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ABSTRACT. This paper proposes numerical investigations for the stochastic modeling of a
boulder impacting a coarse granular soil. The soil is considered as a noncohesive granular
medium using a discrete element method and the soil model is calibrated compared to results
from half-scale experiments. Based on this numerical model, an extensive numerical
simulation campaign is carried out. The statistical analysis of the numerical results allows
the definition of a stochastic bouncing model that quantifies most of the variability of the
numerical results. Comparisons with classical bouncing models in the field of trajectory
analysis highlight that this model expands classical approaches. The comparison of results
from real-scale experiments to trajectory simulations based on the stochastic model show the
relevance of the proposed approach to modeling rockfall trajectories.

RESUME. Une modélisation stochastique de [’'impact d’un bloc sur un sol grossier basée sur
un modele aux ¢léements discrets est proposée. Le sol est considére comme un milieu
granulaire non cohésif et le modele d’impact est calibré par comparaison a des résultats
d’essais a echelle réduite. Une campagne de simulation extensive est menée a l’aide de ce
modeéle. L’analyse statistique des résultats de simulation permet de définir une loi
stochastique de rebond capable de quantifier une grande partie de la variabilité de ces
résultats. La comparaison aux modeles de rebond classiques en analyse trajectographique
montre que le modele proposé est une extension des approches classiques. La comparaison
entre les résultats d’essais de terrain et les simulations de ces essais a [’aide du modele
stochastique met en évidence la pertinence de [’approche proposée pour modéliser les
trajectoires des blocs.

KEYWORDS: rockfall hazard, impact, discrete element method, stochastic, trajectory analysis.

MOTS-CLES : risque de chute de blocs, méthode des éléments discrets, stochastique, analyse
trajectographique.



1. Introduction

Natural hazard assessment is a major challenge in mountainous zones. Rockfall is
a very common and dangerous phenomenon, even if the boulders involved are
relatively small. Rockfall is a small mass movement that consists in the removal of a
superficial boulder from a cliff face or a talus slope. Endangered residential areas
and infrastructures must be protected against the risk associated with rockfall events.
Locating and designing defense structures against rockfall such as restraining nets or
barrier fences is a difficult task in which the prediction of the trajectories of the
potentially falling boulders is one of the key points. Trajectory analyses are therefore
performed to inform practitioners on the potential trajectories of the falling boulder
within the area to be protected.

In the context of trajectory analysis, the information available on the local
configuration of the soil near the impact point and on the incident kinematic
parameters of the boulder is not sufficient for a relevant deterministic prediction of
boulder bouncing. The high variability of these parameters (Laouafa et al., 2003)
makes exhaustive deterministic modeling of the impact of the boulder on the soil
impossible. To overcome these difficulties, stochastic approaches have been
proposed for modeling the impact (Paronuzzi, 1989; Pfeiffer and Bowen, 1989;
Azzoni et al., 1995; Guzzetti et al., 2002; Agliardi and Crosta, 2003). However,
such approaches only provide a simplified empirical simulation of the variability
associated with the impact phenomenon.

The aim of the present paper is to define a stochastic bouncing model that can
properly model the variability of the impact phenomenon in the case of the
interaction of a boulder with a scree slope. Because of the complexity of the
phenomenon (Bourrier et al., 2008), large data sets analyzed using advanced
statistical methods are necessary to define a reliable stochastic model (Bourrier et
al., 2007). Results from rockfall events or field experiments are not directly usable
because either the data set is incomplete (rockfall events) or reproducible impact
conditions are difficult to obtain (field experiments). On the other hand, simulations
are well adapted because various geometrical configurations (grading curve, particle
arrangement) can be considered, and, for each geometrical configuration studied, a
large set of incident conditions can be explored.

Therefore, in this approach we chose to use numerical simulations to define the
stochastic bouncing model. The first step of the procedure is numerically modeling,
in a 2D context, a single interaction between the falling boulder and the scree using
the discrete element method (DEM). The validity of the DEM simulation procedure
1s evaluated and calibrated by comparing results from half-scale experiments with
simulations using the DEM model under the same conditions.

In the second step, an extensive simulation campaign was carried out, made up of
impact simulations for varying incident kinematic conditions of the boulder and
varying local configurations of the soil. The numerical results are analyzed using



advanced statistical modeling. The stochastic bouncing model obtained is then
exhaustively presented and a sensitivity analysis is done to determine the validity
domain of the model proposed.

Finally, the stochastic bouncing model is compared with data from real-scale
experiments. To do so, the 2D stochastic bouncing model is integrated into a 3D
trajectory analysis software. On the basis of the results obtained, the relevance of the
stochastic bouncing model is discussed.

