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Modeling and optimal control for production-regeneration systems
- preliminary results -

Farouk Aichouche1,4, Nesrine Kalboussi2, Alain Rapaport3 and Jérôme Harmand1

Abstract— This work presents a general model for production
- regeneration systems, alternating two functioning modes, the
first one as a production process while the second one regener-
ates the process performances. Such systems are quite common
in industry: they include for instance filtration/backwash of
membranes, discharge/charge of accumulators. Basically, in
these systems the sequence of production/regeneration over time
cycles is the manipulating variable. A simple mathematical
model involving a single explanatory “hidden variable” to
capture the dynamic behavior of the process in both function-
ing modes is designed. Based on the Pontryagin’s Maximum
Principle, we characterize the optimal control strategy for a
given criterion minimizing the energy consumption under a
constraint on the performances.

I. INTRODUCTION

Many systems in industry require alternating “produc-
tion” and “regeneration”, or “recovering” and “maintenance”
modes. It is for example the case of membrane or accumula-
tor systems. During the membrane filtration, the matter is ac-
cumulated until a occurring fouling phenomenon. After that,
since it is necessary to remove this matter, a regeneration
process of the membrane called ”backwash phase” is used
[1], [2]. Practically, the mass of matter accumulated onto the
membrane surface can be measured online, and this variable
could be chosen to describe the state of the membrane
process in models [3]. In discharge/charge systems, the
available energy depends on the quantity of energy stored
either electro-chemically, hydraulically (or electro-statically).
When the available energy goes down a given threshold, the
system has to be recharged. In this case, the variable that
best describes the state of the accumulator is the quantity of
energy stored (typically a force or an available voltage). In
both cases, the state of the system can be described by a sin-
gle variable that changes monotonously with time: the mass
of matter attached onto the membrane or the force (e.g. the
voltage) continuously increase during the production phase.
Then, during the regeneration or maintenance phase - which
also consumes energy and makes the system unavailable for
production - the state of the system monotonously decreases
(the mass attached onto the membrane or the inverse of the
available voltage or force). However, for certain systems
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such as electric ones, the two phases could be operated
simultaneously, as a convex combination of the dynamics of
each phase. We address the control problem which consists
in fixing a given performance to be attained (for instance a
quantity of fluid to be filtered or a quantity of energy to be
used for producing a good), the control variable being the
sequence of production/regeneration cycles over time. Notice
that there exists necessarily a trade-off between the times
spent in production in regeneration phases: the time spent
in the production phase brings us closer to our production
goal. However, greater the time spent in production lower
the efficiency of the process, thus necessitating to switch
to the regeneration phase at certain instants. Therefore we
shall look for control strategies minimizing the total energy
required to attain the target. Such problems have been solved
but for maximizing the net water production of a mem-
brane filtration system over a fixed time horizon [5] or the
optimal energy management strategies of charge/discharge
accumulators [6]. In the present work, the generic modeling
of such systems is introduced, and a different cost function
where a minimization of energy consumption is considered,
once the level of production is fixed. In the literature of
production/regeneration systems, the total production with a
final constraint - or with free end time was already considered
[5], [6]. The paper is organized as follows. First, model
and general assumptions are presented leading to an optimal
control problem. Then, we apply the Pontryagin’s Maxi-
mum Principle (PMP), and discuss about singular arc and
switching curve for the control synthesis. Finally, a numerical
application is presented and discussed before conclusions and
perspectives are given.

II. MODELING AND PRELIMINARIES

Let x(t) be a variable describing the state of the process
at time t - for instance the mass of the membrane deposit
during the water filtration or the inverse of available voltage
at both terminals of a battery. During the production phase,
we can assume that x(t) is growing according to a dynamics
ẋ = fp(x). During the regeneration phase, this dynamics is
reversed according to a dynamics ẋ = − fr(x). We consider
a control u(t) that takes values 1 during production and −1
during regeneration (or in [−1,1] if a combination of both
modes is possible). Then, the controlled dynamics can be
written as follows:

ẋ =
1+u

2
fp(x)−

1−u
2

fr(x), x(0) = x0. (1)



