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Critical review of chemometric
indicators commonly used for
assessing the quality of the
prediction of soil attributes

by NIR spectroscopy

Véronique Bellon-Maurel, Elvira Fernandez-Ahumada, Bernard Palagos,
Jean-Michel Roger, Alex McBratney

Near-infrared (NIR) and mid-IR spectroscopy applied to soil compositional analysis started to develop markedly in the 1990s,
taking advantage of earlier advances in instrumentation and chemometrics for agricultural products. Today, NIR spectroscopy is
envisioned as replacing laboratory analysis in certain applications (e.g., soil-carbon-credit assessment at the farm level). How-
ever, accuracy is still unsatisfactory compared with standard laboratory procedures, leading some authors to think that such a
challenge will never be met.

This article investigates the critical points to be aware of when accuracy of NIR-based measurements is assessed. First is the
decomposition of the standard error of prediction into components of bias and variance, only the latter being reducible by
averaging. This decomposition is not used routinely in the soil-science literature. Contrarily, a log-normal distribution of refer-
ence values is very often encountered with soil samples [e.g., elemental concentrations (e.g., carbon)] with numerous small or
zero values. These very skewed distributions make us take precautions when using inverse regression methods (e.g., principal
component regression or partial least squares), which force the predictions towards the centre of the calibration set, leading to
negative effects on the standard error prediction — and therefore on prediction accuracy — especially when log-normal distrib-
utions are encountered. Such distributions, which are very common for soil components, also make the ratio of performance to
deviation a useless, even hazardous, tool, leading to erroneous conclusions.

We propose a new index based on the quartiles of the empirical distribution — ratio of performance to inter-quartile
distance — to overcome this problem.
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1. Introduction

Near-infrared (NIR) and mid-IR (MIR)
spectroscopy are more and more com-
monly used in soil science for measuring
various soil attributes mainly related to
chemical composition {e.g., various forms
of carbon, N, P, K contents, cation-ex-
change capacity (CEC) and pH} but also to
some extent, related to physical parame-
ters {e.g., texture (clay, sand and silt
contents), structure, porosity or bulk den-
sity} [1,2]. It is even thought possible to

replace conventional soil analysis with
NIR/MIR spectroscopy, provided reliability
is satisfactory.

Although the first serious attempts to
measure soil properties were carried out in
the early 1990s [3], NIR/MIR spectros-
copy applied to soil science really began to
take off much more recently: about half
the papers published on NIR/MIR applied
to soil science have been published in the
past three years. Research started with
MIR spectroscopy, because of the legacy of
mineralogical studies by MIR, but soil
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scientists have preferred to take up NIR spectroscopy,
because of its ease of use, portability, and lesser demand
for sample preparation. In the following, we therefore
focus on examples from NIR spectroscopy, but all the
concepts described below are similarly applicable to MIR
spectroscopy.

As described by Bellon-Maurel [4], NIR spectroscopy
applied to soil science really began in earnest at the
turn of the millennium, whereas NIR spectroscopy ap-
plied to food and agricultural products boomed in the
mid 1980s [5]. Nevertheless, NIR spectroscopy applied
to soil science has benefited from the research carried
out on these commodities and from subsequent ad-
vances in chemometrics, particularly multivariate ana-
lytical methods {e.g., partial least squares (PLS), which
was made popular by Martens and Naes [6]}. However,
blindly applying methodologies developed for agricul-
tural products to soil issues is potentially hazardous and
may not lead to optimal use of NIR spectroscopy. In-
deed, agricultural products and soils, although sharing
some comparable traits (e.g., high optical scattering) are
far from having generally similar properties or con-
straints.

The main difference between agricultural products and
soil materials is that biological samples (e.g., agricultural
commodities) are constrained by biological genetics. This
means that, whatever the location or the conditions of
production of a biological commodity, its composition is
very stable, so all the major components expected in each
commodity are known (there are no unexpected peaks),
the concentration of each component ranges between
expected maximum and minimum values, the Gaussian
distribution applies within this range and some compo-
nents may be correlated (e.g., for sugar and acidity in
ripening fruits, the more sugar the less the acidity). Soils
do not match these features (e.g., the distributions of
components of interest are generally highly skewed) so
methods that are appropriate for biological products
should be avoided for soils or used with special care. This
has been outlined by Brown et al. [7]: “Reliable calibra-
tions for materials like wheat grains and forages can be
constructed with just a few thousand samples, but these
materials are compositionally constrained by plant
genetics. Soil composition is, unfortunately, not so con-
strained, which makes the problem of VNIR-DRS (visible
near infrared diffuse reflectance spectroscopy) soil char-
acterization both different and more challenging than that
of grain or forage analysis.”