2. Numerical simulation of impacts using the DEM
2.1. DEM impact model

The scree slope is an assembly composed of several rocks of various sizes and
shapes. During the impact, a dynamical loading attributable to the interaction with
the boulder is applied to the scree slope. Assuming that rocks composing the talus
slope can be considered rigid locally deformable 2D bodies, the Particle Flow Code
2D software (Itasca, 1999) based on the DEM (Cundall and Strack, 1979) is used. In
the DEM, particles are subjected to body forces, limited to gravitational forces in our
case, as well as to contact forces. Contact forces are applied to neighboring particles
in contact. For a given time step, once body and contact forces have been computed,
the translational and rotational velocities of the particles are determined by solving
the balance equation. The resulting displacements of the particles are used to update
particle locations for the next time step.

The normal and tangent contact forces acting between two particles are
calculated using a hypoelastic contact law (Cundall, 1988) based on an
approximation of the Hertz—Mindlin theory (Mindlin and Deresiewicz, 1953). The
contact law formulation relates both the normal and tangential incremental contact
forces dF,and dF, to the mnormal and the tangential incremental

interpenetrations du, and du, using the relations:
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where ¢ is the local friction angle and K, and K, are normal and tangential stiffness
coefficients depending on the radii R; and R, of the particles involved, shear
modulus G, and Poisson ratio v . € is the Heaviside function: £(x)=1 ifx > 0 and

E(x)=0 ifx<0.

The Hertz—Mindlin model takes frictional processes between adjoining particles
into account. Other dissipation sources also exist within real granular soils subjected
to dynamical loadings, such as local yielding near the contact surface, crack
propagation, and rock breakage. However, in the context of the simulations where a
boulder is approximately the same size as the soil particles, local plastic dissipation
within the particle body i1s assumed to be negligible compared to frictional
dissipation in a first approximation (Oger ef al., 2005).

Contact forces are governed by three parameters set at classical values for rocks
(Goodman, 1980): the shear modulus G is set at 40 GPa, the value of the Poisson
ratio V is set at 0.25 and the local friction angle ¢ is 30°. In addition, the density p
of the boulder and of the soil particles is set at 2650 kg/m’.

Given that natural scree are polydisperse granular assemblies (Kirkby and
Statham, 1975), the ratio between the mass of the smaller rock and of the larger rock
of the soil is set at 10. This also prevents the calculation time step from decreasing.
The mean equivalent radius of the soil particles is set at R,, = 0.3 m. To limit the
number of varying parameters, simulations are performed for an impact of a
spherical boulder on the soil. The diameter of the boulder R, can vary from 0.5 R,, to
5 R,. This context highlights the role of the local geometrical configuration in the
variability of the impact phenomenon (Bourrier et al., 2008). The influence of soil
particle shape is also explored by defining different soil samples composed of either
spherical particles or clump particles. Clumps are indivisible assemblies of spherical
particles used to model the shape of soil rocks in a more realistic way (Bertrand et
al., 2006; Nicot et al., 2007; Deluzarche and Cambou, 2006). Clump shape is nearly
rectangular and is governed by the ratio of particle length to width, which is
randomly chosen between 1 and 4 to account for shape variability within a talus
slope (Figure 1).



Figure 1. Clump particle assembly

The soil sample is generated from distinct particles subjected to gravitational
forces only. Particles are therefore first randomly generated inside an empty sample
limited by rigid walls. The initial particle locations are determined to prevent initial
interactions. Gravitational forces are applied to all particles and a calculation
procedure is run until the total kinetic energy of the system lowers a set value
(Figure 2). The porosity of the generated sample can be precisely controlled by
calibrating the value of the local friction angle during the generation of the sample.
After sample generation, the local friction angle is set at ¢ = 30° whatever the value
of this parameter used during sample generation. At the end of the generation
procedure, sample depth H is set at 12.5 R,. The values used for the main
geometrical and mechanical parameters of the soil sample are summarized in
Table 1.

C AV N [ Lol ]

Mechanical oo g ./ 7 =
and — =7 1000~
geometrical 7 8 00® » s,
properties Pe o fjre 01|
2111 s=

Figure 2. Sample generation

The impacting boulder is a sphere. Using such a simple shape does not allow
exploring the non negligible influence of the boulder shape on the bouncing
(Guzzetti et al., 2002). However, in a first approximation, the choice was made to
use impacting spheres for two reasons. First, most of classical rockfall trajectory
simulation codes use spheres (Guzzetti ef al., 2002). Second, if complex impacting
boulder shape had been used, the characterization of the boulder shape would have
been a difficult task due to the important variability of boulder shapes in practice.



