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Robust feedforward boundary control of hyperbolic conservation laws

Xavier Litrico, Vincent Fromion and Gérard Scorletti

Abstract— The paper proposes a feedforward boundary con-
trol to reject measured disturbances for systems modelled by
hyperbolic partial differential equations obtained from conser-
vation laws. The controller design is based on frequency domain
methods. Perfect rejection of measured perturbations at one
boundary is obtained by controlling the other boundary. This
result is then extended to design robust open-loop controller
when the model of the system is not perfectly known, e.g. in high
frequencies. Frequency domain comparisons and time-domain
simulations illustrates the good performance of the feedforward
boundary controller.

I. INTRODUCTION

In this paper, we consider the control of plants whose
models are hyperbolic partial differential equations obtained
from conservation laws, with an independent time variable
t ∈ [0,+∞) and an independent space variable on a finite
interval x ∈ [0, L]. We focus on the design of a feedforward
control law in order to reject measured disturbances using
boundary control.

The motivation of this work is related to the problem of
controlling an open-channel around a given regime, repre-
sented by linearized Saint-Venant equations. These hyper-
bolic partial differential equations describe the dynamics of
open-channel hydraulic systems assuming one dimensional
flow. This open-loop control problem was first considered in
[1], where the authors used a Riemann invariants approach to
derive an explicit expression for the open-loop control. The
proposed method is however restricted to specific hyperbolic
plants corresponding to horizontal frictionless channels.

There are numerous publications related to the design
of open-loop controllers for open-channel systems. Most of
them are based on simple approximate formulations, see e.g.
[9], [2] and references therein.

We use in this paper a frequency domain approach, which
enables to extend the results of [1] to the case of canal
pools with nonzero slope and friction, and arbitrary uniform
geometry (not necessarily rectangular). We design the feed-
forward compensator that perfectly reject the perturbation.
Since the obtained compensator is actually an irrational
transfer function, we propose and compare various rational
approximations. We also investigate how to design a rational
precompensator by explicitly considering the plant uncertain-
ties, that is, a robust feedforward boundary controller.
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The proposed feedforward control is tested in simulation
for an open-channel described by linearized Saint-Venant
equations where the upstream discharge is the disturbance
and the control variable is the downstream discharge.

II. CONTROL PROBLEM STATEMENT

We consider a plant modelled by an hyperbolic partial
differential equations obtained from conservation laws:

∂ξ

∂t
+

(
0 1

αβ α − β

)
∂ξ

∂x
+

(
0 0
−γ δ

)
ξ = 0 (1)

where t and x are the two independent variables: a time
variable t ∈ [0,+∞) and a space variable x ∈ [0, L] on
a finite interval, ξ(t, x) = (h(t, x), q(t, x))T : [0,+∞) ×
[0, L] → Ω ∈ R

2 is the state of the system; α > β > 0,
γ ≥ 0 and δ ≥ 0 are positive real scalars.

The two equations of system (1) can be interpreted as a
mass conservation law with h the conserved quantity and q
the flux. The second equation can then be interpreted as a
momentum conservation law.

We consider the solutions of the Cauchy problem for the
system (1) over [0,+∞) × [0, L] under an initial condition
ξ(0, x), x ∈ [0, L] and two boundary conditions of the form
q(t, 0) = q0(t) and q(t, L) = qL(t), t ∈ [0,+∞).

We assume that the input boundary condition at x = 0
q(t, 0) is a measured disturbance on the system and that
the input boundary condition at x = L q(t, L) is the
control variable. The control objective is therefore to design
a feedforward boundary controller such that the boundary
output variable h(t, L) remains close to 0. We first discuss
the perfect rejection (h(t, L) = 0) with the model assumed
perfectly known in section III (the feedforward control
problem). As the proposed controller is actually irrational, its
approximation by a rational transfer function is discussed. In
section IV, we no longer assume that the model is perfectly
known (uncertain plant). In this case, we investigate how
to design a rational compensator (the robust feedforward
control problem).

III. FEEDFORWARD CONTROL DESIGN

We first compute the input-output transfer matrix of the
system, and then derive the exact feedforward controller.
The obtained controller, which is infinite dimensional is then
decomposed in simple elements.