For convenience, we define:

f+(x) =
fp(x)+ fr(x)

2
, f−(x) =

fp(x)− fr(x)
2

Equation (1) can be written as:

ẋ = f−(x)+u f+(x), x(0) = x0. (2)

Let us assume that the total energy demand is the sum of
the energy needed during the production phase and the one
required for regeneration: it is given by a function ET that
depends on x(t), such that:

ET (x0,u(·))=
∫ t f

0

(
1+u(t)

2
lp(x(t))+

1−u(t)
2

lr(x(t)
)

dt

(3)
where lp and lr are the energies per unit of time required
respectively for the production and the the regeneration.
It is further assumed that the energy needed for production
or regeneration is proportional to a flux (more generally a
quantity of something over a period of time) over an entity
playing the role of a “resistance”. The functions lp and lr
can then be expressed as:

lp(x) = Qpτp(x), lr(x) = QRτr(x) (4)

where Qp and Qr are typically (constant) fluxes while the
functions describing the way that the state affects production
and regeneration phases are τp(·) and τr(·), respectively.
One usually considers that the regeneration speed is higher
than the wear or fouling speed. This amounts to require the
following assumption.

Assumption 2.1: One has f ′r(x)> f ′p(x) for any x > 0.

For convenience, we define:

l+(x) =
lp(x)+ lr(x)

2
, l−(x) =

lp(x)− lr(x)
2

Then, equation (3) can be simply written as:

ET (x0,u(·)) =
∫ t f

0
(l+(x(t))+u(t) l−(x(t)))dt (5)

Given an initial state x0 ≥ 0, the objective is to determine an
optimal strategy u(·) that takes values −1 or 1 for minimizing
ET (x0,u(·)) for a given total production p∗.
The process stops at the first time t f for which the target is
reached: p(t f ) = p∗, where the production p(t) at time t is
given by

p(t) =
∫ t

0

(
1+u(t)

2
Qp−

1−u(t)
2

Qr

)
dt (6)

The production dynamics is then

ṗ =
1+u

2
Qp−

1−u
2

Qr, p(0)< p? (7)

For convenience, we define:

Q+ =
Qp +Qr

2
, Q− =

Qp−Qr

2
Equation (7) can be written as:

ṗ = Q−+uQ+, p(0)< p? (8)

To summarize, we consider the following optimal control
problem:

inf
u(·)

∫ t f

0
(l+(x(t))+u(t)l−(x(t)))dt subject to

{
ẋ = f−(x)+u f+(x), x(0) = x0
ṗ = Q−+u Q+, p(0) = p0

u ∈ [−1,1]

where t f is the first entry time in the target

T = {(x, p) s.t. p≥ p?}

Remark 2.1: As one has Q+ > 0 and Q+ > Q−, the target
can be reached in finite time, taking for instance the control
u = 1 at any time. However, it is well known from the
theory of optimal control that the existence of an optimal
trajectory can be guaranteed when the velocity set is convex.
Therefore, we shall consider for the mathematical analysis
that the control u(·) can take values in the interval [−1,1].
The question of practical applicability of a control that
takes values different to −1 and 1 relies then on bang-bang
approximations.

When a membrane operates in filtration, the flow resis-
tance is never null and increases according to the mass
x formed on the membrane surface, which subsequently
decreases the permeate flux. Thus, we assume that the rate
fp at which the mass of material adheres to the membrane
surface during filtration is a positive decreasing function.
When changing to backwash operation, the mass is de-
composed and the membrane’s permeability increases again.
Therefore, the mass detachment can be described by a
positive increasing function fr.

For simplicity, we consider in this study the simple ex-
pressions of the functions fp, fr, lp, lr:

fp(x) =−apx+bp, fr(x) = arx
lp(x) = cpx+dp, lr = crx+dr

(9)

where ap, bp, ar, cp, dp, cr, dr are non negative param-
eters such that the functions fp, fr, lp, lr are not identi-
cally null. One can straightforwardly check that the domain
{(x, p) s.t. x > 0} is invariant by the dynamics (2) whatever
is the control law u(·). Assumption 2.1 is fulfilled when one
has

ar > ap (10)

Notice that the interval (0,xmax) with

xmax =
bp

ap
(+∞ if ap = 0)

is invariant by the dynamics (1) and that p(·) is increasing
whatever is the control. Therefore the domain

D = [0,xmax]× [0, p?)

is invariant and we shall consider initial conditions (x0, p0)
in the domain D only.