Once the sample has been generated, each impact simulation first consists in
defining the impact point. The boulder radius is then set along with the incident
kinematics conditions. Incident kinematic conditions are fully defined by the
magnitude of the incident velocity 7, the incident angle o, and the incident
rotational velocity ™ (Figure 3). These parameters are directly related to the normal
and tangential velocity components by the relations:

Vin =y Sin(Otin) [6]
va” =" cos(a™) [7]

Figure 3. Incident kinematical conditions

Table 1. Geometrical and mechanical parameters used in the simulations

Parameter | Varying domain

Shear modulus G | G =40 GPa
Poissonratiov | v=0.25

Local friction angle ¢ | ¢ =30°
Rocks density p | p = 2650 kg/m’
Ratio of the smaller (m,,;,) to the larger (m,,,,) rock mass | m,,,/ m,,;, = 10

Mean equivalent radius of soil rocks R,, | R, =0.3 m
Ratio of soil rocks length L to widthw | 1 <L/w <4
Impacting boulder radius R, | 0.5R,, <R, <5R,
Sample depth H | H=12.5R,,

A minimum distance d; between two impact points is also set to limit an
unnecessary refinement of the results. Preliminary numerical investigations have
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shown that a minimum of N = 100 impact points distant from d; = 0.05 m has to be
chosen to ensure stable mean values and standard deviations of the components of
the reflected velocity (Bourrier ef al., 2007). It is worth noting that all impact points
are located far enough from the lateral walls of the sample to avoid disturbances
from the lateral walls (Bourrier et al., 2007). For each impact simulation, reflected
velocities are collected when the normal component of the boulder velocity reaches
its maximum value, which usually occurs after the last contact between the boulder
and the soil particles.

2.2. Half-scale experiments

The validity of the DEM impact model is evaluated by comparing predictions
using this model with results from half-scale experiments.

The half-scale experiments consist of the impact of a rock, whose equivalent
diameter i1s 6.8 cm, on a coarse soil composed of limestone rocks having
approximately the same size as the impacting rock. The impacting rock is a quasi-
spherical granite projectile that limits projectile breakage during impact and
facilitates the calculation of the velocity of the impacting rock. A specific projectile
dropping device was designed and calibrated in order to control the magnitude and
the direction of the incident velocity of the projectile. The incident velocity of the
projectile is 6 m/s, the incidence angle ™ (Figure 4) can reach values from 0° to
75°and the incident rotational velocity is always nil. The incident velocity belongs to
the xy plane, called incident plane (Figure 4). The component of the incident velocity
along the z axis is therefore always nil.

Incident plane

1 - Black screen.

5 2 - VHS camera.

S B 3 - Quasi-spherical projectile.
7o 4 - Soil sample.

5 - High speed camera.

Figure 4. Experimental set-up



The impact experiments were filmed in the xy plane using a high-speed camera and
in the yz plane using a VHS camera (Figure 4). The analysis of VHS films showed that
the reflected velocity of the boulder along the z axis was negligible toward the other
components of the reflected velocity. Image processing of the films from the high-
speed camera therefore allowed the calculation of the normal and tangential
components of the reflected velocity of the boulder. More than 100 impact experiments
were conducted for varying incidence angles. The values of the incidence angle varied
from 0° to 75° and the same number of impact experiments were conducted for each
incidence angle value explored (0°, 15°, 30°, 45°, 60°, 75°).

2.3. DEM impact model validation

In order to remove the effects of scale changes while evaluating the relevance of
the DEM model compared to the experimental results, the DEM model described in
Sub-Section 2.1 was adapted. The characteristics of the numerical model of the
impact were therefore defined to match the measured properties of the experimental
soil sample and the experimental incident conditions. The impacting sphere radius
was set to the same value as the equivalent radius of the granite rock used in the
experiments. Additionally, the numerical incident conditions were similar to the
experimental ones and the size of the numerical soil sample was the same as the
experimental soil sample. The size of the particles of the numerical soil sample were
determined in order to come close to the experimental grading curve and the
distribution of the length to width ratio, defined as the ratio of the particles’ length to
the particles’ width, of the rocks composing the experimental soil sample (Figure 5).
One can also note that the Hertz—Mindlin contact law is still used and that the values

of the mechanical properties of the particles are similar to those defined in Sub-
Section 2.1 (G = 40 GPa, v=10.25, ¢ = 30°, and p = 2650 kg/m’).

The porosity of the numerical soil sample is considered a calibration parameter
because no simple relation exists between the 3D porosity of the experimental soil
sample and the 2D porosity of the numerical soil sample. The numerical simulations
were therefore performed using several numerical soil samples with different 2D
porosities.

The simulation results obtained were compared with the experimental results.
Both the cumulative distribution functions of the tangential /" and normal V)" to
soil surface components of the reflected velocity were compared.

