proved on study cases and real networks. 
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1. INTRODUCTION 
 
Slow transient (or rigid column) has been recently introduced in contrast to fast transient (water hammer 
analysis). In slow transient, valves are opened or closed slowly and inertia terms in the state equations do not 
take into account of immediate system response. 
Next we provide a brief review of solution approaches to steady state without pressure control device.  Within 
the framework of a problem aimed at minimizing energy, Collins et al. [1] were the first to model the operation 
of a Water Distribution Network (WDN) for steady state analysis. Partially closed valves, small diameter pipes 
and overestimation of consumption lead to stiff numerical problems.  In these cases, a suitable stepsize [2] for 
the minimization of the objective function is required to prevent non-convergence of solutions.  Prior to this 
time, the path method [3], simultaneous path methods [4], the linear method [5] and simultaneous nodes methods 
[6] were primarily employed.  The major solution algorithms [7, 8] that derived from optimisation were found in 
the course of the following decade.  A synthesis and a definitive conclusion were stated in the mid 1990’s [9]. 
Nowadays, all the hydraulic software programs on the market or in public domain, include Pressure Regulating 
Devices (PRDs), but problems are nonetheless reported.  The three most common Control Valves are Pressure 
Sustaining Valves (PSVs), Pressure Reducing Valves (PRVs) and Flow Control Valves (FCVs).  Modelling such 
hydraulic devices using a discrete control problem formulation gives rise to numerical solution problems: 
searching for the states of the devices (open, closed, normal operation) can lead, even in simple configurations, 
either to problems of convergence or to incorrect solutions.  “Clearly, more research work is needed to develop 
improved algorithms for solving systems with multiple pressure regulating devices” [10].  Recently, two specific 
formulations have been proposed for steady state operation of the PRDs and PSVs.  The first one [11] adjusts the 
local head loss coefficients to satisfy the optimality of a least-squares problem where the residuals are the 
differences between the computed head and the head target.  The numerical procedure has to be completed by 
minimizing partial least-squares without open or closed control devices that satisfy the optimality conditions.  In 
a different manner, [12] have introduced a separate convex minimization problem for any pressure control 
device related to a set pressure node.  The control variables are the generated local head losses and the 
corresponding partial gradient is energy balancing between a reference head node and the set pressure node.  The 
necessary and sufficient optimality conditions for a Nash-Equilibrium are then simultaneously solved. 
Nevertheless, steady state analysis has some limitations because in reality WDNs usually present gradually 
varied flow due to water demand and/or tank level fluctuations, or due to slow valve or pump operation.  
Existing EPS hydraulic models are not able to accurately reproduce the impacts of these slow transient 
phenomena [13].  In rigid column or slow transient analysis the inertial forces are included while the 
compressibility effects of both the fluid and pipe walls are neglected.  A much larger time step can been used 
than in water hammer analysis and one and only one flow and tension can been defined for each pipe so that it 



results in fair computational efforts.  To support the last point, suitable graph theoretical tools can been 
introduced [14, 15]. 
A new algorithm is presenting for the solution of slow transient equations. Moreover, PRDs are incorporated in 
slow transient equations.  To authors knowledge this is the first attempt.  To keep the same graph for all the time 
of integration, the closure of valve is solved through a continuous formulation, a significant benefit for numerical 
calculation with respect to previous approach. 
In this paper, we first recall the slow transient hydraulic balancing equations and give our solution algorithm.  
Then, we indicate how to take the pressure regulating devices into account.  Next, we derive the sensitivity 
equations with respect to the control variable.  Finally, results are presented and commented. 
 
 
2. NETWORK EQUATIONS WITHOUT PRD 
 
We give a briefly review of the slow transient hydraulic equations that can be derived from local partial 
differential equation Saint-Venant conservative equations for water hammer analysis assuming the fluid 
incompressible [16].  A great advantage is that it is possible to define the same cross-sectional flow rate along 
the pipe.  Moreover, integrating the continuity equation on volumes surrounding nodes leads to Kirchoff’s 
current laws.  Similarly, by integrating momentum equation over the head between the start and the end node of 
a pipe and summing over loops or paths between head source nodes, results in Kirchoff’s voltage laws where the 
head losses play the role of the voltage drops. 
 
