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François Nicot, Nejib Hadda, Franck Bourrier, Luc Sibille, Félix Darve

Abstract This paper attempts to numerically validate the
concept of diffuse failure using a discrete element method.
First, the theoretical background is reviewed, and it is shown
how the kinetic energy of a system, initially at rest after
a loading history, is likely to abruptly increase under the
effect of disturbances. The vanishing of the second-order
work thus constitutes a basic ingredient, related to both the
pioneering work of Hill (J Mech Phys Solids (6):236–249,
1958) and the notion of bifurcation applied to geomechan-
ics (Vardoulakis and Sulem in Bifurcation analysis in geo-
mechanics, Chapman & Hall Publisher, London, 1995).
Discrete numerical simulations were performed on homo-
geneous three-dimensional specimens, and the three basic
conditions that must be satisfied in order to observe a failure
mechanism are numerically checked. Finally, this work illus-
trates the phenomena that are likely to affect in situ slopes,
for instance, when the loading (due to weather conditions
or human activities) meets the three basic conditions for a
failure mechanism to develop.
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1 Introduction

One of the first contributions of Vardoulakis to building
rational geomechanics was to consider shear band formation
as a bifurcation problem [18,20]. Indeed bifurcation viewed
as a particular case of catastrophe (in the sense of the catas-
trophe theory, [17]) corresponds to physical states where the
shape/state of a system suddenly changes under continuous
variations of the loading parameters. According to exper-
imental evidence [19] shear bands indeed appear abruptly
during a continuous application of loading. More generally,
failure in geomechanics can be analysed as a bifurcation phe-
nomenon with loss of uniqueness and loss of stability (it
should be noted that bifurcation does not necessarily imply
either loss of uniqueness or loss of stability) and this seems
to be true for any kind of failure mode by divergence [5].

To analyse failure in non-associate materials, one crite-
rion plays a particular role: this is the so-called second-
order work criterion [1,20,5] because—if we except flutter
instabilities—this is the first to be met along a given loading
path and it contains all the other classical criteria such as plas-
tic limit conditions and strain localisation criteria [2,3,11].
However, this second-order work criterion has to be used very
carefully to avoid presumable counter-examples. Clarifying
the conditions for utilising this criterion properly is the main
objective of this paper.

So, more precisely, three necessary and sufficient condi-
tions have to be fulfilled for true material failure:

– The stress state has to be inside the bifurcation domain;
– The loading direction has to be inside an instability cone;
– Proper loading variables have to be chosen.

If one of these three conditions is not fulfilled, failure
will not occur even if the second-order work takes strictly
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negative values. The second-order work criterion is no more
than a necessary condition for failure. On the other hand and
by excepting flutter instabilities, a strictly positive second-
order work in all loading directions (i.e. for all disturbances)
is a sufficient condition of stability [7], excluding any kind
of material failure. The purpose of this paper is therefore to
investigate these three necessary and sufficient conditions for
failure.

This requires a numerical method able to describe a fail-
ure mechanism in detail. Today it seems that only molec-
ular dynamics methods give reliable and robust results for
the development of a failure mechanism, including pre- and
post-failure regimes. Thus a discrete element method [8] has
been used.

In the first part of this paper, the theoretical background of
the second-order work criterion is reviewed, then discrete ele-
ment results are presented and discussed to check the validity
of these three necessary and sufficient conditions for material
failure.

2 An approach to failure in soil mechanics

2.1 The theoretical framework

A series of studies have shown that the occurrence of fail-
ure could be described properly from the vanishing of the
second-order work [6,12,13,11]. The purpose of this section
is to briefly review the theoretical background, investigating
how the kinetic energy of a system initially in equilibrium
can rise under the application of a certain disturbance class.
For this purpose, a system made up of a volume Vo of a given
material, initially in a configuration Co (initial configuration)
is considered. bo denotes the initial body force density field.
After a loading history, the system is in a strained configura-
tion C and occupies a volume V , with a body force density
field b, in equilibrium under a prescribed external loading.
An external stress distribution f acts on the current boundary
(�) of the material.