The results highlight a fair accordance between the cumulative distribution
functions of the reflected velocity components in the simulations and the
experiments (Figure 6). The tangential component ¥, of the velocity was predicted
particularly well using the DEM model because, whatever the porosity of the
numerical soil sample, the cumulative distribution function of the simulation results
was contained within the confidence interval associated with the experimental results
(Figure 6). In addition, the porosity of the numerical soil sample did not change the
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results for the tangential component V.. On the contrary, the values of the normal
component V)" strongly depended on the porosity of the numerical soil sample
(Figure 6). The dependency of the normal component V,” on the porosity can be
explained by the fact that larger energy dissipation occurs for loose soils than for
dense soils due to increases in particles rearrangement and frictional dissipation. The
effects of the porosity changes are significant only for the normal component of the
velocity because previous simulations (Bourrier ef al., 2008) have shown that the
energy transfers between the soil and the impacting boulder were mainly associated
with the normal component of the velocity.
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Figure 5. Grading curves (graph a) and length to width ratio distribution (graph b)
of the experimental and numerical soil samples
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compared with the experimental results



Despite the dependency of the normal component ¥, on the porosity, one can
find a value of the porosity of the numerical soil sample that allows a satisfactory
approach to the experimental results for both components 7, and V,". This proves
that the DEM properly models the impact of a rock on a coarse soil for a reduced
number of calibration parameters: the porosity of the soil sample is the only
simulation parameter to be calibrated.

3. Statistical analysis of the bouncing phenomenon
3.1. Constitution of a database

As the relevance of the DEM model has been proved, several impact simulations
using this model were conducted to explore the variability of the reflected velocity
for varying impact points and incident kinematic parameters and for fixed soil and
boulder characteristics. The properties of the numerical soil sample correspond to
those presented in Sub-Section 2.1. The variability of the reflected velocity was
studied for different shapes of soil particles (spheres or clumps) and impacting
boulder radii (between 0.5 R,, and 5 R,,).

For given properties of the boulder and the soil, several impact simulations were
conducted for varying impact points and incident kinematic parameters. First,
100 impact points are precisely defined so that the same impact point can be used for
several incident kinematic conditions. For a given impact point, a set of equally
distributed incident kinematic parameters was explored. Kinematic parameter values
ranged within the limits defined from rockfall events (Azzoni ef al., 1991). For each
impact point, all the combinations of chosen values for incident kinematic
parameters (Table 2) were explored. Collection of the components of the reflected
velocity of the boulder for all simulations made it possible to construct a database of
numerical results for varying impact points and incident kinematics conditions and
for fixed soil properties and boulder size.

Table 2. Values of the incident kinematic parameters

Incident parameters Values explored
V" (m/s) 5,10, 15, 20, 25
o (deg) 0, 15, 30, 45, 60, 75
o™ (rad/s) -6,-3,0,3,6
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3.2. Formulation of the stochastic bouncing model

To perform the statistical analysis of the simulation results database for given
properties of the boulder and the soil, the reflected kinematic parameters of the
boulder were computed from the incident kinematic parameters of the boulder by

means of an operator ]7 A generalized velocity vector V composed of a normal

velocity component v,, a tangential velocity component v,, and a rotational velocity
o (Figure 3) can properly describe the kinematic parameters of the boulder such as:

V=(v, v, Ry (8]

Incident V™ and reflected V™ generalized velocity vectors of the rock are related
as follows:

V=7V [9]

Assuming that there is a Taylor series expansion of the operator ]7 with respect
to all components of the incident velocity vector V™™, the first-order truncation of the
Taylor series expansion of f defined in Eq. 8 gives the definition of the operator A.

The operator A associates the reflected velocity vector V' with the incident vector
V"

V™ =AV" + R(V™) [10]

with,

{

¥ ayy ayw ’

)
)
)

where the parameters a; are the coefficients of the first-order Taylor series expansion
of the operator f and R(V™) is a remainder term denoting the difference between

the operator f and its first-order Taylor series expansion.

The high variability of the local soil properties near the impact point and of the
incident kinematic conditions induces the operator A and the remainder term R(V™)
to take very different values. A stochastic bouncing model was therefore developed
to account for the variability associated with the operator A and the remainder term
R(V™) separately. The variability related to the spatial distribution of the soil
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particles near the impact point also has to be distinguished from the variability
related to the incident kinematic conditions in the stochastic bouncing model.

In order to associate the variability of the operator A with the variations in the
local geometrical layout of the soil particles near the impact point, the operator A
was assumed to take a constant value A for a given impact point p whatever the set &
of incident kinematic parameters. Due to similarities in the macroscopic properties
of the soil (porosity, the particles’ mechanical properties, grading curve, etc.) for all
impact points, it is assumed that the results observed at the different impact points
are, in some ways, similar. For a given impact point, the value of the operator A is
constant for any incident kinematical conditions. In addition, the values of the
operator A are different from one impact point to the other but, as the impacted soil
macroscopic properties are similar for all impact points, all values of A are extracted
from the same probability distribution function. For varying impact points p, the
coefficients of the operator A were therefore assumed to be sampled from the same
normal probability distribution function characterized by a mean vector M* and a
covariance matrix X°.

