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Boosting: a classification method for remote sensing

Jean Stéphane Bailly* - Michel Arnaud** - Christian Puech*

Abstract: This article sets out to demonstrate how boosting can serve as a supervised classification method, and
to compare its results with those of conventional methods. The comparison begins with a theoretical example in
which several criteria are varied: number of pixels per class, overlapping (or not) of radiometric values between
classes, with and without spatial structuring of classes within the geographical space. The results are then
compared with a real case study of land cover based on a multispectral SPOT image of the Sousson catchment
area (South of France). It is seen that 1) maximum likelihood give better results than boosting when the
radiometric values for each class are clearly separated. This advantage is lost as the number of pixels per class
increases; 2) boosting is systematically better than maximum likelihood in the event of overlapping radiometric

variable classes, whether or not there is a spatial structure.
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1. Introduction

In many applications, it is often difficult to class, or more precisely to attribute an object
(statistical unit) to a class (or group) defined a priori. In general, the term used for this is

supervised learning.

This operation is conducted on a set of multivariate observations, and the methodology used is
quite general: it consists in establishing a decision-making rule that fits the set of data as

closely as possible.
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Establishing these decision-making rules may involve a large number of techniques (Hastie et
al. 2001) drawn from a wide range of fields such as statistics (discriminant factor analysis,
decision trees, etc.) (Ripley 1996) or artificial intelligence (neural networks, etc.) (Bishop

1995, Ripley 1996).

Although these methods are very generally applicable and can be used in a wide range of
sectors of application (economics, agronomy, sociology, geography, pedology, epidemiology,
etc.), this article covers only applications directly linked to remote sensing, and we shall thus

use the term supervised classification.

In view of the bulk of data to be analysed and their complexity, new methods have been
developed in recent years in the data-mining sector and particularly in that of computer
learning. This has recently become a highly active research sector (Dietterich 1999a) due to:
1) the meeting between researchers working in a range of fields (symbolic machine learning,
calculator learning theory, neural networks, statistics, pattern recognition, etc.); 2) the
application of learning techniques to new problems (the search for hidden knowledge in
databases, language processes, robot control, combinational optimization, etc.); 3) the search
for solutions to age-old problems (speech recognition, facial recognition, writing recognition,

game theories, etc.).

This fruitful research has given rise to a certain number of supervised classification
algorithms. We intend to present one that we feel to be well suited to the classification
problems encountered in remote sensing: boosting. Boosting was first proposed by Freund
and Schapire (1995, 1996), and is a procedure that results in a very precise law of prediction
comprising a linear combination of relatively simple, moderately precise decision-making

rules.

Although it is relatively recent, this tool has already been used for a certain number of

geomatics applications: production of a land cover map under the MODIS project MOD12
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Land Cover within IGBP', and work by Briem et al. (2001) on classifying multiple-sensor
satellite images. Moreover, a study of boosting performance has been conducted, based on
various configurations of two groups: diagonal linear border with and without intruders,

alternate parallel strips and toruses (Arnaud et al. 2002).

It therefore seems particularly appropriate now to look closely at the tool’s properties and
assets, but also its limitations, in relation to applied work concerning remote sensing

observations.

This article sets out to present the basic principles of the boosting algorithm and recall the
characteristics of one of the algorithms most commonly used in remote sensing (MLC :
maximum likelihood classification); to study how boosting works on well mastered
theoretical examples and test its application to a real case (land cover in the Sousson
catchment area); and, in both cases (theoretical and real), to compare the results obtained by

boosting with those of conventional methods.

2. Boosting and conventional classification methods

2.1 Problem, notation and algorithm

Problem: the aim is to map land cover in a given zone, based on a remote sensing image. It is
assumed that K classes of land cover have been defined for the zone. The image traditionally
comprises a set of contiguous pixels making up the statistical units. Each pixel is
characterized by its radiometric value, spatial position (geographical coordinates) and
possibly by other information that may improve classification (soil type, crop history,

toposequence, etc.). After field reconnaissance to link a pixel sample to one of the K classes,

! http://geography.bu.edu/landcover/userguidelc/Ic.html and
http://modis.gsfc.nasa.gov/sci_team/pubs/abstracts/MST-A0426.html
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the aim is to establish a decision-making rule that attributes the non-sampled pixels to one of

the classes as accurately as possible.
Basic, test and anonymous sets: the pixels are split into three sub-sets:

1. A set of basic pixels (also known as the training or learning set), for which the
group number or class are known and with which the decision-making rule is

established (classification);

2. A set of test pixels for which the group number is known, which are used to test

the decision-making rule;

3. A set of anonymous pixels for which the group number is not known and which
are intended to be classed in one of the K groups, using the decision-making rule

established in (1).

Each of these three sets is necessary, particularly the test set, which enables cross-checking of
the classification model. While the basic set is used to establish the decision-making rule, it is

the test set that serves to validate it.