The instantaneous evolution of the system, in the equilib-
rium configuration C at time t , is governed by the following
kinetic energy equation that includes dynamical effects:

δEc (t) =
∫

�o

Fi δui d So +
∫

Vo

bo,i δui dVo

−
∫

Vo

�i j
∂ (δui )

∂ X j
dVo (1)

where δEc represents the system’s current change in kinetic
energy, and δu is the incremental displacement field. As will
be seen later, both translational and rotational velocities of
particles have to be accounted for to compute the whole
kinetic energy of a granular assembly [21]. � denotes the

Piola-Kirchoff stress tensor of the first type, and �o is the Vo

boundary. � (respectively F) is the transformed quantity of
the Cauchy stress tensor σ (resp. f ) through the bijection ϑ

mapping the material points from the reference configuration
to the current configuration: x = ϑ

(
X

)
. The time differenti-

ation of Eq. (1) can be performed in a straightforward man-
ner, without referring to a Reynolds transform. Taking into
account Green’s formula, differentiating Eq. (1) gives [12]:

δ2 Ec (t) =
∫

�o

δFi δui d So +
∫

Vo

δbo,i δui dVo

−
∫

Vo

δ�i j
∂ (δui )

∂ X j
dVo (2)

Following Hill’s definition [7], W2 = ∫
Vo

δ�i j
∂(δui )
∂ X j

dVo

denotes the second-order work of the system. Ignoring incre-
mental geometrical changes, the second-order work can also
be expressed as:

W2 =
∫

Vo

δσi j δεi j dVo (3)

Thus, Eq. (3) also reads:

δ2 Ec (t) =
∫

�o

δFi δui d So +
∫

Vo

δbo,i δui dVo − W2 (4)

In addition, by considering the two-order Taylor expan-
sion of kinetic energy, it can shown that:

δ2 Ec (t) = 2 (Ec (t + δt) − Ec (t)) (5)

In combination with Eq. (4), starting from an equilibrium
configuration at time t (Ec (t) = 0), and thereafter ignoring
changes in body forces, it follows that:

2Ec (t + δt) =
∫

�o

δFi δui d So − W2 (6)

Equation (6) is the fundamental equation that relates the
kinetic energy of the system to the second-order work: the
kinetic energy, immediately after an equilibrium state and in
absence of change in body forces, appears as the difference
between a boundary term, B2 = ∫

�o

δFi δui d So, involving

the loading path applied to the boundary of the system, and
a volume term, W2 = ∫

Vo

δ�i j
∂(δui )
∂ X j

dVo, which is related to

the constitutive behaviour of the material. Equation (6) shows
that necessarily B2−W2 ≥ 0, the equality being obtained for
a quasi-static incremental evolution between two equilibrium
states.

According to Eq. (6), the existence of an outburst in kinetic
energy (Ec (t + δt) > 0) is related to a conflict between the
loading prescribed to the boundary of the system and the
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mechanical response of the system directed by its consti-
tutive behavior. An interesting situation corresponds to the
case where integral B2 is nil. In that case, the existence of an
outburst in kinetic energy is directly related to the vanishing
of the second-order work. The loading applied to the system
is assigned to remain constant (B2 = 0), and the specimen
fails (the kinetic energy rises abruptly) under the application
of a certain class of disturbance for which the second-order
work takes negative values. The equilibrium configuration is
no longer sustainable [12,10].

2.2 Loss of sustainability of a cubic specimen

Hereafter, for convenience purposes, terms εi i and σi i are
denoted εi and σi , respectively. If the specimen considered
is a cube, in which the stress-strain state is reputed to be
homogeneous, then Eq. (6) reads:

2Ec (t + δt) = V δsi δεi − W2 (7)

where si denotes the external normal stress applied to the side
‘i’ of normal xi . The external stress components si should
not be confused with the principal stress components σi act-
ing on the internal face of side ‘i’ of the specimen. Equality
between the two is obtained in any equilibrium configura-
tion, and the equality between the incremental components
δsi and δσi is achieved along any quasi-static transformation.
In this case, incremental stress components δsi and δσi relate
to the incremental strain δεi as follows:

δsi = δσi = Ki j δε j (8)

where K is the tangent constitutive operator written here in
the coinciding principal stress–strain axes. If the loading is
kinematically prescribed, terms δε j act as control parame-
ters, and terms δsi stand as response parameters. More gen-
erally, the loading can be described by a mixed control vector
C , whose components are composed of linear combinations
of stress components and of linear combinations of strain
components.

Thus, vector C can be expressed as:

Ci = Ai j s j , for i = 1, . . . p (static control parameters)

(9)

Ci = Bi j ε j , for i = p + 1, . . . 3

(kinematic control parameters) (10)

where A and B are two matrices, respectively, of dimension
(p × 3) and ((3 − p) × 3). The three components Ci are
referred to as the control parameters. To be more specific,
p = 1 in the following (note that p = 2 can be treated in the
same way).