To quantify the variability associated with A and R(V™) separately, the
assumption was also made that, whatever the impact point p and the incident
kinematic conditions k, the reflected velocity vector V', was sampled from a
normal distribution fully defined by a mean vector ApVi“pk and a covariance matrix
Y. The covariance matrix X, which accounts for the proportion of variability of the
remainder term R(V™), is constant for all impact points and incident kinematic
parameters.

The unknown parameters of the stochastic model are M?, X* X. The values of
these parameters were obtained by the statistical analysis of the numerical results
database using Bayesian inference (Bayes, 1763) and the associated so-called
MCMC simulation algorithms (Brooks, 1998; Gilks ef al., 2001).

The level of agreement between the model and the data was evaluated by
estimating the contribution of the random variable AV™ to the total variability of the
results. For this purpose, the percentage (R coefficient) of the total variability of the
results that is explained by the random variable AV™ for a given impact point p and
for the i incident component of the reflected velocity vector V™ was assessed. If
R = 100%, all the variability of the results is explained by the random variable AV™.
This quantity is similar to the R? statistic classically used while performing a linear
regression.

3.3. A simplified formulation of the stochastic bouncing model
The analysis of the stochastic bouncing model is described for the case of the

impact of a spherical boulder having a radius set at R, = R, on a soil sample
composed of spherical particles. The porosity of the impacted soil sample is 0.204
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and the other properties of the soil sample are similar to those defined in Sub-
Section 2.1.

The results first show that most of the variability of the reflected velocity is
captured by the random variable AV™ because the R coefficient was greater than
85%. The reflected quantities can therefore be correctly predicted using only the
random variable AV™ and by omitting the covariance matrix X. Thus, an admissible
simplified formulation of the stochastic bouncing model is:

re in
X axx axy axa) X
re _ in
v, |=|a, a, a, v, [11]
re in
Rw A, Ay, gy Rw

Correctly predicting the reflected velocity vector using the stochastic bouncing
model therefore only requires defining all the coefficients of M* and X*.

The distribution of each parameter a; (Figure 7) is a normal distribution that is
fully defined by a mean value m/, corresponding to the i component of the mean
vector M?, and a standard deviation s, corresponding to the square root of the i

diagonal term of the covariance matrix (s’ =2°(,i) ). This aspect will be

considered in Sub-Section 3.4 in order to characterize the sensitivity of the
parameters @; with respect to various mechanical and geometrical characteristics.

The stochastic bouncing model can be compared with classical approaches in the
field of trajectory analysis. Classical bouncing models are based on deterministic
mechanical analyses. Some models differentiate two interaction types between the
boulder and the soil: the falling rock can either roll or bounce onto the soil (Bozzolo
and Pamini, 1986; Evans and Hungr, 1993; Kobayashi et al., 1990; Azzoni et al.,
1995), whereas most approaches consider boulder rolling a succession of small
bounces. Additionally, very complex bouncing models (Falcetta, 1985; Koo and
Chern, 1998; Dimnet and Fremond, 2000) have been developed to model boulder
bouncing, which allows thorough description of the plastic, frictional, or viscous
dynamical behavior of the soil during impact. Although the differences between the
previously described approaches should not be omitted, the bounce is most often
simulated using one or two coefficients. The most commonly used coefficients
(Guzzetti et al., 2002) are the tangential R, and the normal R, restitution coefficients:

vil |[R O V! 12
v;e 1o R v;”

The variability of the bouncing phenomenon is, in most cases, introduced at a
later time by modeling the restitution coefficients as independent random variables
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that follow user-defined distributions (Agliardi and Crosta, 2003; Frattini et al.,
2008; Jaboyedoft et al., 2005).

The use of classical restitution coefficients R, and R, induces that each
component of the reflected velocity only depends on one of the components of the
incident velocity vector (Equation [12]). The classical models based on restitution
coefficients therefore only account for the diagonal terms of the operator A (a,, and
a,, 1n particular). On the contrary, in the stochastic bouncing model, all the terms of
the operator A are used. As a result, all the components of the reflected velocity
vector depend heavily on all the incident kinematic parameters (Equation [11]).
Moreover, contrary to classical approaches, the model proposed is directly
developed in a global stochastic framework. The stochastic bouncing model
proposed therefore constitutes an extension to classical models that reflects the
coupling between the incident kinematic parameters and allows proper description of
the variability of the reflected velocity.

3.4. Influence of soil particle shape and boulder size

The influence of the mechanical and geometrical characteristics of the soil and
the boulder is investigated. The values of the model’s parameters can vary depending
on the soil and boulder characteristics. Since an exhaustive parametrical study would
be very long, we chose to limit the investigations to the influence of the parameters
that are commonly considered by practitioners (Dorren et al., 2006). We therefore
limited our investigations to the analysis of the influence of the size and the shape of
the soil particles in the case of the impact of a spherical boulder.