In an attempt to make NIR spectroscopy a routine
analytical technique for soil, one has to be careful about
avoiding the pitfalls of NIR-based analysis. Such a study
has already been proposed by various authors [8,9] for
general analytical purposes. But, in the case of soil, new
pitfalls and opportunities are specific to the objective of
the measurement (e.g., giving an average value over a
field, or even over a whole farm, or region) or to the
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asymmetric distributions of some soil components. It is
therefore of primary interest to study how the various
parameters classically used for assessing the quality of
the analysis (i.e. the prediction of new values and model
comparison) would be adequate for the purpose of soil
analysis. The parameters generally found in the litera-
ture to express the goodness of NIR-calibration models
are: the standard error of prediction (SEP), the ratio of
performance to deviation (RPD) and sometimes, but not

very often, the bias (found in only 25% of the cases in a

bibliometric survey we carried out on carbon analysis by

NIR/MIR spectroscopy).

The aim of this article is to investigate the critical
points to be aware of when accuracy of NIR-based
measurements is assessed, with a special focus on soil
analysis. The ambition is not to propose ways to over-
come the past difficulties of the NIR analysis of soils but
to help NIR users in soil science to develop a good
metrology for NIR-based routine analysis of soil proper-
ties. To do so, we:

(1) explain how the model-performance parameters
can, or cannot, be used to express the uncertainty
of future predictions in the context of routine soil
analysis;

(2) explain how the non-Gaussian distribution of soil
properties can bias these indices; and, finally,

(3) suggest how to improve NIR-based prediction of
soil components by the good use of statistics.

2. Preliminary assumptions

To avoid extensive discussion about model quality, we
assume in the following that a multi-linear model
exists between spectral data and the component of
interest; this means that the prediction errors show a
certain level of homoscedasticity or, in other words,
that the average prediction error of replication exper-
iments is independent of y. We also suppose that, as in
most procedures for least-squares regression, the vari-
ables are centered.

3. The issue of bias and final accuracy

3.1. The two components of the standard error of
prediction

The SEP or root mean square error of prediction
(RMSEP) is the parameter commonly used in the NIR
spectroscopy literature to describe the prediction ability
of a model. SEP? is computed as the sum of squares of the
differences between the predicted and the actual values
of y for a test sample set, which is independent from the
calibration value:

m

SEP? — Z (i — yi)z (1)

i=1 m
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where p is the predicted value and y the true value, and
m the number of observations or samples in the valida-
tion set.

SEP therefore appears as an averaged error recorded
on the validation-sample set. Authors generally compare
the SEP to the expected accuracy (EA) or, more exactly
its dual (i.e. the expected error) to decide whether or not
a method is acceptable as an alternative analytical
method. However, it is worth going deeper into the SEP
in order to overcome the issue of accuracy by posing the
question “How can we reduce the SEP?"

The SEP value can be decomposed as follows [10]:

SEP* = Bias® + SEP*c (2)
where:

.  I; Y =
Bias = = ==0- 3

ias ; - Z; =i (3)
and

m (gz — Bias — y)Z
SEP*c = - 4
c=3 - (4)

i=1
N.B. Another common way of estimating SEP2c is to

use the standard deviation of errors which has (m-1),

instead of m, as the denominator; whatever the choice of

computation (SEP decomposition or standard deviation),
in practice, the results show little to negligible difference.
This means that SEP is made up of two quantities:

e The bias, which is the difference of the mean of the
predicted versus the mean of the true y values. It is
also called the error of means. The bias comes from
systematic errors (e.g., due to the instrument, meth-
odology of analysis, and even discrepancies in the ref-
erence analysis). Most of these sources of errors can be
mitigated (instrument, methodology, reference analy-
sis), but others (e.g., the lack of fit of model) really
depend on the robustness of the model with regard
to these new conditions.

e A deviation term, SEPc (for “SEP corrected for bias”),
which is the square root of the quadratic sum of the
error of the predicted versus the true value, once the pre-
dicted value has been corrected for bias. The SEP*c is
also called the residual variance. This error is a
random value and has a mean equal to zero, provided
there is no slope effect (i.e. that the slope remains equal
to 1), which is often the case in soil applications. It
accounts for the dispersion around the 1:1 line in the
predicted versus true value graph, once the bias has been
removed (see Fig. 1). SEPc and the bias are independent.