A. Input-output transfer matrix

The open-loop transfer matrix of the plant can be obtained
by applying Laplace transform to the linear partial differen-
tial equations (1), and solving the resulting system of Ordi-
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nary Differential Equations in the variable x, parameterized
by the Laplace variable s [6].

The downstream water level is then related to upstream
and downstream discharges as follows:

h(s, L) = G(s)q(s, 0) + G̃(s)q(s, L) (2)

with

G(s) =
(λ2(s) − λ1(s))e

(λ1(s)+λ2(s))L

s
(
eλ2(s)L − eλ1(s)L

) (3)

G̃(s) =
λ1(s)e

λ1(s)L − λ2(s)e
λ2(s)L

s
(
eλ2(s)L − eλ1(s)L

) (4)

and where the eigenvalues λ1(s) and λ2(s) are given by, for
i = 1, 2:

λi(s) =
(α − β)s + γ + (−1)i

√
d(s)

2αβ
(5)

and d(s) = (α + β)2s2 + 2[(α − β)γ + 2αβδ]s + γ2.
This irrational transfer function model (2) gives the fre-

quency domain input-output behavior of the linear hyperbolic
system (1) subject to the specified boundary inputs.

B. Feedforward controller design

1) A naive approach: Using Eq. (2), it is easy to see that
an perfect rejection of disturbances provoked by q(s, 0) can
be achieved by specifying q(s, L) as follows:

q(s, L) = KF (s)q(s, 0) (6)

with

KF (s) = −G(s)

G̃(s)
=

(λ2(s) − λ1(s))e
(λ1(s)+λ2(s))L

λ2(s)eλ2(s)L − λ1(s)eλ1(s)L
. (7)

KF (s) is an irrational controller which is stable. For its
implementation, a rational approximation has to be com-
puted.

2) Some practical remarks: In practice, since the system
is marginally stable (it contains an integrator), it is not
advised to design the open-loop controller represented by
eq. (7) and implement it with eq. (6). Indeed, since the
system is open-loop marginally stable, any perturbation will
destabilize it. Therefore, it is necessary to first stabilize the
system with a feedback controller and then to design the
open-loop controller for the closed-loop system.

To this purpose, let us assume that the system is stabilized
with the following proportional boundary control:

q(s, L) = khh(s, L) + kww(s) (8)

where w is an additional boundary input, kh > 0 and kw ∈
R

∗ are real constants1.
The resulting closed-loop system becomes:

h(s, L) = G1(s)q(s, 0) + G2(s)w(s)

1In the case of an open-channel, this can be achieved by a moveable
hydraulic structure such as a weir or a gate, and w represents the gate
opening or the weir elevation.

with G1(s) = G(s)

1−khG̃(s)
and G2(s) = kwG̃(s)

1−khG̃(s)
. Then, for

any kh > 0, the closed-loop system is stable (see [7]).
Now, the perfect rejection of the effect of measured up-

stream boundary perturbations on the downstream boundary
is obtained by designing w(s) = KFw(s)q(s, 0) such that
h(s, L) = 0, i.e.:

KFw(s) = − 1

kw

G(s)

G̃(s)
=

1

kw
KF (s). (9)

Therefore, for a perfect rejection, it is possible to compute
q(t, L) using the open-loop controller KF (s) and to imple-
ment it with w(t) = q(t,L)

kw
. This is equivalent to inverting

eq. (8) by assuming that h(s, L) = 0.
We focus below on the analysis of KF (s), keeping in mind

that the implementation is done with a stabilizing feedback
such as eq. (8).

C. Series decomposition of the feedforward controller

In the general case, it is necessary to use a rational approx-
imation of KF (s) before implementation. One possibility to
this end is to expand the transfer function into series, and
then to truncate the infinite series.

The poles of the controller are the solutions of the follow-
ing equation:

e(λ2(s)−λ1(s))L =
λ1(s)

λ2(s)
. (10)

They can be shown to be stable, that is their real part is less
than −ε with ε > 0, if and only if γ �= 0 or δ �= 0.