III. APPLICATION OF THE MAXIMUM PRINCIPLE

Let us first introduce the Hamiltonian of the system:

H(x,λx,λp,u) = λx[ f−(x)+u f+(x)]
+λp[Q−+uQ+]+λ0[l+(x)+u l−(x)]

(11)

where λ0 is equal to −1 or 0. The PMP states that for any
optimal solution u?(·) there exists adjoint variables λx(·),
λp(·) solutions of the adjoint system{

λ̇x(t) =−∂xH(x(t),λx(t),λp(t),u?(t))
λ̇p(t) =−∂pH(x(t),λx(t),λp(t),u?(t))

where u?(t) maximizes u 7→H(x(t),λx(t),λp(t),u) at almost
any t ∈ [0, t f ], with the transversality conditions(

λx(t f )
λp(t f )

)
∈ −NT (x(t f ), p(t f ))

(where NT denotes the normal cone to the set T ). Moreover,
the vector (λx(·),λp(·),λ0) is not identically null and one has

H̄(t) = max
u∈[−1,1]

H(x(t),λx(t),λp(t),u) = 0, t ∈ [0, t f ] (12)

(see for instance [4]). Here, the adjoint equations are

λ̇x =−λx f ′−(x)−λ0l′+(x)−u?
(
λx f ′+(x)+λ0l′−(x)

)
(13)

λ̇p = 0 (14)

with the transversality conditions

λx(t f ) = 0, λp(t f )≥ 0 (15)

From (11), we define the switching function

φ(t) = λx(t) f+(x(t))+λpQ++λ0l−(x(t)) (16)

which gives the following maximization condition

u?(t) =
{

1 when φ(t)> 0
−1 when φ(t)< 0 a.e. t ∈ [0, t f ] (17)

We begin by a Lemma about λ0 and λp.

Lemma 3.1: For any optimal solution, one has the follow-
ing properties

i. λ0 =−1 i.e. there does not exist abnormal extremal,
ii. there exists t̄ < t f such that u?(t) = 1 is optimal for

t ∈ [t̄, t f ],
iii. λp is a positive constant.

Proof: i. If λ0 = 0, the solution λx(·) of (13) for the
terminal condition (15) is identically equal to zero. Then, λp
is non null and the Hamiltonian is constant equal to λp(Q−+
Q+) which contradicts (12).

ii. At terminal time, the terminal conditions (15) give
φ(t f ) = λpQ+ − l−(x(t f )), where λp is non negative and
l−(x(t f ) is negative under Assumption 2.1. Therefore φ(t f )>
0 and by continuity of φ(·), we conclude from (17) that there
exists t̄ < t f such that u?(t) = 1 is optimal for t ∈ [t̄, t f ].

iii. If λp=0, consider the optimal control u?(t) = 1 for
t ∈ [t̄, t f ]. On this time interval one has then

H(x(t),λx(t),λp,u?(t)) =
λx(t)( f−(x(t))+ f+(x(t)))− (l+(x(t))+ l−(x(t)))

which is a continuous function of t. The terminal conditions
(15) give then H(t f ) =−(l+(x(t f ))+ l−(x(t f )))< 0. There-
fore condition (12) is violated on [t̄, t f ].

We focus now on the study of singular arcs, locus for
which φ is null on a time interval of non null measure.