3.2. How to reduce the SEP
The issue of “how to reduce the SEP" can therefore be
split into two parts, involving reducing the deviation and
the bias.

The deviation comes from random errors, so it can be
reduced by averaging the measured outputs: if value y; is
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the average of a k-tuplet, then SEP’c is reduced by a
factor of 1/k compared with a single measurement.
Making replications is particularly relevant for soil, be-
cause the aim is generally to predict the composition of
large areas, so multiplying the samples is not a major
difficulty. As NIR analysis is fast and easy to run, the cost
of a k-tuplet NIR analysis will not be too high (the major
cost will almost inevitably come from field-sampling
operations).

A high bias means a low trueness of the measurement.
Trueness is a metrological term, which means closeness
of the average of values obtained by replicate to the true
value. The problem is that the bias can be computed only
if both predicted values and real values of the samples
are known, which is not the case in routine analysis. In
routine analysis, the bias is unknown. The bias cannot
be reduced by averaging because averaging will retain
the systematic error, so the only way to improve the
trueness of the measurement is to reduce the sources of
discrepancy. This means attempting to build models that
are as robust as possible, {i.e., insensitive [e.g., to the
origin of the samples, or to external parameters (e.g.,
particle size, moisture)]}, standardizing procedures as
much as possible, in particular reference measurement,
and setting up adequate calibration-transfer procedures.
Discussion of how to improve model robustness is
beyond the scope of this article, but can be found [11-
15].

The issue of SEP reduction can be illustrated by an
example. Let two models for carbon prediction in soil
(say model A and model B) be fitted on the same cali-
bration set and validated on the same validation-sample
sets. Let us assume that the SEP is 2%C for these two
models. Let us assume that the EA of the NIR carbon
analysis is 1%C. We would conclude from the SEP value
obtained that these two models have the same predictive
performance and that they do not satisfy the expected
accuracy. However, if model A has a bias of 1.8%C and
model B a bias of 0.2%C, then, in practice, these models
have very different prediction abilities. Let us assume
that we compute the SEP, hereafter called SEP*, after
averaging k replicates. As shown in Table 1, replication
will greatly improve model B, whereas they will have a
small effect on model A. With 10 replications, SEP drops
from 2%C to 1.82%C and 0.66%C, for models A and B,
respectively. In that case, model B fulfils expectations
about accuracy.

More generally, if bias >EA, then the model will never
satisfy the EA. If bias <EA <SEP, then it is possible to
achieve a final SEP* <EA by making replicate measure-
ments. The number of replications, k, has to be such that:

SEP? — Bias®
SEP> < EA®> with SEP*2 = Bias® + (’“S>

k

so the condition on k is that:
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Figure 1. The effect of bias (SEP =0.73): (a) a bias of 0.65 has been found; and, (b) after removal of the bias, only the dispersion remains

SEP? — Bias®
>

k>"— "
EA? — Bias®

(5)

However if bias is close to EA, the number of replica-
tions may very well be too large to be feasible.

In conclusion, in the context of soil analysis where
replications can be carried out, if the SEP is not low
enough to match the EA, it is of prime interest also to
know the bias really to assess the future utility of the
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technique and, if needed, the number of replications
necessary to achieve the EA.

4. Uncertainties of the predicted values, and
relations with SEP and the population distribution

With the aim of developing a new analytical technique,
one must be able to deliver predicted value y with an
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Table 1. The effect of averaging the predicted values on the SEP for two models of same SEP but different bias
Model 1 replicate 10 replicates
SEP’ SEP Bias’ Bias SEPC’ SEP*? SEP Bias’ Bias SEPC”
A 4 2 3.24 1.8 0.76 3.316 1.82 3.24 1.8 0.076
B 4 2 0.04 0.2 3.96 0.436 0.66 0.04 0.2 0.396

associated uncertainty limit (given a confidence level).

To compute it, it is worth understanding the relation-

ships between the standard error of calibration, the

confidence intervals of a newly predicted value, 7,

the standard error of prediction and the distribution of

the validation set.