Notation: {(X1, Y1),.--,(Xm, Ym)} 1S the basic set ({(x’1, ¥’1),..-,(X’n, ¥'n) the test set

respectively), where:

xi=(xil, xiz,...xip)e R”. This is the vector of the so-called explanatory variables. The
observed value (radiometry, geographical coordinates and other information of use for
classification, both qualitative and quantitative) is designated x; for pixel i and variable j

designated x.

yi € Y={I,....K}; yi is the variable to be explained. It corresponds to the number of the

group to which pixel 1 belongs: K corresponds to the number of classes or groups.
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Weak ‘learner’ and associated ‘classifier’:

Definition I: a weak ‘learner’ is a function with real values:
h: R’xY - R

(x,/) > h(x,/) e R
The values of h(x,/) can be interpreted as follows:

e if h(x,/) is positive, observation x is close to group /. Conversely, it is far from group

¢ if h(x,?) is negative;

e absolute value |h(x,/)| characterizes the degree of confidence in the prediction: the

higher the value, the ‘safer’ the prediction. It is not a probability but it has the same

significance.

An example of weak ‘learner’ may come from decision trees (CART) (Breiman et al. 1984),

corresponding to hyperlines in the space R’ of the variables. We expand further on that weak

classifier example in remarks for table 1.

Definition 2: given hy,....,hT, a set of T weak ‘learners’, it is function H with values within

T
Y = {1,...,K}that is the ‘classifier’ associated with weak ‘learner’ > oh, :
t=1

H:R > Y={l,.K}
T
x — Hkx) = {{ e Y={I,...K} such that Y oh,(x,/) reaches
t=1

maximum}
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Boosting algorithm: the initial algorithm AdaBoost (Freund and Schapire 1995, 1996), which
only took account of two groups, was generalized through other algorithms, particularly
AdaBoost. MH (Schapire and Singer 1999) with a view to addressing more general
classification problems, particularly multi-class (more than two groups) and multi-label
classification (possibility of assigning several groups to each observation simultaneously). It

is this algorithm that we have used in this article. It is presented in detail in table 1 below.
[insert table 1 about here]

Some remarks concerning the algorithm (table 1):

e On each iteration t, AdaBoost.MH searches for a weak learner h; from the observations in
the basic set. Boosting is sufficiently flexible to handle any sort of weak learner, such as
decision trees or neural networks. Many trials (Friedman et al. 1998) have shown that
weak learners based on decision trees with a single level (CART) (Breiman et al. 1984)
give good results. Algorithm AdaBoost.MH uses this method: at each step t, a function h

is obtained that identifies both a variable x’' and a real value stj, known as the threshold,

relating to that variable. This value can be used to establish a distribution of the space R’

of the variables:
@0 = {x=(X1,...,X,) such that x <s) } and go{ = {x=(X1,...,Xp) such that x >sf}
The values assumed by weak learner h; can be expressed as follows:

|Classl ... Class? ... ClassK
$0 1 Co - Co e Ci whereht(x,£)={

2, Cy .. Cy O

. t
c,, 1f xe g,

. t
c, 1ifxegp
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At the start of the process, all the basic observations have the same weight. At the end of
each step, new weights are calculated in such a way that that of the wrongly classified
items is greater than that of well classified items. At each step, these weights are taken

into account by the weak learner (boosting-by-reweighting);

The choice of coefficient o depends on the values taken by weak learner h;. If it can take
any real value, o is taken as 1. If h; is made to take discrete values (-1 or +1), o is chosen

so as to minimize normalization factor Z; (Schapire and Singer 2000).

Advantages and limitations of AdaBoost.MH: The algorithm has numerous advantages: it
is quick in terms of calculation time and easy to program and use. The only parameter to
set is T, the total number of iterations. T can be determined by doing an initial calculation
‘just to see’ and by looking at the percentage of well classified items for the basic and test
samples. Subsequently, it is the T value for which the percentage of well classified items
in the test sample no longer increases significantly that will be chosen. The weights
calculated at each iteration are another boosting indicator: they offer a possibility of
detecting irregular data (outliers), either due to an error in attributing them to a group or to
the fact that the observation was very difficult to classify in one of the groups (Schapire
1999). On the other hand, AdaBoost is highly dependent on the basic sample and may not
give satisfactory results if the training set contains an insufficient number of observations

or if the data are very ‘noisy’ (Dietterich 1999b).

Testing and comparison with other algorithms: Adaboost has been tested by numerous
researchers in machine learning or artificial intelligence researchs (Dietterich 1999b,
Drucker and Cortes 1996, Maclin and Opitz 1997, Quilan 1996) for several datasets
(Blake and Merz 1998) and compared with learning methods such as C4.5 (Quinlan

1993). It has generally been the method that gives the best results. The performance of
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AdaBoost. MH was compared with other methods for standard datasets in Yang’s study

(1999) and was one of the best.