To study the influence of particle shape, two sets of distributions of the
parameters @; were calculated for the case of the impact of a boulder having a

radius set at R, = R, using soil samples composed of either spheres or clump
particles. For both samples, the generation procedure consists of the deposition of
particles under gravitational loading with a local friction angle set at 0° during the
generation procedure. The generation procedure gave porosities of 0.204 and 0.171
for spheres and clump particles, respectively.

The difference between the distributions of the parameters a; obtained using
spheres or clump particles cannot be considered negligible (Figure 7). Significant
differences are observed for the terms associated with the rotational velocity of the
impacting boulder (e, @yp> Aoy Aoy and a,,). The use of clump particles induces
differences in the shape of the soil surface, in the porosity of the soil, and in the
contact force network. The surface of a soil composed with clump particles is
composed of both quasi-planar and curved surfaces and is therefore very different to
the surface of a soil composed with spherical particles. In addition, the
rearrangement of clumps particles is easier which induces smaller porosity values
and leads to very different contact force networks. Although the results do not allow
separating the influence of each of these differences, they tend to emphasize the
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predominant role of the differences in soil surface. Indeed, the shape of the surface
of the soil plays an important role on the local incidence of the boulder. It therefore
predominantly affects the parameters associated with the coupling between the
rotational and the translational velocities.
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Figure 7. Influence of particle shape on the distributions of the parameters a;

The physical processes involved during the impact vary greatly depending on the
ratio of the falling boulder radius R, to the mean radius R, of the soil particles
(Bourrier et al., 2008). It is therefore advantageous to investigate whether the
parameters of the stochastic bouncing model depend to a large extent on this ratio.
The influence of the R,/R, ratio is analyzed by calculating the parameters of the
stochastic bouncing model using a soil sample composed of spherical particles with
a porosity of 0.204. The R,/R,, ratio of the boulder radius to the mean radius of soil
particles ranges within [0.5,5].

The mean values m;" (Figure 8) and the standard deviations s;* (Figure 9) of the
parameters a; are highly dependent on the ratio R,/R,,. The values of the parameters
m;" and s;* differ greatly depending on whether the ratio R;/R,, is greater than 1. The
physical phenomena leading to the impact process are indeed very different in these
two domains (Bourrier et al., 2008). It is also important to note that, for R,/R,, < 1,
the high values of the standard deviations s;* stem from the high level of soil surface
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roughness compared to the size of the impacting boulder. If the R,/R,, ratio is higher
than 1, which corresponds to most practical cases, the variations in both parameters
m;" and s, depending on R,/R,, are smaller but they cannot be considered
negligible. From a practical point of view, the variations observed clearly highlight
that a single set of parameters a; is not sufficient to model the impact on a given soil

type whatever the boulder size.
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Figure 8. Influence of the size of the boulder on the parameters m;’

Figure 9. Influence of the size of the boulder on the parameters s;°
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In conclusion, the influence of the shape of the soil particles and the boulder size
was checked. Based on these results, the simplified stochastic bouncing model has to
be given as a function of these two parameters. For practical purposes, given a soil
(particle shape and size) and a boulder size, a set of given distribution of the
parameters a; should be used. Interestingly, these parameters have a clear physical
meaning and could be easily assessed from a field analysis. Moreover, it is worth
noting that the soil properties (soil particle size and shape) can vary over the soil
surface. These are local parameters. As a consequence, terms «@; depend on the
spatial coordinates of the point considered. In the next section, the ability of the
simplified stochastic bouncing model for practical purposes is demonstrated.

4. Comparing the stochastic bouncing model with real-scale experimental results

The stochastic bouncing model proposed can precisely describe the variability of
the reflected velocity for variable particle sizes and shapes and boulder sizes. Its
application in the field of trajectory analysis can therefore be envisaged. The
stochastic bouncing model is integrated into a 3D rockfall simulation model called
Rockyfor (Dorren et al., 2004; Dorren et al., 2006). The rockfall simulation model
developed was used to simulate real-scale rockfall experiments in order to evaluate
the relevance of the stochastic bouncing model.

4.1. Real-scale rockfall experiments

The experimental site (Dorren et al. 2006) is located in the ‘Forét Communale de
Vaujany’ in France (lat. 45°12', long. 6°3’). The study area covers an Alpine slope
ranging from 1200 m to 1400 m above sea level with a mean gradient of 38°. The
experimental site is part of a hill slope that is formed by a huge post-glacially
developed talus cone mainly consisting of rock avalanche, snow avalanche, and
rockfall deposits. The study site is about 100 m wide and 570 m long (distance
between the starting point and the lower forest road, measured along the slope). It
covers an avalanche path and is therefore denuded of trees.