As a first step, SEP can be used to give the accuracy of
the model. Its main advantage is that, provided it has
been computed on a really independent sample set, it will
account for the effects of differences in acquisition con-
ditions (e.g., samples of different origin, different day,
and maybe different operator). But several drawbacks
pertain to SEP:

(1) Asshown above, it can contain a bias, which is un-
known; in the following, we shall consider that the
bias is null.

(2) It does not directly provide the uncertainty of each
individual prediction; the latter changes along the
range of the measure and Y; as stated by Olivieri
et al. [16]: “Although RMSEP is a correct summary
statistic for guiding the model-selection process
(e.g., optimal data pretreatment), it cannot lead
to prediction intervals with good coverage proba-
bilities”".

(3) As we will see below, it is very dependent on the
statistical distribution of the values of the valida-
tion-sample set.

It is therefore necessary to come back to the evalua-
tion of the uncertainty for each new prediction to
understand the relationships between the individual
uncertainties, the SEP and the distribution of the sample
set.

4.1. The expression of the individual prediction
uncertainties

As Zhang and Garcia-Munoz [17] remind us: “the gen-
eral procedure to estimate the uncertainty for y-response
y of a new individual observation with predictor row-
vector X consists of 2 steps’.

The first step deals with estimating the standard
deviation of the prediction error, o,. The second step is to
compute the confidence interval of a newly predicted
sample, assuming that the estimated error follows
t-statistics:

Confidence Intervals CI =Y, xt,_,/5 40, (6)

where: t is Student t distribution, « is the significance
level of the interval and df degrees of freedom; in MLR,
df = N — p— 1, where p is the number of variables used
for the calibration; in PLS, as latent variables are com-
puted by using y and X, the true df is unknown and lies
somewhere between the number of factors and the
number of wavelengths.

The first step is therefore to obtain o, with c,> =
Var(p).

The expressions of Var(p) are diverse, depending on
whether we consider a multiple linear regression (MLR)
model or a multivariate model based on projections on
latent variables (PCR, PLS). For MLR analysis, Zhang
and Garcia-Munoz [17] give the following expression of
Var(y;):

2 1
Var(g;) :SNJrhiSZ—FsZ =g (N+hi+1> (7)

where: N is the number of calibration samples, h;, the
leverage of sample i [see Equation (8)], s, the standard
deviation of the residuals, e¢;, which is approximated by
SEC.Note that this equation is proposed under the sim-
plifying assumption that Var(X) = 0.

The leverage value of sample i is the distance of
sample i to the centre of the calibration set, with re-
gard to the basis in use (i.e. the independent variables
in MLR):

X' Cx; = hy (8)

where: x7 is the centered spectrum of new sample i, and
C=(XX)" or (RR)"! with X the matrix of centered
spectra and R the matrix of scores for, respectively. MLR
or PLS/PCR analysis.

The importance of Equation (7) is therefore that it
applies to both MLR and latent projection methods (e.g.,
PLS and PCR).

Other relationships have been proposed in the liter-
ature [18,19] for expressing Var(y). They vary with
regard to the assumptions that have been made (e.g.,
about the variance of X, the S/N ratio, and the vari-
ance of the reference measurement). It is beyond the
scope of this article to discuss all of these in detail.
They all express Var(y) by the leverage h; of the new
object (i.e. its distance to the centre of the calibration
sample set) as a coefficient of the SEC, in addition to
other terms.
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The uncertainty of new prediction y; therefore follows
Student t distribution and the confidence intervals are:

1
Cl=y; + tlfa/z‘deEC\/N +h+1 9)

4.2. How the validation-population distribution can
affect the SEP

The uncertainty of each new sample prediction therefore
partly depends on the leverage, h, i.e.:

(i) on the distance of the new sample spectrum to the
centre of the calibration-sample set in the variable
space (in the case of MLR) or the latent variable
space (for a PLS/PCR); and,

(ii) on the size and dispersion of this calibration space.

Of course, the larger the calibration-sample set and the
smaller the number of independent variables, the lower
the leverage value and therefore the lower the influence
of the leverage. This leads us to make two important
remarks with regard to computation of uncertainty.