IV. SINGULAR ARCS

For simplicity we drop the time dependency:

ẋ =
−(ap +ar)x+bp

2
+u

(−ap +ar)x+bp

2

λ̇x = λx
ap +ar

2
+

cp + cr

2
+u
(

ap−ar

2
λx +

cp− cr

2

)
φ = λx

(ar−ap)x+bp

2
+λpQ++

(cr− cp)x−dp +dr

2

H = λx
−(aP +ar)x+bp

2
+λpQ−−

(cp + cr)x+dp +dr

2
+uφ

Conditions φ = 0 and H = 0 give together the system of
two equations in (λx,λv):{

((ar−ap)x+bp)λx +2Q+λp = (cp− cr)x+dp−dr
(−(aP +ar)x+bp)λx +2Q−λp = (cp + cr)x+dp +dr

(18)
Its discriminant ∆(x) is given by the following expression

∆(x) = (apQr +arQp)x−bpQr

which is null for the particular value

x̄∆ =
bpQr

apQr +arQp

If φ is null when x 6= x̄∆, the system (18) admits an unique
solution, for which a direct computation gives

λ̄x(x) =
Px(x)
∆(x)

, λ̄p(x) =
Pp(x)
∆(x)

(19)

with{
Px(x) =−(cpQr + crQp)x− (dpQr +drQp)

Pp(x) = (arcp−apcr)x2 +(ardp−apdr +bpcr)x+bpdr

As λp is constant along any optimal trajectory, we deduce
that φ can be null only at isolated values x̄, positive roots of
the polynomial

Pp(x)−λp∆(x) = 0

In any case, a singular arc is possible only for constant values
of x equal to x̄∆ or x̄ with ∆(x̄) 6= 0. Then, the corresponding
value of the control for the trajectory to stay at x = x̄ is

ū =− f−(x̄)
f+(x̄)

=
−(ap +ar)x̄+bp

(ar−ap)x̄+bp
(20)

A straightforward computation gives

φ̇ =
1
2
(arbpλx +(arcp−apcr)x+bpcr) (21)

that we write using the expression of φ as follows:

φ̇ =
arbp

(ar−ap)x+bp
φ +ψ(x,λp) (22)



where the function ψ has the expression

ψ(x,λp) =
1
2

M(x,λp)

(ar−ap)x+bp
with

M(x,λp) = (ap−ar)(apcr−arcp)x2−2(apcr−arcp)bpx
+arbp(dp−dr−2λpQ+)+b2

pcr

Notice from condition (10) that the denominator in expres-
sion (22) is always positive and thus ψ is well defined.
Therefore a singular arc x = x̄ with x 6= x̄∆ has to satisfy

Γ(x̄) = ψ(x̄, λ̄p(x̄)) = 0 (23)

Finally, a straightforward but lengthy computation (verified
with Maple) gives the following expression of Γ

Γ(x) =−1
2

N(x)
∆(x)

with

N(x) =−(arcp−apcr)
[
(apQr +arQp)x2−2bpQrx

]
+arbp(dpQr +drQp)+b2

pcrQr

Consequently, a singular arc x = x̄ with x̄ 6= x̄∆ is a root of N.
We consider that the case for which x̄∆ could be also a root
of N is non generic. Notice that the signs of the coefficients
of the polynomial N ensures that when real roots exists, at
least one is positive. Moreover, when the condition

arcp−apcr > 0 (24)

is fulfilled, there is exactly one positive root given by

x̄ =
bpQr +

√
b2

pQ2
r +

arbp(dpQr+drQp)+b2
pcrQr

arcp−apcr

apQr +arQp
(25)

However, accordingly to Lemma 3.1.iii, an arc x = x̄ can be
part of an optimal solution only if its corresponding adjoint
λ̄p(x̄), given by expression (19), is positive.

Consider for any root x̄ of N with λp(x̄)> 0 the function

γx̄(x) = ψ(x,λp(x̄)) (26)

Let us show that if it is non increasing in the neighborhood
of x̄, then the arc x = x̄ cannot belong to an optimal solution.
Indeed, if x = x̄ is reached from below at a time ts < t f , then
u(t) = 1 is optimal on any time interval (ts− δ , tc) with δ

sufficiently enough, and therefore φ has to be positive for
δ small enough (as the locus where φ can change its sign
are isolated). An another hand, γx̄ non increasing implies
that for δ small enough γx̄ is non negative on (ts− δ , ts).
This implies from (21) that φ cannot decrease on the interval
(ts−δ , ts) and therefore cannot change its sign at t̄. A similar
argumentation applies if x = x̄ is reached from above.