Without altering the generality of the problem, the
response vector R can be considered to be composed of stress
or strain components:

R1 = ε1 (11)

Ri = si , for i = 2, 3 (12)

Moreover, as both control and response parameters must
be conjugated with respect to energy, the following relations
hold in the large and in the small:

Ci Ri = si εi and δCi δRi = δsi δεi (13)

Taking constitutive relation (8) into account, the second-
order work can be written as:

W2 = V δσi δεi = V Ki j δεi δε j = V K s
i j δεi δε j (14)

Combining Eq. (7) with Eqs. (13) and (14) yields:

2Ec (t + δt) = V δCi δRi − V K s
i j δεi δε j (15)

By definition, the mechanical state considered belongs
to the bifurcation domain if K s admits at least one neg-
ative eigenvalue. In that case, directions x exist such that
K s

i j xi x j < 0. In the three-dimensional space, such a direc-
tion corresponds to the intersection of two planes, of equa-
tions αi xi = 0 and βi xi = 0. Now, let B2i and B3i be equal
to αi and βi , respectively. Thus, C2 = αi εi and C3 = βi εi .

If both control parameters C2 and C3 are assigned to
remain constant, αi δεi = 0 and βi δεi = 0. Therefore,
the vector δε is such that K s

i j δεi δε j < 0. The vector δε is
associated with a negative value of the second-order work.
Moreover, if C1 is also assigned to remain constant (usually
at an extremum), Eq. (15) takes the following straightforward
form:

2Ec (t + δt) = −V K s
i j δεi δε j (16)

Equation (16) indicates that the incremental evolution of
the system from the equilibrium configuration considered,
and under the loading prescribed by a constant value of
the parameters C1, C2 and C3, is associated with a strictly
positive value of the kinetic energy. Thus, if a (certain) dis-
turbance is applied to the specimen, the evolution of the sys-
tem, characterised by an incremental strain δε, will induce
an increase in the kinetic energy according to Eq. (16). There
is a transition from a quasi-static regime toward a dynamic
regime, under continuous change in the loading parame-
ters (indeed constant). This is therefore a proper bifurcation
phenomenon.

These theoretical results are carefully checked using a
discrete numerical model in the following sections.

3 A discrete element method model

3.1 YADE software

Numerical investigations based on the discrete element
method [4] were conducted with the open-source software
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YADE [8]. The discrete element method models granular
materials as collections of rigid locally deformable bodies.
The interactions between particles are described by inter-
particle interaction laws. The interaction law used in this
paper involved three constant mechanical parameters kn, kt

and ϕg . kn is the elastic stiffness contact in the normal direc-
tion to the tangent contact plane (no tensile normal force
is allowed). In the tangential direction, the elastic stiffness
contact is represented by kt and the tangential contact force
obeys the Coulomb friction law characterised by the friction
angle ϕg .

The numerical model consists of an assembly of spherical
particles forming a cubical specimen. The particle assem-
bly is enclosed within six rigid and frictionless walls. The
external stress–strain state is imposed on the specimen by
acting on wall positions, either directly for a strain control or
indirectly through a closed-loop control for a stress control.
Strain and stress responses are computed at the boundary of
the specimen, from the wall displacements for strains and
from particle-wall contact forces for stresses.

3.2 Numerical specimens

Numerical simulations were conducted with specimens made
up of 150,000 spherical grains, whose diameter ranges from 2
to 12mm. The normal stiffness kn at the contact between two
granules is equal to 356; Ds (MPa), where Ds is the mean
diameter of the two granules. The tangent stiffness kt at the
contact between granules is equal to 0.42; kn . The friction
angle ϕg is fixed at 35◦. A loose specimen was considered
with an initial porosity equal to 0.41. The granular assembly
was first subjected to an isotropic compression, at different
confining pressures σ3 (50, 100 and 150kPa). Then, after
each confining stage, a drained triaxial loading in axisym-
metric conditions was simulated. The evolution of both the
deviatoric stress q = σ1 − σ3 and the volumetric strain εv in
terms of the axial strain ε1 are given in Figs. 1 and 2. The
deviatoric stress continuously increases (positive hardening
regime) toward a limit plateau, and a contractant volumetric
behavior is observed.

3.3 Existence of a bifurcation domain

Computation of the strain increment dε for each direction
of the stress increment dσ determines the normalised sec-
ond-order work: W2 = dσ ·dε

‖dσ‖ ‖dε‖ . For convenience, a circu-

lar diagram is plotted [9], constituted by points of coordinates
(cos ασ (0.5 + W2) , sin ασ (0.5 + W2)), where tan ασ =

∂σ1√
2 ∂σ3

. When the second-order work takes negative values,

the diagram crosses the dashed circle of radius r = 0.5.
Figure 3 shows circular second-order work diagrams, com-
puted from the numerical specimen used in the previous
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Fig. 2 Volumetric strain over the axial strain at different confining
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section, at different deviatoric stresses under 100kPa of con-
fining pressure (points A, B and C in Fig. 1). It can be seen that
the second-order work takes negative values along the stress
direction contained within a cone, from a deviatoric stress
q close to 60kPa. The opening angle of the cone increases
with the deviatoric stress ratio as the stress state approaches
the Mohr-Coulomb failure line. These results show that the
numerical sample possesses a wide bifurcation domain. The
boundary of this domain, corresponding to the first vanish-
ing of the second-order work (the first vanishing of det K s),
is clearly within the plastic limit surface, which means that
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Fig. 3 Circular diagrams of the second-order work. Loose specimen
under 100kPa of confining pressure

many types of failure can be encountered well before the
plastic limit is reached.