Let us denote the poles (pn)n∈Z, and p−n = p̄n. Since
each pole has single multiplicity, the rational approximation
problem reduces to find the residues of KF (s) such that:

KF (s) =
∞∑

n=−∞

an

s − pn
(11)

with an = lims→pn
(s − pn)KF (s), i.e.

an =

[
(λ2 − λ1)e

(λ1+λ2)L

(1 + Lλ2)λ′
2e

λ2L − λ′
1(1 + Lλ1)eλ1L

]
(pn) (12)

with

λ′

i(s) =
(α − β)

2αβ
+ (−1)i (α + β)2s + (α − β)γ + 2αβδ

2αβ
√

d(s)
(13)

and d(s) = (α + β)2s2 + 2[(α − β)γ + 2αβδ]s + γ2.

D. Illustrative example in the case γ = δ = 0

In order to illustrate our approach and to link it with
previous results presented by [1], we consider the special
case where γ = δ = 0, corresponding to a frictionless
horizontal canal. In this case, an analytical expression for
open-loop control has been obtained by [1] using a Riemann
invariants approach. Our formula (11) does not lead to the
same expression. However, using the explicit frequency do-
main expression of the feedforward controller (7) and using
another series decomposition, we recover the expression of
[1]. Moreover, we derive upper and lower bounds for the H∞

norm of the approximation error due to the infinite series
truncation.
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1) Explicit solution of the open-loop control: When γ =
δ = 0 the eigenvalues become λ1(s) = − s

α and λ2(s) = s
β .

Then, the open-loop controller KF (s) becomes:

KF (s) =
(1 + k)e−s L

α

1 + ke−τs
(14)

where we have used the following notations:

k =
β

α
(15)

and
τ =

L

α
+

L

β
(16)

This infinite dimensional controller can be approximated
by a series of delays, using the well-known series expansion:

1

1 + z
=

∞∑
n=0

(−1)nzn

which is valid for |z| < 1.
In our case 0 < k < 1 since β < α, therefore the series

converges and we get:

KF (s) =

∞∑
n=0

(−1)nkn(1 + k)e−s( L
α

+nτ) (17)

In the time domain, this expression leads to an explicit
solution for the open-loop control:

q(t, L) =

∞∑
n=0

(−1)nkn(1 + k)q

(
t − L

α
− nτ, 0

)
(18)

This expression was first obtained by [1] using a Riemann
invariants approach.

Our frequency domain approach allows to evaluate the
approximation error generated by the truncation. We evaluate
below the H∞ norm of the approximation error due to the
truncation of the series (17).

2) Evaluation of the truncation error: When the infinite
series (17) is truncated, this generates an approximation error
which can easily be evaluated. Indeed, suppose that this
series is approximated by the first N elements of the series,
and let us denote K

[1]
F,N (s) this truncated series. We have:

K
[1]
F,N (s) =

N∑
n=0

(−1)nkn(1 + k)e−jω( L
α

+nτ)

Then, let us evaluate the norm of the approximation error
for s = jω:

∣∣∣KF (jω) − K
[1]
F,N

(jω)
∣∣∣ = (1 + k)

∣∣∣∣∣∣
∞∑

n=N+1

(−1)
n

k
n

e
−jω( L

α
+nτ)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(1 + k)kN+1e

−jω
(

L
α

+(N+1)τ
)

1 + ke−τjω

∣∣∣∣∣∣
=

(1 + k)kN+1√
1 + k2 + 2k cos(ωτ)

Since | cos(ωτ)| ≤ 1, we have the double inequality:

kN+1 ≤
∣∣∣KF (jω) − K

[1]
F,N (jω)

∣∣∣ ≤ (1 + k)

1 − k
kN+1

Therefore the worst case approximation error (H∞ norm)
will always be larger than kN+1. Since k < 1, this tends
towards zero as N tends towards ∞. This convergence can
however be slow especially for canals where α and β are
very close.