4.2.1. Remark 1. The smallest variance for y is obtained
for an object i at the centre of the calibration space. In that
case, the leverage is minimal (i.e. can be approximated by
0) and, based on Equation (9), the uncertainty becomes:

/1
:Etl_a/zydeEC N +1

If the number of calibration samples is high, then

%<< 1, and we can approximate t by a normal distri-
bution, i.e.:
tlfa/z,df — N(O, 1 — 06/2)
i.e. t can be approximated by 2 (precisely 1.96), if
o = 5%. This means that, in the best case (i.e., no bias,
new sample close to the centre of the calibration set,
large calibration set) and in this case only, the first
approximation of the confidence interval is =2SEC.

Consequently, for the opposite conditions (i.e. with
samples with high leverage), the uncertainty increases.
Let us consider a leverage sample that is not an outlier
[i.e. which fits the regression line (e.g., a sample showing
simultaneously extreme values for X and for y)]. The
confidence interval of the prediction of such a sample
will be large due to high leverage: in Equation (9), h;
becomes no longer negligible, so the confidence interval
becomes +t1_,/5 4sSEC\/1 + h;. This comes because, in
PCR or PLS regressions, also called inverse regressions:
“predictions are biased towards the mean of the distri-
bution of the reference values in the training (i.e.
calibration) set” [20]. This is particularly a problem for
low-concentration samples because the relative error
attached to the prediction (i.e. error ¢; divided by the true
value of y; may be huge).

4.2.2. Remark 2. The second remark comes from the
fact that leverage h; not only depends on new sample i
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but also on the size and the dispersion of the calibration
set. If the size of the calibration set is small or if the
dispersion is small, h; increases. This means that, in the
calibration phase, one should take as many samples as
possible at the borders of the sample space, and avoid
taking too many close to the centre to reduce the
leverage. The choice of the samples has already been
extensively discussed [5]. The authors advocated not
taking calibration samples ‘“‘as they went’, because
biological samples would follow a Gaussian distribution;
this would automatically increase h;. But this advice
should be followed only in the case where calibration
samples can be chosen by the operator. If the calibration
samples are already available, they must all be used,

even if they show a Gaussian distribution. Achieving a

Gaussian distribution by throwing away samples at the

centre would be an error: it does not improve the

leverage situation for future samples, because it reduces
the number of calibration samples.
The conclusions of this analysis are:

e The uncertainty of the predicted samples is not con-
stant along the whole concentration range: higher
and lower concentration samples will have increased
uncertainties due to higher leverage towards the cal-
ibration set. This can be particularly problematic for
low-concentration samples (huge relative error).

e SEP is the root mean square of prediction errors e; for
the m samples to be predicted. As described in Equation
(8), the error ¢; of a new prediction follows a Student t
distribution with zero mean and variance given by:

1
2

SEC*(1 + h; + N)

Consequently, SEP also depends on the leverage of the
new samples with regard to the calibration-sample set, so
SEP not only reflects the robustness of the model but is also
influenced by the validation-set distribution. A validation
set having a normal population centered on the calibra-
tion-set average will generate a smaller SEP than a uni-
form distribution or, even worse, a lognormal one, even if
centered on the calibration-set average. Once again, this is
because PLS optimizes predictions for a validation set with
anormal distribution with mean and variance equal to the
training set. As far as soil is concerned, this can be a main
issue because many chemical and physical attributes of
soil show lognormal distributions with numerous samples
having negligible concentrations.

To cope with this issue of very non-normal distribu-
tions, Fearn et al. [20] recently introduced a very
interesting alternative way to carrying out predictions
for such populations. The method is based on a Bayesian
approach, in which the prior distribution of the samples
to be predicted is explicitly used. Using this approach on
a very non-normal distribution (a bimodal one) of per-
centage of wheat in feedstuff samples, they created a
model that made SEP decrease from 5.33% to 0.98%.



Trends in Analytical Chemistry, Vol. 29, No. 9, 2010

As a result, whereas SEP appears a good index to
compare calibration models validated using the same
validation-sample set, its use is more questionable when
models fit using inverse regression have to be compared
based on different calibration/validation-sample sets.
This is particularly sensitive in the case of soils, because
population distributions can vary greatly and can be
very non-normal (lognormal distributions). A study is
being carried out to evaluate the feasibility of Fearn’s
new approach for soil samples.