2.2 Using boosting

Percentage of well classified items: there are two major indicators that can be used to analyse
and interpret the scores proposed by boosting: the percentages of well classified items for the
basic sample and the test sample. The test sample is essential, as it can be used to validate the

results proposed by boosting on other observations not used to establish the classifier.

Determination of the value of T: the choice of criterion T is very important. Our tests showed
that in most cases, the percentage of well classified items in the basic sample continued to
rise, while the percentage of well classified items in the test sample, randomly selected,
stabilized or even decreased. We therefore decided to give T the value that optimized the

percentage of well classified items in the test sample.

While the percentages of well classified items in the basic sample and above all in the test
sample are two good criteria for judging the relevance of the classification obtained by the
final classifier, they are insufficient, since they are only global criteria, and do not provide any
information on the observations themselves. As we shall see, boosting offers criteria that can

be used to control the results at observation level.

Boosting weights: at each step t, the boosting algorithm calculates the values of weights Dy(i,
0) for each observation i in the basic sample in class /. These values can be represented as

follows:

| Class1 ... ClassK
1| D/J(1) ... DILK m K )
D, =| . t( ) t(, ) where > > D, (i,¢)=1
- : - i=1/=1
m | D,(m]1) ... D,(mK)
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For each value of step t, it is possible to represent graphically the K*m values D(i,¢) that each

represent the weight of each observation in the basic sample in class ¢ and to study any
changes. In some cases, it will thus be possible to identify the observations that reveal high
values that will necessitate a return to the data. High Dy(i,/) weights will pinpoint the

existence in the basic sample of one or even several outliers or wrongly classified data items.

Value of the learner: at step T (but also for any value t < T), boosting provides the values of

T
the weak learner ) o h, . This function of R'XY and with values in R can be used to produce
t=1

maps of each class /=1...K from the columns in the matrix below. These maps will help in

interpreting the attribution of each pixel (basic, test, anonymous or to be classified) in one of

T
the K classes, taking account of both the sign of > oh, (positive if i is close to class /), but
t=1

also of its absolute value (the higher the absolute value, the more accurate the prediction). For
a given class /, a distinction can be made between pixels with a strong chance of being

classified in that classify (high absolute value and positive sign), pixels with a strong chance
of not being classified in that classify (high absolute value and negative sign), and pixels for

which there may be a degree of indecision (low absolute value).

Class 1 Class K

T T
1| Yah @) ... >ah(LK)
t=1

t=1

T

m | Yoh(m) ... Yoh(mK)
t=1

t=1

Decision area: when only considering two variables in order to classify pixels (for instance
the two radiometric variables XS2 and XS3), it may be worth visualizing the successive
decision-making rules built from the weak learners obtained at each step t, within the variable

arca.

Boosting:a classification method for remote sensing 9

CemOA : archive ouverte d'Irstea / Cemagref



Importance of variables: at each step t, boosting selects one variable and one threshold. At the
last step T, the contribution of each variable can be measured by counting the absolute and

relative appearances of each one.

2.3. The maximum likelihood method

On remote sensing images, the most commonly used, standard supervised classification
method is that of maximum likelihood. This is based on an assumption of the normality of the
distribution of radiometric values for each class. In practice, this hypothesis is rarely tested,
but the robustness of this method (deviation from the theoretical Gaussian model) means that

it performs well.

We shall now briefly recall the principles of classification by maximum likelihood, which is

widely described in the literature (Schowengerdt 1996, Monget 1997, Jia 1999). This method
is based on calculating the probability of a pixel x being classified in class ¢, /= 1...K. This

probability uses Bayes’ law:

w avec P(x)= iP(X/g)P(K)

P(//x) = po)

This shows that seeking probability P(¢//x) means maximizing the function

g(¢,x) =P(x/¢).P(¢). This maximum is obtained by calculating the log-likelihood of g(, x):

1 a 1 A ’res — A
log(g(£. X)) = log(P(£)) =+ log(2m) ~_log(£ ) -~ (x =1, )L, (x~ )
In this case:
e (x—[, )'ﬁ[l (x—[,) is the Mahalanobis distance from pixel x to classify /;

e Y, is the experimental variance-covariance matrix of class ¢ in the radiometric variable

area estimated from the basic sample;
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® [i, is the experimental mean of class / in the radiometric variable area estimated from the

basic sample;

e |Z ¢ | 1s the determinant of matrix ) /s

e P(/)is the prior probability of class ¢ in a Bayesian estimation. In this case,
equiprobability prior of the classes is assumed. This hypothesis is open to debate in the
application we intend to discuss, given that we already know the land cover pattern and

the fact that temporal changes are only small on an overall level.