Remark 1 (Delay-free controller): There are various pos-
sibilities for approximating the feedforward controller (e.g.
Eqs. (11) or (17)), but the series may not converge very
rapidly. It may be necessary to use a large number of terms
in order to get a good approximation. As we will show
in the application, a better approximation can be achieved
by extracting the delay exp(−L

αs) from the controller and
considering the delay-free controller:

K̃F (s) = KF (s)e
L
α

s

In this case, a good low frequency approximate solution of
order N is obtained by:

K̃F,N (s) = 1 +
N∑

n=−N

(
ãn

s − pn
+

ãn

pn

)
(19)

with ãn = lims→pn
(s − pn)K̃F (s), i.e.

ãn =

[
(λ2 − λ1)e

(λ1+λ2+
s
α

)L

(1 + Lλ2)λ′
2e

λ2L − λ′
1(1 + Lλ1)eλ1L

]
(pn) (20)

E. Rational approximation

The above approaches have considered series decomposi-
tion of the feedforward controller, with a given order, leading
to a given truncation error. Another interesting possibility
is to consider a finite bandwidth approximation of the
controller, with a bounded error for higher frequencies. This
is coherent with the fact that the control is implemented by
finite bandwidth actuators. In this case, the problem can be
stated as an H∞-like minimization one, where one tries to
minimize the norm of the difference between the feedforward
controller KF (s) and its rational approximation KFA(s):

min |KF (jω) − KFA(jω)| for ω ∈ [0, ω0]

and
|KF (jω) − KFA(jω)| < K for ω > ω0

This problem is a convex one that has already been solved
[8]. But this approach is rather naive, since the frequency
bandwidth of interest remains to be determined, and the
system is uncertain in high frequencies. In order to take into
account these uncertainties, it is more realistic to directly
consider the robust feedforward control problem, as we do
in the following section.

IV. ROBUST FEEDFORWARD DESIGN

The previous approach has two possible drawbacks: (i)
the plant model is assumed to be perfect, (ii) the irrational
controller has to be approximated by a rational one. A
remedy to these drawback is to define an uncertain model,
express the feedforward control problem as an H∞ criterium
and then apply the robust H∞ feedforward control approach
proposed in [11].
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Let us denote by � the Redheffer product. The first point
is that the plant can be modelled as ∆ � G where ∆ is the
uncertainty which is stable such that ‖∆‖∞ < 1 and where
G is a rational transfer function matrix, with two inputs and
two outputs. The introduction of ∆ allows to rigourously take
into account (i) the approximation of the irrational plant by
a rational transfer function, (ii) the model uncertainty.

In the sequel, the control input, the controlled output and
the perturbation are denoted u, y and d. Let us introduce
Wy and Wu two weighting transfer functions. Wy allows to
define the considered disturbance and the rejection perfor-
mance (rejection time, asymptotic rejection). Wu allows to
limit the control input u. The feedforward problem can be
written as the following weighted H∞ norm minimization
(see Figure 1) : Find the stable rational transfer function Kf

such that

sup
∆, ‖∆‖∞<1

∥∥∥∥
[

Wy × (∆ � G)
Wu

]
Kf

∥∥∥∥
∞

< 1.

This problem is a subcase of the general robust H∞

� KF
� G �

�

∆ �

Wy �

d u y
� Wu

�

Fig. 1. Robust H∞ feedforward control problem

feedforward control problem (see Figure 2) considered in
[11]. In the sequel, we present an application of Theorem

∆ �

Gff
KF

�

�

W

�

�� �

Fig. 2. General robust H∞ feedforward control problem

5.1 presented in [11].
With N > 0 a given integer, let X(∆) be the set of N×N

real symmetric matrices of the structure:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2x0 0 x1 0 · · · · · ·
0 0 · · · · · · 0

...
...

...
. . .

. . .
... xN−1

... 0
. . .

. . .
... 0

... · · · · · · xN−1 0 2xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let B(s) be
[

sN sN−1 · · · 1
]T

and d(s) = sN +
d1s

N−1 + · · ·+d0 a given polynomial with roots whose real

parts are strictly negative. The state space representation of
B(s)
d(s) and ⎡

⎢⎢⎣

[
I 0
0 Wy(s)

]
G(s)

0 Wu(s)

⎤
⎥⎥⎦

are denoted:[
Ab Bb

Cb Db

]
and

[
Ap B1 B2

Cp D1 D2

]
.