Consider now the candidate singular arc x = x̄∆. Substi-
tuting this value in (21) for φ̇ = 0 gives the corresponding
value of λx, and then φ = 0 provides the value of λp:

λ̄x(x∆) =−
cpQr + crQp

apQr +arQp

λ̄p(x∆) =−
C

(apQr +arQp)2(Qp +Qr)

with C = ar(ar(dr−dp)−bpcr)Q2
p

+2ar(ap(dr−dp)−bpcp)QpQr
+(a2

p(dr−dp)+(apcr− cp(ap +ar))bp)Q2
r

(27)

Therefore, if the number C is positive, the arc x = x∆ cannot
be part of an optimal solution.

Notice that generically, roots of N and x∆ have different
values of λ̄p(x̄). Therefore, an optimal solution cannot have
more than one singular arc. Notice also that as u(t) = 1 is
optimal on the interval [t̄, t f ] (cf Lemma 3.1.iii) and H̄ is null
at any time, this imposes the final state x̄ f = x(t f ) to satisfy
the condition λpQp− lp(x̄ f ) = 0, that is

x̄ f =
λp(x̄)Qp−dp

cp

Finally, if an optimal solution possesses a singular arc, this
imposes that the singular arc is left with p = p̄ such that

p̄ = p?−Qp

∫ x̄ f

x̄

dx
fp(x)

= p?−


Qp

ap
log
(
−apx̄+bp

−apx̄ f +bp

)
if ap > 0

Qp

bp

(
x̄ f − x̄

)
if ap = 0

(28)

V. SWITCHING CURVE

We know from Lemma 3.1 that for any optimal solution,
the control u(t)= 1 is optimal on an interval [t̄, t f ]. Therefore,
for each possible terminal state x f in [0,xmax], one can
determine in backward time the possible locus in the (p,x)
plane where the switching function φ changes its sign (if this
happens). This defines a curve C (when it exists), where an
optimal control switches from −1 to 1 or from ū to 1 (when
x = x̄ is a singular arc). We characterize this curve.

For the control u = 1, one has

ẋ =−apx+b, ṗ = Qp and

H = λx(−apx+b)+λpQp− cpx−dp

For x f = x(t f ) one can determine from H = 0 and the
terminal condition λx(t f ) = 0 the value of the constant λp
as a function of x f :

λ
†
p (x f ) =

cpx f +dp

Qp

From H = 0, the adjoint λx can be determined as a function
of x f and x (as long as the switching function is positive):

λ
†
x (x f ,x) =−

cp(x f − x)
bp−apx

Then, the switching function φ can be also expressed as a
function of x f and x:

φ †(x f ,x) = 1
2Qp(apx−bp)

(apcr−arcp)Qpx2

+(cp(apQr +arQp)x f +ap(drQp +dpQr)−bpcrQp)x
−bp(cpQrx f +dpQr +drQp)



Consider then the root xc of the polynomial x 7→ φ(x f ,x)
which is the closest to x f (if it exists). It corresponds to the
value of x where the function φ changes it sign for the first
backward time. The corresponding value of p is then

pc = p?−


Qp

ap
log
(
−apxc +bp

−apx f +bp

)
if ap > 0

Qp

bp

(
x f − xc

)
if ap = 0

(29)

and (pc,xc) belongs then to C . Therefore, the curve C (if it
exists) can be parameterized by the final value x f .