In the case of maximum likelihood, the decision-making rule will be: pixel x will be classified

in class / if it maximizes the quantity:

log(g(¢,x)) when ¢ € {1,....K}

3. Applying boosting to a theoretical example

We tested the algorithm on several theoretical examples. For six land cover classes, we
simulated the values of two variables, XS2 and XS3, combining 1) the more or less
substantial sampling effort (N=12, 24 and 36 pixels per class), 2) whether or not the
radiometric values overlapped, 3) whether or not geographical coordinates were used as
additional explanatory variables, 4) in two clearly determined situations: one with a spatial
structure and the other without. It is worth noting that sampling was interlocking: the small
samples were part of the large ones. The results of these different types of configuration were

compared with the conventional classification techniques found in standard software.
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CemOA : archive ouverte d'Irstea / Cemagref



3.1 Without geographical coordinates:

We intend to present the results of the following two examples: the first will look at a
situation in which the surrounding polygons of the six classes in the radiometric variable area
do not intersect (figure 1). The second will look at the case of a non-vacant radiometric
variable overlap between the classes. In both cases, we shall study the effect of increasing the

number of pixels in the classes.

[Insert figure 1 about here]

3.1.1. Without radiometric variable overlapping:

In the six theoretical classes studied (forest, dense, medium and sparse vegetation, bare soil
and water), shown in figure 1, we drew at random (with replacement) the whole XS2 and XS3
radiometric values of N = 12, 24 and 36 pixels respectively, in order to constitute a basic

sample and a test sample. These samples were interlocked.

Percentage of well classified items: when the number N of pixels per class was equal to 12,
the percentage of well classified items for the basic sample reached 100% at step 8, while the
percentage of well classified items for the test sample reached a maximum value of 87.5% at
step 16 (figure 2). When N was 24 and 36 respectively, the percentage of well classified items
for the basic sample was 100% at steps 16 and 33, while the maximum percentage of well
classified items for the test sample was 89.6 and 92.1% at steps 15 and 59. Within this range
of variation in N, it is seen that when N increases, the percentage of well classified items also

increases, but that this also takes a greater number of steps.

[Insert figure 2 about here]
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Decision area: within the space formed by pair (XS2, XS3) it is possible to visualize at each
step t the class partitioning established using weak hypotheses and based on the values of the
basic sample. We visualized this partitioning for N=12 at step t = 16 (i.e. when the
percentage of well classified items for the test sample was maximum), and the pixels of the
test sample (figure 3). This graph serves to identify the radiometric variable zones in which
the test or anonymous pixels will be inappropriately classified. It reveals that this division
closely fits the values in the basic sample, which is what makes the boosting method highly

dependent on the basic data.

[Insert figure 3 about here]

Boosting weights: when N = 12, we represented the maximum and minimum weights of the
pixels calculated at each step (less than or equal to 8) and in each class (figure 4). In the bare
soil class (‘e), it is pixel 52 that stands out, with a high weight from t = 6 on. If one refers to
its position within the radiometric variable area, it is seen to be on the far left of class 'e'
(figure 1, left) and is also very close to class 'a'. The algorithm will therefore give this pixel a
high weight, resulting in a search for weak learners with a view to assigning pixel 52 to the
right group (i.e. 'e'). At step t = 8, although all the pixels in the basic sample scored highly, the
absolute value of the weak learner for pixel 52 and for class 'e' is still low. In subsequent
steps, boosting will therefore attempt to increase this value to make the prediction more

accurate. We observed that the pixel weights were relatively low in the other classes.
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One of the main merits of boosting weights is to check the coherence or validity of the values
of an observation in a group. This may therefore be a useful criterion in seeking out irregular

data (outliers).

[Insert figure 4 about here]

3.1.2 With radiometric variable overlapping:

Percentage of well classified items: when there is a non-vacant intersection between the six
classes and they overlap within the radiometric variable area (figure 5), the results of boosting
deteriorate significantly: the percentages of well classified items in the basic sample decrease
overall. In our case, they were 98.6% at step 86, 84.7% at step 95 and 76.4% at step 100 when
the number of pixels was N = 12, 24 and 36 respectively. For the test sample, the percentages
of well classified items fluctuated around 50% irrespective of the number of pixels per class:
50% at step 61 for N = 12, 50.7% at step 23 for N = 24 and 48.6% at step 28 for N = 32

pixels.

[Insert figure 5 about here]

In the event of significant overlapping between the classes and if geographical coordinates are

not used, the boosting algorithm is apparently not capable of effectively classifying items.

In general, in addition to the radiometric values attached to each pixel, its position within a
geographical area is always known. While conventional classification techniques such as

maximum likelihood have difficulty taking account of this information due to the implicit
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statistical hypotheses assumed in the laws concerning the variables, boosting can take it into

account more easily.

3.2 With geographical coordinates and marked spatial structuring of the classes:

We intend to look at how boosting performs in two very different geographical situations: that
of a very strong spatial structure and that of an almost random distribution of classes. We
introduce here geographical coordinates as demonstrative variables while the geographical
space can be easily interpreted. We intend to assess with geographical coordinates how
boosting is suitable for classification with specific or complex spatial structure features in the

hyperspace of variables.

