Acoustic lakebed classification using sonar5-pro
Thomas Poulain, Christine Argillier, Muriel Gevrey, Jean Guillard

To cite this version:

HAL Id: hal-02594654
https://hal.inrae.fr/hal-02594654
Submitted on 15 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Acoustic lakebed classification using sonar5-pro

Thomas Poulain1, Christine Argillier1, Muriel Gevrey1, Jean Guillard2

1 Pôle Onema/CEMAGREF, 3275 route de Cézanne, CS 40061 13182 Aix-en-Provence cedex 5
2 INRA, 75 Avenue de Corzente 74200 Thonon-les-Bains

Common techniques like grab samplers or video cameras permit to obtain the true nature of the substrate in a local point but they are not adapted to survey a whole lake. Acoustic techniques have been developed to overcome this disadvantage (Poulain et al., 2010) and the single beam echo sounder technology is the most appropriate in lake areas.

Sonar5-pro (Balk and Lindem, 2006), a post processing software commonly used by the research community to estimate fish biomass, had just implemented a module which calculate parameters necessary to apply a method developed by Orlowski (1984) based on the two first bottom echoes.

Principle: extraction of two acoustic parameters, E1 and E2, related to the two first bottom echoes (fig. 1). E1 gives information about the roughness of the substrate, E2 is an indicator of the hardness, contributing both to the description of a sediment type. A first step is to create a database of couples [E1:E2] associated with true nature of lakebed (fig. 2) by an in situ validation, i.e. a calibration of the system. When a large range of sediment have been implemented in the data base, we use it to compare the [E1:E2] of an unknown area to attribute a nature to each couple.

Reference database: From March to June 2010, 7 surveys on 3 French lakes (Leman, Bimont and Bourget)
Acoustic device: Simrad EK 60 echo-sounder, 70 kHz acoustic wave frequency, power: 400 W, pulse length: 0.512 ms
Four different types of substrate acoustically distinguished: mud, blocs, sand, and sand + stones.

Application: In June 2010, a 3 km² area in the lake Leman known to be an arctic charr (Salvelinus alpinus) spawning area (Rubin, 2005) was surveyed (fig. 4). Ship speed of 4 knots maximum (speed used during fisheries surveys). Extrapolation allow then to draw a map of the 4 substrates of this spawning area (fig. 5).

Conclusion: Sonar5-pro, a standard software used by a lot of Scientists, is a useful tool to classify substrata of lakebeds. Evolutions in time and space of fish spawning areas could be done, particularly on restored sites, as arctic charr spawning areas in lake. Knowledge of the entire lake substrata by this method can help to assess ecological quality of a lake.

More studies must be carried out to add other substrata natures in the present reference database and then to precise the resolution of discrimination.