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Abstract

1 Given that water resources are scarce and are strained by competing de-

mands, it has become crucial to develop and improve techniques to observe

the temporal and spatial variations in the inland water volume. Due to the

lack of data and the heterogeneity of water level stations, remote sensing,

and especially altimetry from space, appear as complementary techniques for

water level monitoring. In addition to spatial resolution and sampling rates

in space or time, one of the most relevant criteria for satellite altimetry on in-

land water is the accuracy of the elevation data. Here, the accuracy of ICESat

LIDAR altimetry product is assessed over the Great Lakes in North America.

The accuracy assessment method used in this paper emphasizes on autocor-

relation in high temporal frequency ICESat measurements. It also considers

uncertainties resulting from both in situ lake level reference data. A prob-
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1 ABBREVIATIONS:
ICESat: Ice Cloud and land Elevation Satellite
GLAS: Geoscience Laser Altimeter System
RMSE: Root Mean Square Error
SDOM: Standard Deviation Of the Mean

Preprint submitted to ISPRS Journal of Photogrammetry and Remote SensingSeptember 4, 2011

Author-produced version of the article published in ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6), 833-844.
The original publication is available at http://www.isprs.org/
DOI : 10.1016/j.isprsjprs.2011.09.002

C
em

O
A

 : 
ar

ch
iv

e 
ou

ve
rte

 d
'Ir

st
ea

 / 
C

em
ag

re
f



abilistic upscaling process was developed. This process is based on several

successive ICESat shots averaged in a spatial transect accounting for auto-

correlation between successive shots. The method also applies pre-processing

of the ICESat data with saturation correction of ICESat waveforms, spatial

filtering to avoid measurement disturbance from the land-water transition

effects on waveform saturation and data selection to avoid trends in water

elevations across space. Initially this paper analyzes 237 collected ICESat

transects, consistent with the available hydrometric ground stations for four

of the Great Lakes. By adapting a geostatistical framework, a high frequency

autocorrelation between successive shot elevation values was observed and

then modeled for 45% of the 237 transects. The modeled autocorrelation

was therefore used to estimate water elevations at the transect scale and the

resulting uncertainty for the 117 transects without trend. This uncertainty

was 8 times greater than the usual computed uncertainty, when no temporal

correlation is taken into account. This temporal correlation, corresponding

to approximately 11 consecutive ICESat shots, could be linked to low trans-

mitted ICESat GLAS energy and to poor weather conditions. Assuming

Gaussian uncertainties for both reference data and ICESat data upscaled

at the transect scale, we derived GLAS deviations statistics by averaging

the results at station and lake scales. An overall bias of -4.6 cm (underes-

timation) and an overall standard deviation of 11.6 cm were computed for

all lakes. Results demonstrated the relevance of taking autocorrelation into

account in satellite data uncertainty assesment.

Keywords: GLAS, LIDAR, accuracy, temporal correlation, block kriging,

Great Lakes
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1. Introduction1

Although lakes and rivers correspond to only 0.27% of the global fresh2

water and 0.007% of the Earth’s water budget, they constitute the most3

accessible inland water resources available for ecosystems and human con-4

sumption.5

Given that these resources are scarce and are strained by competing6

demands, it has become crucial to develop and improve techniques to observe7

the temporal and spatial variations in the water volume of lakes, rivers and8

wetlands to meet human needs and assess the ongoing impacts of climate9

change.10

For this reason, most countries operate a national network of inland11

water level stations to collect information for water resource development.12

The installation and maintenance of such networks are expensive tasks that13

only international cooperation programs can initiate and sustain in many14

countries. The availability and access to data from water level stations are15

therefore severely limited due to a decline in the number of stations, inad-16

equate monitoring networks, gaps in records, differences in processing and17

quality control, differences in datum level and differences in data policies18

(Harvey and Grabs, 2003; Chen and Chang, 2009). As a consequence, water19

resource sampling is neither spatially nor temporally homogeneous.20

Due to the lack of data and the heterogeneity of water level stations, re-21

mote sensing, and especially altimetry from space, appear as complementary22

techniques for water level monitoring (Calmant and Seyler, 2006).23

Satellite radar altimetry first appeared in 1974 with Skylab. In 1975, the24

GEOS-3 radar altimeter was designed to monitor ocean surfaces, followed by25

the SEASAT (1978) and GEOSAT (1985-1989) missions. Radar altimetry26
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entered a pre-operational phase in 1992 with the satellites ERS and Topex-27