3.2.1. Without radiometric variable overlapping:

As we knew the radiometric values of the pixels for the two channels XS2 and XS3, we drew
at random (but without replacement) the value of the coordinates of N = 12, 24 and 36 pixels
for the basic and test samples within a geographical area with a very marked spatial structure.

Figure 6 below shows the pixels of the basic sample for N = 12.

[Insert figure 6 about here]

Percentage of well classified items: for the basic sample, the percentage of well classified
items was 100% at steps 8, 10 and 23 for N = 12, 24 and 36 pixels respectively per class. For
the test sample, for N = 12, 24 and 36 respectively, the percentage of well classified items was

87.5% at step 46, 93.8% at step 16 and 97.2% at step 93.
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Boosting weights: for N = 12, we represented the maximum and minimum weights of pixels
in classes 'd' and 'e' for which the maximum value was high (figure 7). This identified two
pixels: 52 and 46. Pixel 52, which is mentioned above, had a high weight in the bare soil class
(‘'e"), while pixel 46 had a high weight in class 'd' as well as in class 'e'. Pixel 46 thus revealed
another effect of boosting weights: they switched pixel 46 to class 'd" from class 'e'. It is to be
noted that these two pixels are both on the border between these two classes, in both the

radiometric variable and geographical areas (figures 1 and 6).

[Insert figure 7 about here]

Contribution of variables: if the radiometric values do not overlap, the geographical
coordinates Xcoord and Ycoord have relatively little influence (around 20%) when N = 12 or
24, when establishing the decision-making rule constituted by boosting. Once N is greater (N
= 36), the geographical coordinates become more important: their influence increases to

around 37% (table 2)

[Insert table 2 about here]

In the event of a strong spatial structure and no overlapping between radiometric variable
classes, using the geographical coordinates of pixels improves classification results, provided

the number of pixels per class is not too small.
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3.2.2. With radiometric variable overlapping:

Percentage of well classified items: in the event of a spatial structure, the results concerning
the percentage of well classified items from the test sample are obviously less good with
overlapping than without, but are still better than those obtained with overlapping but without
using the geographical coordinates. For the basic sample in our case, the percentage of well
classified items was 100% at steps 27 and 58 and 99.1% at step 88 for N = 12, 24 and 36
respectively. The percentages for the test sample were 69.4% at step 49, 81.9% at step 45 and
82.9% at step 30 for N = 12, 24 and 36 pixels per class respectively. The boosting algorithm
thus compensates relatively well for overlapping radiometric values by using the geographical

coordinates.

Importance of variables: in the event of overlapping radiometric values, the geographical

coordinates are almost as important as the radiometric values (table 3).

[Insert table 3 about here]

In the event of a strong spatial structure and overlapping radiometric variable classes, using
the geographical coordinates of the pixels improves the results of classification, irrespective

of the number of pixels per class.

3.3 With geographical coordinates and without a spatial structure:

We drew at random (without replacement) the coordinates of N = 12, 24 and 36 pixels in the
basic and test samples interlocked within a geographical area without a spatial structure or at

least with a much more divided structure than before. This area was constituted by random
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distribution of 36 adjacent large plots representing each of the six land cover classes times six

replicates. Figure 8 below shows the pixels of the basic sample for N = 12.

[Insert figure 8 about here]

3.3.1. Without radiometric variable overlapping:

Percentage of well classified items: the results were almost the same as when geographical
information was not taken into account and the radiometric variable classes did not overlap
(see above, 3.1.1). The percentages of well classified items for the basic sample were 100% at
step 8, 10 and 23 for 12, 24 and 36 pixels per class respectively. For the test sample, for N =
12, 24 and 36 pixels respectively, the percentage of well classified items was 87.5% at step

16, 89.6% at step 57 and 93.5% at step 94.

Boosting weights: the results were again similar to those obtained without taking account of
geographical information and in the event of non-overlapping radiometric variable classes

(see above, 3.1.1).

Importance of variables: in the absence of overlapping between radiometric values, the
geographical coordinates (Xcoord and Ycoord) had no effect when N = 12 and contributed for

14 and 27% when N = 24 and 36 respectively (table 4).

[Insert table 4 about here]
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In the event of a lack of spatial structure and of overlapping between the radiometric variable
classes, using the geographical coordinates of the pixels does not improve classification

results.

3.3.2. With radiometric variable overlapping:

Percentage of well classified items: the results were better than with overlapping radiometric
variable classes and without taking account of spatial information (see above, 3.1.2). The
percentage of well classified items for the basic sample was 100% at steps 36 and 78 for N =
12 and 24 respectively and 97.7% at step 83 for N = 36. As regards the test sample, the
percentages of well classified items were 62.5, 69.4 and 76.9% for N = 12, 24 and 36

respectively at steps 40, 66 and 98.