2.1 Slow transient mass and energy balancing 
 
The WDN is represented by a graph, i.e., a set of pipes (or links) and nodes (reservoirs, free surface tanks and 
junctions).  For each pipes , we search for the flow rate qi 1,..., a= i and, for each junction node  we 
search for the total head: h

j 1,..., n=

j.  The initial levels at free surface tanks hf(0) are known.  The full temporal profiles of 
head at the r resources nodes: hr(t) are also given (a constant value if a reservoir).  Likewise, demand dj at 
junction node j is considered as being known and a differentiable function of time. 
The problem of water network equilibrium consists of solving for q, hf, t and h in the system [15]: 
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where the overdot denotes time derivatives, A is the incidence matrix reduced to the junction nodes, tA the 
matrix transpose, Af (resp. Ar) the incidence matrix reduced to the free surface tank nodes (resp. to the reservoir 
nodes), Sf the inertia rate of tank is the diagonal matrix of tank cross-sectional area, L the inertia rate of pipes is 
the diagonal matrix defined by the pipe length divided by the product of the cross-sectional area and the 
acceleration of gravity, ξ(q) the vector of friction head loss through the pipes and t is a tension, drop of head 
through the pipes.  
The three first equations are linear and express conservation of mass and energy. The last, non-linear equation 
links head loss with flow.  
 
2.2 The slow transient state equation 
 
Finding a minimum spanning tree permits to define loop flow rate and to reduce the junction mass balance.  
Thus, previous algebro-differential system can be rewritten in a Cauchy problem form:  
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0with qc the loop flow rate vector, M0 the fundamental loop matrix,  the inertia rate of loops, and 
q
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d the flow rate gotten from the demands: d at junction nodes while making tree ascent.  System (1.1) consists of 
the minimum set of independent equations and constitutes the slow transient state equation. 
The head at junction nodes can be solved from the linear system: 
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There is no need to search for loops and paths between source nodes because M0 can be derived directly from the 
tree/cotree decomposition: 
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An example can be derived from Fig. 1.  J1 and J2 are two junction nodes.  Incidence matrices are independent 
of the states of valves (closed, open) and they reflect the structural link topology of the network.  Also closed 
valve links need not to be eliminated as it is done in [15]. 
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Fig. 1: example of slow transient formulation 
 

Local existence and uniqueness result from the continuity of the functions involved. Besides, we can globalize 
this existence because we work with bounded energy.  As a Lyapunov function that decreases strictly with the 
trajectory can be identified [14], steady state solutions are also globally asymptotically stable equilibrium points. 
 
2.3 Solution algorithm 
 
With an implicit scheme, perturbation of the systems could be observed with delay if the time step is too large.  
However, implicit schemes are unconditionally stable. That is the reason why semi-implicit methods have been 
preferred. 
We rewrite the system (1.1) as below: 
 Rx f (t, x)=  
Application of θ−scheme gives: 
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The first-order Taylor expansion around (tk , xk) is: 
  k 1 k 1 k k k k k 1 k k k
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We finally get the semi-implicit scheme: 
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This system can be solved in efficient manner with the same tips used in steady state cases: the matrix to inverse 
is very sparse and its structure is not time-dependant. 
Rosenbrock method [17] is a generalisation of Runge Kutta that uses the Newton method and solves four linear 
systems equivalent to the previous one.  To overcome numerical instabilities due to valve and pump operations 
and conditions (stiff phenomena), estimation of the truncating error between the third-order and fourth-order 
solutions controls the time step.  Compared to the well-known Runge Kutta Felhberg scheme, the Rosenbrock 
method is faster and more accurate for solving stiff problems. 
For numerical reasons, working in l/s rather than in m3/s improves the conditioning of the system since friction 
coefficients are smaller one million times. 
 
 
3. ADDING PRESSURE CONTROL VALVES 
 
Next, we propose a problem formulation to describe valve operation that is independent of the device state 
(open, closed or normal).  The solution algorithm uses equation system (1.1) to update the flows and the heads. 
 
3.1 Functions and applications of the Pressure Regulating Devices 
 



When required, the PRV operates to reduce pressure downstream from a pipe at higher pressure.  PRVs regulate 
multilevel networks, to supply a low service network from a high service network, to protect a delicate sector 
from dangerous pressure levels, to protect the installations in customer homes or to save water by lowering 
pressure etc.  In contrast, PSVs maintain pressure above a pre-set value upstream the device.  For example, they 
are used to raise hydraulic grade lines to allow supply to high-level sectors. 
We thus add a PRV (or a PSV) on a short link i with respect to a target pressure and therefore the piezometric 
head at the downstream end node: iD (or upstream end: iU, respectively): 

D D

max
i ih h≤  for the PRV or  for the PSV 

U U

min
i ih h≥

If S is the selection matrix of the s nodes with pressure settings, the complete set of constraints is written in 
matrix form: 

setSh h≤  
When in use, PRDs create a local head loss that depends on the status of the network, stabilizing the network as 
closely as possible to the selected values hset (set pressure + ground level).  It is therefore added to the friction 
loss ξ(q) for edges with PRDs: 
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where λi is a local head loss parameter with *
iλ  the dimensionless parameter in the local head loss  and 

φ

2*
i iV / 2gλ

i the diameter of the pipe i, ( i idiag q . qΛ = )  and Sq is the matrix for selecting the edges equipped with a PRD.  
To account for flow reversal, a check valve is added to prevent back-flow, otherwise a local head loss occurs. 
 