5. Is RPD relevant in NIR analysis of soil?

5.1. The use of RPD in NIR spectroscopy

Another concern with comparing the SEP values com-
puted on different validation populations is that the SEP
value generally increases when the measurement range
of this parameter — or the mean of this range — increases.
This issue is well known and has been addressed so far
by standardizing the SEP to remove any range effect. The
standardization deals with building up a ratio of the SEP
and of any statistical index representing the population.
The most popular indices are the coefficient of variation
(i.e. the ratio of the SEP to the mean of the validation
population) (CV% = SEP/Mean), and the RPD, the ratio
of performance to deviation (i.e. the ratio of the SD to the
SEP) (RPD = SD/SEP). RPD is the one in most common
use.

RPD has been used for several years by NIR scientists
working on agricultural products [5] and has been
widely appropriated by soil-science researchers since the
paper by Chang et al. [21]. Several authors refer to
Chang et al. [21], in which three quality categories were
defined to account for the model reliability:

(1) excellent models, with RPD >2;
(2) fair models, with 1.4 < RPD < 2; and,
(3) non-reliable models, with RPD <1.4.

However, no statistical basis was used to determine
these thresholds, and other researchers [5] gave quite
different (i.e. much higher) thresholds.

Reeves III and Smith [22] disagreed with these fixed
thresholds. According to them, considering that “‘many
researchers found calibrations to be useful with RPD
values considerably lower than the proposed standards,
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it is up to the reader to evaluate all the statistic provided
and decide if similar calibrations would be useful for their
needs [...]".

We concur and, especially in soil science, RPD, which
has been developed for biological samples showing
normal distributions, may be inappropriate.

First, we have seen in the previous section that SEP,
when computed using inverse regression (PCR, PLS) on
validation sets with very non-normal distributions —
especially lognormal ones — can be problematic. We next
show how the use of SD for standardization is also
questionable, for the same reason (i.e. the lognormal
distribution of the validation set).

5.2. The use of SD for standardizing SEP obtained on
soil data

The standard deviation of soil population is not very
helpful because soil-sample sets may present a highly
skewed distribution, with many low values. Let us take
an example with real data given by the US Geol. Surv.
Open-File Rep. to which the work of Reeves and Smith
refers [22]. Table 2 shows some of the statistical
parameters provided by Reeves and Smith for organic
carbon in the samples they used for their NIR studies.
Because the selection of these samples is not explicitly
described by the authors, we approximated the data by a
lognormal distribution with meanlog =0.0234 and
SDlog = 1.03. Fig. 2 shows this as the example of real
data. For simulated data based on this distribution, a
mean of 1.85%C and a standard deviation of 2.7%C were
obtained. As the reported SEP for the NIR analysis is
2.7%C, the RPD is 2.7/1.94 = 1.39.

When one looks at RPD as a performance index, a
calibration of the same RPD (e.g., same SD and same
SEP) but built up on a normally distributed sample set
would have been ranked the same as the Reeves and
Smith example.

However, due to the difference of distributions, the SD
has absolutely not the same interpretation in terms of
the range of values. In a normal population, a 2.SD
interval around the mean includes 66% of the popula-
tion (i.e. 66% of the population is located at +/— 1 SD of
the mean); however, it represents 93% of the population
spread in the case of a lognormal distribution. That
means that it accounts for a much larger range. The

Table 2. Statistics for organic carbon based on real data given by [22] (SEC and SEP have been carried out on independent test samples), on
simulated data with a lognormal law to match the distribution LN (0.0243;1.03) and on simulated data following a normal law with the same
SD as the real data, but with a mean of 8.1 to ensure that 99.9% of the population is over zero [i.e. N (8.1; 2.7). RPIQ = (Q3 — Q1)/SEP with

SEP = 1.94%]

Data model Min Max Mea Med. Q1 Q3 SD Skew Kurtosis RPIQ
Real data 0.04 34.2 1.8 2.6 5.56 53.55
LN Sim (0.024; 1.03) 0.05 34.17 1.85 1.1 0.57 2.05 2.7 6.16 58.66 0.76
N (8.1; 2.7) 8.1 8.1 6.3 9.9 2.7 1.85
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Figure 2. Simulated data for organic-carbon content of soil. The simulated data are built using data from [1].
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RPD standardization for a normal and a lognormal dis-
tribution are therefore not directly comparable.

5.3. Proposal for a more robust index

Instead of using RPD = SD/SEP, we propose using a new

index, based on quartiles, which better represents the

spread of the population. The quartiles are milestones in

the population range:

e Q1 is the value below which we can find 25% of the
samples;

e Q3 is the value below which we find 75% of the
samples; and,

e (Q2, commonly called the median, is the value under
which 50% of samples are found.