Importance of variables: in the event of overlapping radiometric values, the geographical
coordinates (Xcoord and Ycoord) took over and intervened in the search for weak learners, in
direct relation with N and with a contribution amounting to 45% when N = 12, 54.5% when N

=24 and 55.1% when N = 36 (table 5).

[Insert table 5 about here]

In the event of a lack of spatial structure and of overlapping radiometric variable classes,

using the geographical coordinates of the pixels improves classification results. However, the

improvement is much greater in the event of a spatial structure.
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In the various situations mentioned above, maximum likelihood was used. Table 6 below
gives the comparative results of the two methods. In terms of the percentage of well classified

items in the test sample:

e on the whole, boosting generally gave much better results when spatial information
(pixel coordinates) was used, except in the event of a simultaneous lack of spatial

structure and of overlapping radiometric variable classes;

e maximum likelihood gave better results than boosting in the event of a clear separation
of the radiometric values of each class. This advantage disappeared as the number of

pixels in the class increased;

e boosting was systematically better than maximum likelihood when there was
overlapping between the radiometric variable classes, irrespective of whether there

was a spatial structure.

[Insert table 6 about here]

4. Application:

4.1 Sousson catchment area landscape context

We applied the method to the classification of land cover in the Sousson catchment area, as
per a simple nomenclature similar to the theoretical case quoted above. The catchment area
covers an area of 120 km?, is in south-western France and has the elongated north-south shape
characteristic of the region (see figure 9). Studies are under way in the catchment area on the

transfer of pollutants of agricultural origin, and in particular require information on land cover
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at plot level. The site, for which exhaustive field information is available that tallies with the
date of the processed image (18 August 1996), has already been used for comparisons of
image classification methods (agricultural unit mode classification (Colin 2002), classification

and prediction using temporal information (Dufour 2001)).

Land cover is structured within the geographical area by virtue of the simple geometry of the
catchment area and its morphology: the left bank to the west is broad, gently sloping and
heavily cultivated, and differs from the narrow, steeply sloping right bank to the east, which
primarily comprises forest and grassland (figure 9). The catchment area can be seen as
exclusively agricultural; there are no industries and no settlements of over 200 inhabitants.
Agriculture is organized in maize monoculture or mixed polyculture-animal production

systems. This has resulted in the area being split into often small, irregular-shaped plots.

The main land cover types seen in the study zone in 1996 were, in decreasing order of area:
grassland, forest, maize and cereals, followed by sunflower, fallow, buildings, soybean and

rapeseed (Colin 2002).

[Insert figure 9 about here]

4.2. Presentation of the classified SPOT image

The image’s radiometric information was obtained from the three SPOT channels: XS1 (green
channel, from 0.50 to 0.59 um), XS2 (red channel, from 0.61 to 0.68 wm) and XS3 (near-

infrared channel, from 0.79 to 0.89 um).

From the initial population comprising pixels from the SPOT Image, we chose only pixels

whose edges were at least 20 m from the edge of a plot, by superimposition over a vector
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database corresponding to the agricultural plot structure. We thus assumed that the remaining
population (about 85 % of the initial population) contained few mixed pixels and that the

effect on radiometry of georeferencing the image was limited.

The cover types under-represented in the catchment area were eliminated due to the lack of
representativeness of the samples. These were tobacco, market garden crops, water, soybean,
vineyards and buildings. In view of cropping schedules and of the date of the image, the
chosen types were grouped together, resulting in a nomenclature comprising five main
classes: forest (class A), maize (class B), cereals and rapeseed (class C), grassland-fallow-

sorghum (class D) and sunflower (class E).

4.3. Study of part of the catchment area

4.3.1 Description of the zone

From this area, we extracted an initial window representative of land cover in the downstream
section, representing around 10% of the total catchment area (see extract in figure 9). The

geographical distribution of the different classes was quite marked in this zone.

[Insert figure 10 about here]

[Insert figure 11 about here]

The zone contained 4944 pixels (figure 10). Each pixel was characterized by its three

channels (XS1, XS2 and XS3), its coordinates (Xcoord and Ycoord) and its land cover class.
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In this case, exhaustive information was available on all these aspects. Pixel distribution in the
area (XS2-XS3) is shown in figure 11. Table 7 gives a breakdown of the different classes and

the numbers involved.

[Insert table 7 about here]

The set of data was split into three, by random drawing, without replacement: a basic sample
and a test sample, each comprising 247 pixels (i.e. a 5% sampling rate), with the remainder

(4450 pixels) making up an anonymous sample.

4.3.2 Results of boosting

In this case, the boosting operation took account not only of the three channels, XS1, XS2 and

XS3, but also of the geographical coordinates, Xcoord and Ycoord.