Lemma 5.1: The curve C (when it exists) is such that
1) x f 7→ xc is increasing,
2) limx f→xmax xc(t f ) = xmax

Proof: 1) If x f 7→ xc is not increasing, there exists
x f2 > x f1 such that xc(x f2)≤ xc(x f1). As the trajectories of the
dynamics with u =+1 cannot cross in the (p,x) plane, one
has necessarily pc(x f2) < pc(x f1). Then, the trajectory with
u = −1 reaching the switching point (pc(x f1),xc(x f1)) has
to cross the trajectory joining (pc(x f1),xc(x f1)) to (p?,x f 2)
with u = 1, that is in contradiction with the definition of C .
2) As x f 7→ xc is increasing, there exists a limit x̄c of xc when
x f tends to xmax (which is less or equal to xmax). Let p̄c be
the corresponding value of pc. If x̄c < xmax, consider then
the trajectory in the (p,x) plane that arrives to (p̄c, x̄c) with
the control u =−1 and leave (p̄c, x̄c) with u = 1. As one has
ẋ< 0 wit u=−1 and ẋ> 0 with u= 1, this trajectory belongs
to the subset {(p,x), x ≥ x̄c}. At any point (p,x) which is
above this trajectory, the control u = −1 cannot be optimal
because then it has to switch to u = 1 outside C . Therefore,
the trajectory that arrives to (p̄c, x̄c) with the control u =−1
is a locus of commutation with x > x̄c, which contradicts
x̄c < xmax.

When a singular arc x = x̄ is optimal, (p̄, x̄) necessarily
belongs to C . Therefore the curve C exists and is parame-
terized by x f . It can be determined by continuation, x f 7→ xc
being solution of the Cauchy problem

dxc

dx f
=−

∂x f φ †(x f ,xc)

∂xφ †(x f ,xc)
, xc(x̄ f ) = x̄

for x f ≥ x̄ f . Computation gives the following expression

dxc

dx f
=

A1xc +B1

A2xc−A1x f +B2

with the parameters

A1 =−cp(apQr +arQp), B1 = bpcpQr
A2 = 2(apcr−arcp)Qp, B2 = ap(drQp +dpQr)−bpcrQp

One can easily check that the solution is given by

xc = x̄ +
A1x f−B2−A2x̄

A2
+

√
(A1x f−B2−A2x̄)2+2 A2(A1x̄−B1)(x f−x̄ f )

A2

(30)

The curve C can be then determined by expressions (29) and
(30) for x f ∈ [x̄ f ,xmax), accordingly to Lemma 5.1.

VI. OPTIMAL SYNTHESIS

We assume that there exists a single candidate singular
arc, which seems to be realistic situations as illustrated in
Section VII. Indeed, the absence of singular arc appears to be
degenerate cases, with no trade-off between production and
regeneration. Having several singular arcs imposes strong
conditions on the parameters, which seem unrealistic.

Assumption 6.1: There exists an unique x̄ among x̄δ and
the roots of N that belongs to (0,xmax) with ū∈ [−1,1], such
that λ̄p(x̄)> 0 and γx̄(·) is increasing on (0,xmax).

In particular, this assumption is fulfilled when:
• C given in (27) is positive,
• condition (24) is fulfilled and x̄ given in (25) satisfies

x̄ < xmax and λ̄p(x̄)> 0, where λ̄p(·) is given in (19),
• ū defined in (20) belongs to (0,1),
• γx̄(·) defined in (26) is increasing on (0,xmax).

Proposition 6.1: Under Assumption 6.1, define the fol-
lowing partition of the domain D :

S = {x̄}× [0, p̄] (where p̄ is given by (28))
D− = {(x, p) ∈D , x≤ xc(x f ), x f ∈ (x̄ f ,xmax]}
D+ = D \ (D ∪S )

(31)

Then, the following feedback control is optimal.

u(x, p) =

+1, (x, p) ∈D+

ū, (x, p) ∈S (where ū is given by (20))
−1, (x, p) ∈D−

(32)

Proof: At (x, p) where φ = 0, λp = λ̄p(x) given in (19)
and has to be positive (Lemma 3.1). ψ(x, p) is given by Γ(x)
defined in (23). As we have assumed that N has only one
root with positive λ̄p, we deduce that ψ is not null when
x 6= x̄. The sign of Γ for x 6= x̄ has to be the same than γx̄
(otherwise by continuity another root would exist), that is
negative for x < x̄ and positive for x > x̄. From (22), the
following properties are then satisfied.
• φ = 0 with x < x̄⇒ φ̇ < 0. φ can change its sign only

when decreasing. Only switch from u = 1 to u = −1
can be optimal in the sub-domain {x < x̄}.