The quartiles are therefore useful to determine equiva-
lent ranges of population spread. For example, inter-
quartile distance IQ (= Q3 — Q1) gives the range that
accounts for 50% of the population around the median. A
new index can be devised using IQ, instead of SD, as the
numerator. Let us call it RPIQ (ratio of performance to IQ).

In our case, with the lognormal distribution, the I1Q is
equal to 1.48%C and the corresponding RPIQ is then
1.48/1.94 =0.76. A normal population of the same
RPD would have an IQ of 3.6%, so RPIQ would be 1.89.
RPIQ is therefore more than double for the normal dis-
tribution, whereas RPD would have been the same. This
means that the RPD value of a lognormal distribution
gives an artificially good performance compared with the
lognormal distribution. Other simulations made up with
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data found in the literature [23] show the same trend
(i.e. a more-than-a-doubling of RPIQ for a normal pop-
ulation with respect to a lognormal population of the
same RPD).

As a conclusion, especially for soil-sample sets, which
often show a skewed distribution, the RPD is not a good
way for standardizing the SEP with respect to population
spread. It does not correctly represent the spread of the
population, because the assumptions on normal distri-
butions are generally not fulfilled as they are with bio-
logical samples. The RPIQ index, in which SD is replaced
by IQ (= Q3 — Q1), accounts much better for the spread
of the population.

6. General conclusion

The purpose of this article is to study the metrological

issues related to the assessment of soil-sequestrated

carbon content. The originality of this NIR-based mea-
surement with regard to the classical measurement of
compounds in biological products is because:

e carbon concentrations in soils show highly skewed
distributions (lognormal distributions);

e the target of soil-carbon assessment is to deliver a
value for a whole field or even a whole farm;

e the issue of this global assessment is definitely accu-
racy (i.e. closeness of the estimated and true concen-
tration values) and low-cost but, if necessary,
replications are allowed.
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The main focus has been on the SEP and on the RPD,
which are the main indices used to qualify the accuracy
and the quality of a NIR-based measurement method.

The main conclusions and advice from our analysis
are:

e Dbias is often totally neglected, whereas it is a major
component of SEP, based on SEP decomposition theo-
rem (SEP? = bias® + SEP?c); the bias is the part of the
SEP, which is irreducible by averaging, whereas SEPc
may be reduced by averaging; so, in order to know
whether an NIR-based measurement of sequestrated
carbon can reach the EA, it is absolutely necessary
to know the bias; replications can help to reduce SEPc
and therefore approach SEP to the adequate EA, pro-
vided that the bias is lower than the EA; thorough
attention has to be paid to reducing bias and to miti-
gating bias source;

e whatever the calibration method used (but this is
enhanced with inverse regression methods), the SEPc
(= SEP, when bias is null) depends not only on the
quality of the model but also on the distribution of
the validation sample, because inverse regression
tends to regress towards the mean of the reference
values of the calibration sets; so, if validation sets
are very non-normal, the SEP will be negatively af-
fected (i.e. worsened) with regards to a normal distri-
bution of validation samples; therefore comparing
models that used different validation sets is hazardous,
especially if the validation sets have very diverse dis-
tributions;

e Dbecause the SEP depends on the range of the reference
values of the validation set, RPD = SD/SEP has been
proposed as a standardized ratio of quality. Although
some authors have begun to criticize this parameter
and the quality thresholds associated to it to define
the excellent, good, average, ‘‘forget-it’ quality of
models, it is very widely spread in NIR spectroscopy
applied to soils; however, for the same reason as log-
normal distributions of reference values, its use is
somehow irrelevant, because SD does not describe
correctly the spread of the population in skewed pop-
ulations; we therefore propose a new index RPIQ =
(O3 — Q1)/SEP to represent the population spread
better, regardless of the distribution.

The main goal of this methodological study was to
make soil scientists fully aware of the limits and the
critical points of classical indicators (e.g., SEP and RPD)
in order to overcome current limitations on soil char-
acterization based on NIR measurements. If we were
successful, it would make obsolete the following view of
Brown et al. [7]: “Precision and accuracy are elusive

Trends

goals in soil characterization and yet not often quantified
— for both NIR and quantitative methods”.

The RPIQ index would then contribute to paving the
way to a reliable, low-cost assessment of sequestrated-
carbon content in soil and a fairer trade in carbon
credits.
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