Percentage of well classified items

The algorithm achieved 100% well classified items for the basic sample at step 99, while the
maximum percentage of well classified items for the test sample was 87.9% at step 56 (figure

12).

[Insert figure 12 about here]
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Boosting weights: these were studied for each class up to step 99. We shall present only the
results for the maize class. In this class, pixel 11- was seen to have a high weight (figure 13).
It could be represented within both the XS2-XS3 radiometric variable area (figure 14) and the

geographical area (figure 15) and was located on the edge of both areas.

[Insert figure 13 about here]

[Insert figure 14 about here]

[Insert figure 15 about here]

Importance of variables: we calculated the contribution of the variables to the establishment
of learners during the first 56 steps. This showed that the contribution of the geographical

coordinates was around 55% (table 8).

[Insert table 8 about here]

Mapping learner values for each class: we have seen that at the end of each step t and for
each class, boosting provided the value of the learner that could be used to class the pixels
from the basic, test and anonymous samples. As the value of the learner is interpreted
according to its sign and absolute value, we were able, by referring to the geographical area,
to identify zones whose likelihood of classification in a given group was high, average or low.
Figure 16 below reveals zones with a strong chance of being classified in the forest class
(red), others with only a small chance of being classified in the forest class (blue) and others

for which there was a degree of uncertainty (yellow).
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[Insert figure 16 about here]

Mapping pixels reclassified by boosting: to compare our results with the initial image for
which the relevant information was known, we visualized in figure 17 the pixels reclassified
by boosting. This enabled us to identify wrongly classified zones, which were often in

borderline areas.

[Insert figure 17 about here]

4.4. Study throughout the catchment area

Using a 5% sampling rate, by random drawing without replacement, for the basic and test
samples, we obtained a percentage of well classified items for the test sample of 77.7% at step
677. We saw that the geographical structure was much less marked in the catchment area as a

whole (figure 9).

4.5. Comparison with the maximum likelihood method:

For the same samples with the same variables (XS1, XS2, XS3, X, Y) , we produced a
classification with the maximum likelihood method, without taking account of a priori

information. We obtained the following results (see table 9 below):

[Insert table 9 about here]
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Boosting again proved to be a better classifier than maximum likelihood. The difference was
less marked when data was taken from the whole catchment area, but there was still a

difference of around 7% between the two methods.

The poor results for MLC (maximum likelihood classification) on the part of the catchment
area can be explained by the spatial structures of the classes at this spatial scale. This spatial
structures present shapes in X,Y space that are captured by boosting. Theses shapes cannot be

fitted by the ellipses due to the hypothesis of normality for distributions of the MLC model.

For computational aspects, the application of the boosting algorithm on the whole catchment

samples took from 2 to 15 seconds on a conventional Pentium PC.

5. Conclusion

The results obtained for theoretical examples showed that boosting was equivalent to the
maximum likelihood classification method when geographical coordinates were not taken into

account.

However, for both the theoretical and the studied cases, boosting had the advantage, except if

the radiometric variable classes did not overlap.

This advantage was largely due to the fact that boosting may use variables that present
complex shapes in the variables hyperspace (as geographical space when there is a minimum

of spatial structuring).

The flexibility of the algorithm also makes it possible to take account other information likely
to improve classification that may be available for the image as a whole (land use maps, etc.).
Another positive aspect of boosting lies in the possibility of mapping criteria for the quality of

the classification of each pixel. This map would thus make it possible to qualify the

classification by identifying three types of pixels in each group /: those for which there is a
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high certainty of classification in group /, those for which there is a high certainty of not

being classified in group 7, and lastly those whose attribution to group / is uncertain.

Boosting does not estimate parameters for the classification model compared to MLC.
Consequently, it’s less sensitive to over-parameterisation while data dimensionality increases

with same amount of samples.

While boosting produces better results, it should be used with caution : it is essential to use
the test sample to check the decision-making rule obtained (as boosting is highly dependent
on the basic sample), and weights need to be checked to detect possible outliers or intruders.
One of the main weaknesses of the method is also that it does not enable an explanatory
approach: it does not seek to find the variables that explain the difference between groups.
However, certain explanatory criteria can be provided, for instance the number of times that
each variable intervened in iterations, which should make it possible to determine the

importance of the variables.

In the geomatics field, the simplicity of the decision-making rules makes boosting an ideal
decision support tool that can easily be integrated into GIS. The final decision-making rule,

which is simply a weighted linear combination, can easily be programmed into most GIS.
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1. Assuming :

- {(x1, ¥1),-.-,(Xm, Ym)} 1s an initial set, where:

Vi=1,...,m: x; € R’ and yie Y=1{1,....K};
-{(X’1,¥’1),---,(X’n, Y'n)} 1s a test set, where:
Vi=l,...n:x%; € R" and yie Y={1,...,K};

- T is the number of trials;

- Dy(1,¢) is the weight of observation i for group 7 at step t;
- For t=1 and Vi=1,...,m: D;(i,/) = 1/mK (initial weights).