During all the experiments the protocol was identical. Before each rockfall
experiment, the volume of the boulder to be thrown was estimated by measuring the
height, width, and depth along the three dominant boulder axes. A total of
100 boulders were released individually, one after the other. The mean volume of the
boulders was 0.8 m’ and the standard deviation 0.15 n’.

A front shovel was used to throw the boulders down the slope, starting with a
freefall of 5 m. At the end of each experiment, the stopping point of the boulders was
captured. In addition, rockfall trajectories were filmed using five digital cameras,
which were installed along the experimental site. Additional details on the
experiments are given in Dorren et al. (20006).
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The analysis of the digital films of the 100 rockfall trajectories provided the
rebound heights, i.e., the maximum vertical height between the center of the boulder
and the slope surface, as well as the evolution of the velocity of the boulder for every
1/25™ second. Finally, the maximum value of the boulder velocity was recorded for
each film.

4.2. Trajectory simulations using the stochastic bouncing model

As input data for the simulations of the real-scale experiments, the trajectory
analysis software RockyFor first requires a Digital Elevation Model in which the
topography and the rockfall source locations are fully defined. In general, a field
survey defines the initial conditions for the calculation of the boulder’s trajectory
(rockfall source locations, boulder size, and the boulder’s initial velocity vector),
which were, in this case, equal to the initial experimental conditions.

For each rebound calculation, the reflected velocity vector was calculated from
the incident velocity vector using the stochastic bouncing model. As the values of the
parameters a; depend on the value of the ratio R,/R, and on the shape of soil
particles, a field survey should be conducted to determine the mean radius and the
shape of soil particles in all points of the study site. In a first approximation, the
spatial distribution of the soil particles' shape was not accounted for. Soil particles
are assumed to be spherical at all points of the study site. However, a field survey
was conducted to determine all the values of R,, for all the spatial coordinates at the
study site. The mean radius R,, of the rocks covering the slope was determined in all
points of the study site by identifying homogenous zones that are represented as
polygons on a map. A value of the mean radius R,, was estimated for each polygonal
zone. Additionally, for each rockfall simulation, the spherical boulder radius R, was
calculated using a sample value extracted from the distribution of the mass of the
boulders used during the experiments.

A database was composed of several sets of the parameters a, for varying values
of the R,/R,, ratio ranging from 1 to 5 which corresponds to classical values in the
study site. To construct this database, DEM calculations were performed, which
required evaluating soil properties that cannot be assessed in the field: the porosity
and depth of the soil. Because of the different processes (snow avalanches, in
particular) that occurred in the site, the soil is assumed to be dense at all points of the
study site. The local friction angle was therefore set at 0° during the numerical soil
sample generation, inducing a soil porosity of 0.204. In addition, the soil was
assumed to be 4 m deep at all points of the study site.

As is usual in trajectory analysis, we chose to directly use the 2D stochastic
bouncing model developed in a 3D context. In this context (Figure 10), the
tangential and normal to soil surface components of the incident velocity vector
allow definition of a plane called the incident plane. Similarly, the tangential and
normal to soil surface components of the reflected velocity vector also allow
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definition of a plane called the reflected plane. The angle 6 between these two
planes, which are perpendicular to soil surface, is called the deviation angle. In
addition, the assumption is made that, before (or after) impact, the boulder’s rotation
axis 1s perpendicular to the incidence (or reflected) plane.

Incident
plane
Reflected
plane
r,"" min
EERVER e
! Vi |
] 7 Soil ; Soil
L surface A surface
Sre\]f”’
Before impact After impact

Figure 10. Definition of the incident and reflected planes

For each rebound of the boulder, the calculation of the reflected velocity vector
from the incident velocity vector was performed in two stages.

The components of the reflected velocity vector in the reflected plane were first
calculated from the components of the incident velocity vector in the incident plane
using the stochastic bouncing model. For this purpose, the R,/R, ratio was
determined. This allows one to choose a set of parameters a; corresponding to the
Ry/R,, ratio calculated. The reflected velocity vector of the falling boulder was
calculated using the set of parameters a; chosen from the stochastic bouncing model.

In the second stage, the deviation angle 6 was calculated, leading to the
complete definition of the reflected velocity vector. The deviation angle 0 was
determined by a random number that defines whether the rock is deviated, between 0
and 22.5° from its original direction toward the steepest slope direction, or 22.5-45°,
or 45-55° The first case has a probability of occurrence of 74%, the second case
24%, and the third case 4%. Additional details on the calculation of the deviation
angle can be found in Dorren et al. (2004).