4 Simulation of the loss of sustainability

The simulations run in the previous section have shown that
stress directions along which the second-order work takes
negative values exist for the numerical specimen at a devi-
atoric stress q = 79.5kPa. The corresponding mechanical
state therefore belongs to the bifurcation domain. More spe-
cifically, the unstable cone (gathering all stress directions
along which the second-order work takes negative values) is
limited by two directions corresponding to ασ = 215◦ and
ασ = 235◦. Adopting the notations introduced in Sect. 2,
where both internal stress σi and external stress si are distin-
guished, the angle ασ = 215 is defined as tan ασ = ds1√

2 ds3
.

Setting R = 1√
2 tan ασ

, it follows that (in axisymmetric con-

ditions):

ds1 − 1

R
ds3 = 0 (17)

Let the (stress) control parameter C1 = s1 − 1
R s3 be

introduced. Prescribing the control parameter C1 to be con-
stant (dC1 = 0) corresponds to imposing a stress increment

along the direction ασ = tan−1
(

1√
2 R

)
. The second (strain)

control parameter C2 is defined so that Eq. (13) holds true.
Thus, C2 = ε1 + 2R ε3. Then, under a confining pressure
σ3 = 100kPa and at a deviatoric ratio η = 0.62, both control
parameters C1 and C2 are maintained constant. A very small
disturbance is assigned to some grains belonging to the weak
phase [14]. Typically, an impulse corresponding to a kinetic
energy input of 5 × 10−6 J is applied to four grains chosen
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Fig. 4 Evolution over time of the kinetic energy within the specimen
after a disturbance is applied

randomly within the weak phase. This kinetic energy input is
very small with respect to the external work (on an order of
magnitude of 10−1 J) provided to the specimen to reach the
deviatoric stress ratio η = 0.62. Two different stress direc-
tions were investigated. The first direction, characterised by
ασ = 254◦, was chosen outside the unstable cone. As ob-
served in Fig. 4, the kinetic energy of the specimen (computed
by summing the translational and the rotational kinetic ener-
gies of all the particles) does not increase significantly. The
mechanical state of the specimen remains unchanged. Both
stress and strain components do not vary over time after the
application of the disturbance (not plotted here). On the con-
trary, a second stress direction characterised by ασ = 221◦
was chosen inside the unstable cone. The abrupt increase in
kinetic energy after the application of the disturbance is clear
(Fig. 4). In less than 0.1 s, the kinetic energy increases by
0.02 J, 4,000 times the kinetic energy provided to the speci-
men when applying the disturbance. The equilibrium state of
the specimen cannot be sustained. The external stress load-
ing can no longer be balanced by the internal stress whose
components decrease. The specimen merely collapses.

These simulations corroborate the results obtained by
Sibille very well, using different computational software
[13–16]. These simulations, performed in different condi-
tions, using different computational tools, reveal that granu-
lar materials may fail well before the standard Mohr-Coulomb
failure limit is reached.

5 Concluding remarks

This paper has presented, within a unified framework, the
notion of failure, described as the occurrence of an increase
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in kinetic energy under constant loading parameters. Starting
from an equilibrium state, a general equation was derived to
express the increase in kinetic energy, as a function of both
a boundary term involving the external loading and a con-
stitutive term involving internal incremental strain and stress
fields. It was shown that the boundary term, with a conve-
nient choice of control parameters, could be assigned to be
nil, whereas the constitutive term (also called second-order
work) took a negative value. As a consequence, the kinetic
energy starts to increase from an initial nil value (equilib-
rium state). These theoretical findings were perfectly ascer-
tained from three-dimensional numerical simulations based
on a discrete element method. In particular, it was thoroughly
verified that three basic conditions must be fulfilled to give
rise to a failure mechanism:

– The equilibrium state belongs to the bifurcation domain,
in which the symmetric part of the tangent constitutive
operator admits at least one negative eigenvalue. Indeed,
the boundaries of the bifurcation domain are given by the
surface where the determinant of that symmetric part of
the constitutive operator vanishes first and by the plas-
tic limit condition (vanishing of the constitutive determi-
nant itself). In this domain, loading directions exist along
which the second-order work takes negative values.

– The loading is controlled by mixed parameters, some
being composed of stress components, the other of strain
components.

– The mixed control parameters, when maintained con-
stant, impose a loading direction associated with a nega-
tive value of the second-order work.
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