2. Repeat fort=1to T:

(a) Using weights D(i,¢), find from the initial set the appropriate weak learner h:
hg: R’xY— R ;

(b) Choose coefficient oy € R ;

(c) Calculate:

D, (i, #)exp{— o, y;(¢)h,(x;, )}
Zt
where: Z; is a normalization factor chosen such that Dy, is a distribution;
+1 ify =/
andy. (0)= { Vi

-1 ify, #/¢
(d) calculate the % of well classified items for the basic sample and the test sample using the

Vi=l,...,mand V/=1,....K: D,,(i,¢) =

t
classifier associated with > a;h; .
i=1
T
3. This produces the final classifier H(x) associated with weak learner Z:ocihi :

i=1

T
H(x)={¢{e Y= {1,....K} such that 3 oh,(x,¢) maximum}
t=1

Table 1: AdaBoost.MH algorithm (Schapire and Singer 1999)
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Figure 2: Changes in the percentage of well
classified items for the basic and test samples
(N=12)
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N=12 - step 46 N=24 - step 16 N=36 - step 93
XS1 |XS2 |Xcoord|Ycoord | XSl |XS2 |Xcoord|Ycoord|XSl |XS2 |Xcoord| Ycoord
Number | 15 21 4 6 5 8 1 2 23 35 20 15
% 32.6(45.7| 8.7 13.0 |31.3]50.0(6.2 12.5 |24.8|37.6(21.5 |1l6.1

Table 2: Contribution of variables for N = 12, 24 and 36 in the case of a non-random spatial
structure and without radiometric variable overlapping
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N=12 - step N=24 - step N=36 - step
XS1 | XS2 | Xcoord | Ycoord | XS1 |XS2 |Xcoord| Ycoord | XSI | XS2 | Xcoord | Ycoord
Number | 13 11 12 13 8 12 16 9 6 8 10 6
% 26.5(122.5124.5]126.5(17.8(26.7(35.5(20.0 |20.0|26.7|33.3 [20.0

Table 3: Contribution of variables for N = 12, 24 and 36 in the case of a non-random spatial

structure and with radiometric variable overlapping
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Figure 8: Representation of the pixels of each class
in the case of a random structure (N = 12)
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N=12 - step 16 N=24 - step 57 N=36 - step 94
XS1 XS2 | Xcoord | Yeoord | XS1 | XS2 | Xcoord | Ycoord | XS1 | XS2 | Xcoord | Ycoord
Number | 7 9 0 0 20 29 5 3 27 41 11 15
% 44.0|56.0 0 0 35.1(150.9(8.8 5.2 28.7143.6|11.7 |16

Table 4: Contribution of variables for N = 12, 24 and 36 in the case of a random spatial

structure and without radiometric variable overlapping
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N=12 —step 40 N=24 - step 66 N=36 - step 98
XS1 | XS2 | Xcoord | Ycoord | XS1 |XS2 | Xcoord | Ycoord | XS1 | XS2 | Xcoord | Ycoord
Number | 11 11 5 13 12 18 15 21 19 25 28 26
% 27.5127.5112.5(32.5|18.2(|27.3|22.7 |31.8 [19.4|25.5|28.6 [26.5

Table 5: Contribution of variables for N = 12, 24 and 36 in the case of a random spatial

structure and with radiometric variable overlapping
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Boosting Without using geographical
coordinates
N | Withoutusing | Using geographical Maximum likelihood
geographical coordinates
coordinates Spatial | Random
structure | structure
without 12 87.5 87.5 87.5 95.8
overlapping |24 89.6 93.8 89.6 93.8
radiometry 36 92.1 97.2 93.5 95.4
with 12 50.0 69.4 62.5 41.7
overlapping | 24 50.7 81.9 69.4 48.6
36 48.6 82.9 76.9 47.2

Table 6: Comparison of the two methods for the test sample
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Figure 9: Land cover in the Sousson
catchment area (Summer 1996)
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Type Class | Numbers
Forest A 928
Maize B 361
Cereals-rapeseed C 593
Grassland-fallow-sorghum D 2718
Sunflower E 344
Total 4944

Table 7: Pixel distribution according to class
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Figure 14: Identification within the
radiometric area of pixel 116, which had
a high weight in the maize class
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Figure 15: Identification within the geographical area of
pixel 116 (+), which had a high weight in the maize class
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XS1|XS2|XS3 | Xcoord | Ycoord
Number | 7 5 3 18 13
% 12589 |23.2|32.2 23.2

Table 8: Contribution of variables
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Figure 17: Map of the new classification
produced by boosting at step t=56
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Boosting | Maximum
likelihood
Partof 87.9% 57.9%
catchment area
Whole 77.7% |70.0%
catchment area

Table 9: Comparison of boosting and maximum likelihood
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