Theorem 1: The robust H∞ feedforward control problem
has a solution if and only if there exist N > 0, matrices P ,
Z, X ∈ X(∆), A, B, C and D such that

(i) P > Z, Z > 0 and⎡
⎢⎣

L1(P,Z,A,C) + · · ·
L1(P,Z,A,C)T + L2(X)

L3(B,D)T

L3(B,D) −I

⎤
⎥⎦ < 0 (21)

with L1(P,Z,A,C) defined by:⎡
⎣ P

P − Z
0

⎤
⎦

⎡
⎣ Ab 0 0 0

[
Bb 0

]
0 Ab BbB1

T 0 BbD1
T

0 0 AT 0 CT

⎤
⎦

· · · +
⎡
⎣ I

I
0

⎤
⎦ [

A
T

C
T

] [
0 0 0 I 0

0 0 B2
T 0 D2

T

]

L2(X) = ΩT

⎡
⎣ X 0 0

0 −X 0
0 0 −γ2I

⎤
⎦Ω

with Ω defined by:⎡
⎢⎢⎢⎢⎢⎣

0 0

[
0
Cb

] [
I 0
0 Db

]
B1

T 0

[
I 0
0 Db

]
D1

T

0

[
0
Cb

]
0 0 0

[
I 0
0 Db

]
0

0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎦

and L3(B,D) is defined by

[
B

T
D

T
] [

0 0 0 0 I 0

0 0 0 B2
T 0 D2

T

]
.

(ii) Pb = PT
b and[

AT
b Pb + PbAb PbBb

BT
b PT

b 0

]
+

[
CT

b

DT
b

]
X

[
Cb Db

]
> 0 (22)

Testing Theorem 1 condition is a feasibility problem
involving Linear Matrix Inequality constraints which can be
efficiently solved [3]. If the condition is satisfied then the
robust feedforward KF is obtained as

KF (s) =
(
D + C(s(P − Z) − A)−1

B
)
.
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The proof of the sufficiency is obtained by application
of Theorem 5.1 presented in [11]. Necessity is obtained as
the µ upper bound is equal to the actual value of µ in the
case of one dynamical uncertainty [10], with the choice of a
multiplier/scaling whose degree N is large enough [4].

V. APPLICATION TO AN OPEN-CHANNEL

A. Saint-Venant equations
We consider a prismatic canal pool of length L with

uniform geometry (not necessarily rectangular) and a given
slope Sb ≥ 0. The Saint-Venant equations are hyperbolic
nonlinear partial differential equations involving the average
discharge Q(t, x) and the water depth H(t, x) along one
space dimension [5]:

∂A

∂t
+

∂Q

∂x
= 0 (23)

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂H

∂x
= gA

(
Sb −

Q2n2

A2R4/3

)
(24)

where A(t, x) is the wetted area (m2), Q(t, x) the discharge
(m3/s) across section A, V (t, x) the average velocity (m/s)
in section A, H(t, x) the water depth (m), g the gravitational
acceleration (m/s2), n the Manning coefficient (sm−1/3) and
R the hydraulic radius (m), defined by R = A/P , where P
is the wetted perimeter (m).

The boundary conditions are Q(0, t) = Q0(t) and
Q(L, t) = QL(t). These boundary conditions are suited for
control purposes, since the system is then combined with
gates linking locally the discharge with the water elevation.
The initial conditions are given by Q(0, x) and H(0, x).

B. Linearized Saint-Venant equations

We consider small variations of discharge q(t, x) and water
depth h(t, x) around constant stationary values Q0 (m3/s)
and H0 (m). When Sb �= 0, the equilibrium regime (H0, Q0)
verifies the following algebraic equation:

Sb =
Q2

0n
2

A2
0R

4/3
0

(25)

If the slope Sb is zero and n = 0, then any couple (H0, Q0)
can be chosen as an equilibrium solution, provided that the
Froude number F0 = V0/C0 remains strictly lower than 1. V0

is the average velocity (m/s) and C0 =
√

gA0/T0 the wave
celerity (m/s), with T0 the water surface top width (m).