3.2 Least-squares minimization 
 
A separate non-linear least-squares problem is introduced for each PRD.  The optimal PRD state operation is 
found by minimizing the squared deviation from the PRD head target: 
 ( ) 21

i i set2 i
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i i

 minimize c ( )= Sh( ) h

subject to 0  primal feasibility (PF) condition

λ λ −

≤ λ ≤ λ

 (1.3) 

with  defined implicitly by the system (1.2) coupled with (1.1).  λh( )λ → λ max may be chosen to have all its 
components equal to 25,000,000 that corresponds to a local penalty head loss of 25m if the flow rate reaches 
0,001 l/s.  The existence of a global minimum is ensured by the continuity of c on a non-empty compact set 
(Weierstrass theorem).  Using previous example network, Fig.2 shows the dependence of c as a function of 
lambda for different PRV pressure settings: 
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Fig.2 : General form of criterion c(λ) to be minimised 

 
Note that the 3 curves are smooth, have no more than one minimum and no other extremum.  Thus, a gradient 
method is suitable to identify the optimal device state that minimizes problem (1.3).  With direct method, it is 
necessary to derive sensitivity equations: 
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This gives us the expression of the gradient of c: 
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We will now write the first order optimality conditions which lead to the Karush, Kuhn and Tucker equations:  
The objective function ci being C1,  inf inf
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For each PRD a separate least-squares problem is to be solved in parallel.  This idea meet the one of [12] but 
with different objective functions. We do not need to define s paths between a reference node and the s head 
targets. 
 
3.3 Choice of a solution algorithm 
 
The solution method used is a slight modification (projection method) of the Levenberg-Marquardt algorithm 
described in [9], which accounts for all the constraints. The iteration formula is as follows: 

 ( ) ( )1
k 1 k t t t k

k k k k k s k setJ J e diag J .J I J Sh( ) h
−
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where  and ek k
k iJ diag[J (x , )], i 1,...,s= λ = k is the damping factor.  The value of ek is increased if the primal 

feasibility conditions (PF) are not respected, if tJk.Jk is an ill-conditioned matrix or if there is no descent.  The 
state sensitivity equations (1.4) are solved using the same algorithm for the state equations: the matrix to inverse 
and the linear systems being unchanged. 
 
 
4. RESULTS 
 
For illustration, we will first consider the simple example network in Figure 3 proposed by [10]. 
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Fig 3: Illustrative example 

 
The ground levels in J1 and J2 are null. The target head at node J2 is 35m. The initial level of water in the tank is 
2 m. As a result, the tank has to fill up to 35m to meet this target. The PRV that was initially active closes itself 
at the end of 8h50mn. We started from initial steady state conditions. The flow rate in the PRV decreases from 
322 l/s to 0.001 l/s and the PRV local head loss raise from 20 m to 25m.  An interesting result is that working in 
l/s and choosing a sufficiently large head loss coefficient (from 250,000 to 250 millions) is a good trade off 
between numerical accuracy of the solution and the well conditioning of the system.  The algorithm was tested 
on several dozen-test sets and more experiment results will be later presented. 
 
 
5. CONCLUSIONS AND PERPECTIVES 
 
We have presented hydraulic modelling of pressure control devices in slow transient.  The control variable is the 
local head loss coefficient produced by the PRD.  A least-squares problem to minimize deviation between 



predicted and target head is proposed to identify the state of each control device.  Equal importance is given to 
each objective function. 
Loop flow rates and heads at free surface tanks constitute the state vector.  In contrast to previous model 
formulation, here the incidence matrices are considered independent of time; this is a significant benefit for the 
numerical efforts necessary to identify the state vector.  Moreover, incidence matrices remain constant also when 
valves are closed.  This result is obtained by giving a continuous penalty to local head losses. 
The solution algorithm for the state equation is a three order method of Newton type with time step control.  The 
sensitivity equations are solved with the same algorithm in a parallel manner to update the gradients of the 
objective functions. A direct descent method of Levenberg-Marquard type is used. 
An attractive perspective for future work is to include pressure driven models that account for water 
consumption decrease at nodes with insufficient pressure. 
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