We carried out 10,000 rockfall simulations using the procedure described above.
The simulated distributions of the maximum rebound heights A" and maximum
translational kinetic energy Ec™ were compared with the experimental distributions
of those variables at one evaluation line (EL1), located 185 m from the starting point
measured over the slope. In addition, the spatial patterns of the simulated trajectories
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were compared with the spatial patterns observed during the real-scale rockfall

experiments.

4.3. Comparison between numerical results and real-scale experiments
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Figure 11. Distribution of H™ and Ec™ for observed and simulated trajectories

at EL1

The comparisons between the experimental and simulated results at EL1 show
that both the mean values and standard deviations are accurately reproduced by the
simulations for boulder passing heights and translational kinetic energy (Table 2).
The shapes of the distributions of the simulated quantities are very similar to those
obtained from the experimental results, although the reduced number of experiments
does not fully allow determination of the complete distribution (Figure 11). The
simulated distributions can therefore be considered good predictions for the
distributions of all quantities.



Table 2. Mean values and standard deviations of H'™ and Ec"" at ELI obtained
in the experiments and in the simulations after 10,000 simulation runs

H" at EL1 (m) Ec"™ at EL1 (kJ)
Mean Stagd?rd Mean Star'lde'lrd
deviation deviation
Experiments 1.4 1.1 205 169
Simulations 1.4 1.0 213 152
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Figure 12. Map of the simulated pass frequencies and observed stopping points
(white dots with black outline)

The 3D comparison between the simulated passing frequencies and the
experimental stopping points of the falling rocks provides interesting information
(Figure 12). First, the simulated runout zones in the simulations are larger than the
area associated with the stopping points in the experiments. Indeed, the runout zone
obtained in the simulations is associated with a probability of 1/10,000 that a
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rockfall event occurs. On the other hand, as the real-scale experimental campaign
consists of 100 rockfall experiments, the runout zone obtained in the experiments is
associated with the 1% pass frequency limit. However, in the simulations, the limit
for which the probability of a falling rock event is smaller than 1/100 (1% pass
frequency limit) approximately corresponds to the experimentally observed stopping
points. The rockfall simulation model therefore allows accurate simulation of the
experimental runout zone associated with the 1% pass frequency.

The slight differences between simulated and experimental runout zones
associated with the 1% pass frequency can be explained by the fact that the
developed bouncing model is not adapted for surface material consisting of highly
cohesive soils composed of fine particles, which is found in the valley bottom. The
differences observed may also be due to an imperfect digital representation of the
terrain in the Digital Elevation Model at the intersection of the avalanche path and
the forest road. This local discrepancy in the Digital Elevation Model results from its
spatial resolution.

However, the agreement between the model’s predictions and the experimental
results shows that integrating the stochastic approach presented in the field of
trajectory analysis is relevant.

5. Conclusion

In this paper, a stochastic model for the bouncing of a boulder on a coarse soil
was proposed. Since large data sets were necessary to perform the stochastic model
determination, a numerical model of the impact using the DEM was first developed
and validated compared with results from half-scale experiments. Based on this
DEM model, an extensive numerical simulation campaign was carried out, providing
a large set of results for varying local configurations of the soil and incident
kinematic boulder parameters. The statistical analysis of the numerical results based
on advanced statistical methods provides a definition of a stochastic bouncing model
that quantifies most of the reflected velocity vector’s variability.

The stochastic bouncing model developed can be considered an extension to
classical models that simulate the coupling between the incident kinematic
parameters. The global stochastic framework proposed also quantifies the sources of
the variability in reflected velocity separately.

The detailed analysis of the model proves its relevance for modeling the
variability of the reflected velocity vector for ratios of boulder size to soil particle
mean size from 1 to 5. This analysis also highlights that the influence of soil particle
shape cannot be ignored. Finally, the stochastic bouncing model proposed was used
in the context of rockfall trajectory analysis to simulate real-scale rockfall
experiments. The comparison between rockfall simulation and experimental results
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proved the relevance of the stochastic bouncing model for performing rockfall
trajectory simulations.

Thus, with the stochastic bouncing model, a coherent probabilistic starting point
for carrying out prediction-oriented simulations of boulders impacting a coarse soil
is proposed. In particular, probability distribution functions characterizing hazard
levels on an endangered slope can be built, which offer objective probabilistic data
for positioning and designing rockfall protective structures as well as hazard zoning.

Finally, the DEM model of the impact of a particle on a granular assembly
presented in this paper is of great interest for investigating the physical mechanisms
that govern boulder bouncing. In addition to the results presented in this paper, a
detailed study of the mechanisms involved during the impact was conducted
(Bourrier et al., 2008). The results obtained allowed thorough characterization of the
energy exchanges between the impacting particle and the granular assembly, which
resulted in defining three impact regimes depending on the size of the impacting
particle and on the depth of the granular assembly. These results are interesting for
several research fields such as aeolian sand transport or particle transport for
industrial purposes.
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