• φ = 0 with x > x̄⇒ φ̇ > 0. φ can change its sign only
when increasing. Only a switch from u = −1 to u = 1
can be optimal in the sub-domain {x > x̄}.

Consider an initial condition with x0 < x̄. The control u=−1
makes x(·) decreasing, remaining in {x < x̄} and then cannot
switch to reach the target with u =+1, which contradicts its
optimality (Lemma 3.1). We deduce that u=+1 is optimal at
any x < x̄. If the initial condition belongs to D+ with x0 ≥ x̄,
none of the solutions with u =+1 or u =−1 reaches a locus
of commutation S or C . Therefore, u =+1 is optimal until
t f . So, u =+1 is optimal when the state belongs to D+.
Consider now an initial condition in D−. The optimal control
has to switch. Otherwise, it will be equal to +1 and as x(·)
with u =+1 is increasing, it will have to cross the switching
curve C . So u =−1 is optimal until the trajectory reaches C
(and then enters the sub-domain D−) or reaches S . u =−1



is thus optimal when the state belongs to D−.
Finally, when an optimal trajectory reaches S from below
or from above, it has to stay on S with the control ū until it
exits S . If not, it leaves S either with u=−1 and enters the
sub-domain D+ (but we have proved that u =+1 is optimal
on this domain), either with u = 1 and enters the sub-domain
D− (and u =− is optimal on this domain).

VII. APPLICATION

We consider a filtration system and give the complete
synthesis with the construction of the switching curve given
in Section V. It is usually assumed that the transmembrane
pressure (TMP) τp and τr during filtration and backwash are
positive functions obtained Darcy’s law, as:

τp(x) =
Qp

A
µ Rtot(x), τr(x) =

Qr

A
µ Rtot(x) (33)

with Qp and Qr are the filtration and the backwash flow
rates, respectively, and A the membrane area. Practically the
backwash flow rate is considered higher or equal to the
filtration rate. Then, one can write Qr = c Qp with c > 1.
Parameters values are given in Table VII.

ap bp cp dp cr dr Qp Qr p∗

0 1 0.16 3 0.64 12 1 2 50

Assumption 2.1 is clearly fulfilled on (0,+∞). The dis-
criminant ∆(x) of system (18) is given by

∆(x) = 0.5 x−2

and null for x̄∆ = 4. A straightforward computation gives
λ̄p(x∆) =−1.75 < 0. From Assumption 6.1 we conclude that
x∆ can not be a candidate singular arc. Moreover, one has:

N(x) =−0.04 x2 +0.32 x+10.2

which can have two changes of sign at x̄− = −12.5 and
x̄+ = 20.5. x̄+ = 20.5 is the unique singular arc in D with
ū = −0.82 ∈ [−1,1] such that λ̄p(x̄) = 10.75 > 0. γx̄(·) is
increasing on (0,+∞) according to its expression

γx̄(x) =
0.04 x2 +0.16 x+20

x+2

The singular arc is left for p̄ = 22 and x̄ f = 48.44. The
criterion value to obtain the production p∗ in minimum time
is then equal to ET = 420 Wh. The curve C is given by

xc = 0.5x f −3.75−6.25
√

0.0064 x2
f −0.2 x f −5.4

(34)
Figure 1 illustrates the optimal feedback synthesis.

Fig. 1. Optimal synthesis for the considered parameters in the (p,x) plane.
The singular arc is in green and the switching curve in yellow.

VIII. CONCLUSION

We have proposed a methodology to determine an optimal
feedback synthesis. This synthesis looks similar to the one
of filtration problems with fixed terminal time [5], but the
determination of the singular arc is here much more complex,
requiring the consideration of the auxiliary functions ∆, Γ, λ̄p
and γx̄. For linear dynamics, this leads to explicit polynomials
whose coefficients can be determined analytically from the
parameters of the problem. A future work will investigate
extensions of the results to more general classes of dynamics.
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