Linearizing the Saint-Venant equations around these sta-
tionary values leads to a linear hyperbolic system of partial
differential equations (1) with the following values of the
constant parameters:

α = C0 + V0

β = C0 − V0

γ = gSb

(
10

3
− 4A0

3T0P0

dP0

dH

)

δ =
2gSb

V0

Note that the variable h is scaled by a factor T0, i.e. eq.
(1) applies in fact to h∗ = T0h, which is denoted h with an
abuse of notation.

C. Closed-loop controller

The stabilizing proportional boundary control is performed
with a moveable weir, defined by the linearized equation:

q(s, L) = khh(s, L) + kww(s)

with kh = 0.6
√

2gLw, where Lw is the length of the weir,
and kw = −kh. In the simulations, the weir length is equal
to 0.5T0.

D. Feedforward controller

1) Bode diagrams: The feedforward controller is obtained
following Eq. (7). Figure 3 depicts the Bode diagram of
controller KF (s) for an hyperbolic system with the following
parameters α = 4.63, β = 3.33, γ = 2.7 × 10−3, δ =
3× 10−3 and L = 3000 m. These parameters correspond to
the linearized Saint-Venant representing a canal pool with a
trapezoidal geometry, (bed width of 7 m, side slope of 1.5),
a bed slope Sb = 0.0001 and Manning coefficient of 0.02.
The considered stationary regime corresponds to a discharge
Q0 = 14 m3/s and a water depth H0 = 2.12 m.
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Fig. 3. Bode plot of KF (s) with (α, β, γ, δ) = (4.63, 3.33, 2.7 ×

10−3, 3 × 10−3) (solid blue). The two others plots are obtained with
parameters γ and δ changed by ±50%: γ1 = γ/1.5, δ1 = δ/1.5 (dash-
dotted red), and γ2 = 1.5γ, δ2 = 1.5δ (dashed green).

Figure 3 compares the feedforward controllers KF (s) for
three canals with the same length, same α and β, but with
different slope and friction, leading to different γ and δ. It
is clear from Figure 3 that even small changes of the slope
and the friction dramatically change the Bode diagram of the
feedforward controller. In practise, such a sensitivity is not
acceptable. It is therefore necessary to take account of these
elements in the feedforward control design.

2) Rational approximations:

a) Complete controller: The rational approximations
obtained with eq. (11) are compared to KF (s) on figure
4. The Bode diagram shows that a higher number of poles
gives a better approximation of the controller.
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Fig. 4. Bode plot of KF (s) (solid blue) and rational approximations
obtained with eq. (11), using 5, 10 and 20 poles (dash-dotted red).

b) Reduced controller: We compared the rational ap-
proximations obtained with eq. (19) to KF (s) (results not
displayed for lack of space). The Bode plot shows that a
higher number of poles gives a better approximation of the
controller. In this case, a good approximation is obtained
with only 2 pair of poles, leading to a delay-free controller
of dimension 4.

We also observe that with the same number of poles, the
delay-free controller (19) leads to a better approximation of
KF (s) than the one including the delay (11).

3) Simulation results: Figure 5 compares the water level
h(t, L) and the feedforward discharge q(t, L) obtained with
controller K̃F (s) with 5 poles and the controller of [1]
obtained with Eq. (18). It is clear from Figure 5 that a
controller designed by assuming δ = γ = 0 gives large
poorly damped oscillations of the control q(t, L), leading to
a large error in the downstream water level. On the contrary,
when the damping linked to the nonzero slope and friction is
taken into account, the control q(t, L) is much more smooth
and the output error much smaller.
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Fig. 5. Downstream water level error h(t, L) and feedforward control
q(t, L) for a rational approximations of K̃F using 5 poles (solid blue) and
the controller of [1] (dashed red).

This is also clear from the Bode plot of figure 6.
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Fig. 6. Bode diagram of KF (s) (solid blue) and of the controller of [1]
(dash-dotted red).

VI. CONCLUSION

The paper has used a frequency domain approach to
design a feedforward boundary controller to reject measured
perturbations on a plant whose model is a linear hyper-
bolic equation derived from two conservation laws. The
result of [1] is obtained as a special case of our result.
A robust feedforward controller design is also proposed, to
take account of the model uncertainties in high frequencies.
Frequency domain and time domain comparisons have shown
the performance of the feedforward controller design.
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