Poseidon, followed by Envisat and Jason in 2001. All these missions were28

originally designed for measuring the level of the ocean through a combi-29

nation of a radar technique determining the distance from the satellite to30

the reflecting surface and a satellite positioning technology identifying the31

precise location (within centimeters) of the satellite. Since 1990, the radar32

elevation measurements have demonstrated their relevance for inland water33

observation (Bercher, 2008). The application of this technique in the liter-34

ature has allowed monitoring of the inland seas (Aladin et al., 2005), lakes35

(Birkett, 1995, 2000; Birkett et al., 2002; Crétaux and Birkett, 2006) and36

large rivers (Birkett, 1998; Mercier, 2001; Maheu et al., 2003).37

In addition to spatial resolution and sampling rates in space or time, the38

most relevant criterion for satellite altimetry on inland water is the accuracy39

of the elevation data; therefore, many studies aimed to quantify these accu-40

racies. Morris and Gill (1994) found a Topex-Poseidon data RMSE (Root41

Mean Square Error) of a few centimeters on the Great Lakes of North Amer-42

ica. Studies over other world lakes indicated the following RMSE values: i)43

greater than 10 cm for Lake Chad (Birkett, 2000); ii) approximately 5 cm44

for Issyk Kul Lake, Kyrgyzstan; and iii) 10 cm for Chardarya Lake, Kaza-45

khstan (Crétaux and Birkett, 2006). The accuracy of radar altimetry was46

also studied for a selection of rivers and floodplains in the Amazon Basin.47

Substantial errors were observed with RMSE values between 40 cm and 1.148

m (Birkett et al., 2002; Bercher, 2008).49

In recent years, LIDAR onboard satellite also appears as a promising tool50

for accurate, high resolution altimetry. The Geoscience Laser Altimeter Sys-51

tem (GLAS) ranging instrument onboard the ICESat (Ice Cloud and land52

Elevation Satellite) provides elevation data over all Earth surfaces. Its main53
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strength is its small footprint diameter averaged over 70 m (Zwally et al.,54

2002) compared to the larger radar footprint size of 250 m to a few km.55

This relative small footprint size is promising for inland water monitoring,56

especially in rivers. ICESat was launched on the 13 January 2003 and the57

mission stopped at 14 august 2010. It included three lasers that transmit-58

ted short pulses (4-6 ns) of infrared light (1064 nm) and visible green light59

(532 nm). GLAS used 1064-nm laser pulses to measure the heights of the60

surface and dense cloud and 532 nm pulses to measure the vertical distribu-61

tion of clouds and aerosols. The 1064-nm signal was also separately filtered62

and digitized at 2 MHz for detection of dense clouds and aerosols at 76.8-m63

vertical resolution. The three lasers have been operated one at a time, se-64

quentially throughout the mission. To extend mission life, the operational65

mode included 33-day to 56-day campaigns, several times per year. Each66

period has been assigned a campaign or operations period identifier, such67

as Laser 2a, to denote the operating laser (2) and the operations period (a)68

(Schutz et al., 2005). Laser pulses or shots at 40 Hz illuminated sites spaced69

at 170-meter intervals along track over Earth’s surface. The primary mission70

of GLAS was to measure changes in ice sheet elevation, and secondary ob-71

jectives included the measurement of cloud and aerosol height profiles, land72

elevation, vegetation cover and sea ice thickness (Zwally et al., 2002; Schutz73

et al., 2005). Although less devoted to water monitoring compared to radar74

altimetry, these LIDAR data could also be used to observe the inland water75

altimetry (Urban et al., 2008).76

To date, few studies assessed GLAS elevation data accuracy for inland77

waters. The estimated standard deviation of GLAS elevation data com-78

puted on Lake Nasser in southern Egypt range from 3 to 8 cm (Chipman79

and Lillesand, 2007). On Otter Tail County lakes (USA), Bhang et al. (2007)80
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indicates differences between GLAS elevation and hydrologic station eleva-81

tion ranging from 2 to 35 cm. Urban et al. (2008) reports GLAS elevation82

RMSE of approximately 3 cm under clear conditions, 8-15 cm under cloudy83

skies and 25 cm under very cloudy skies on the Tapajos Rivers (Brazil).84

Several problems were revealed in previous satellite altimetry accuracy85

studies. First, detailed descriptions of the assumptions and accuracy statis-86

tics computation are lacking. Second, most of the studies compute errors87

between satellite and ground data considering ground data as ’truth’, or88

exact and free from uncertainty. Consequently, in terms of error distribu-89

tion estimation, most studies only compute RMSE as an accuracy statistic,90

but despite its common use, RMSE is inadequate because it mixes the bias91

(exactness) and dispersion (standard deviation) of satellite measurements,92

which can have very different consequences on their final utility. Moreover,93

no study compares a single shot elevation value to the ground reference data;94

rather, studies compare reference data to an average of successive shots, con-95

sistent with the bodies of water under consideration, such as a river section96

or a continuous lake transect. Therefore, before accuracy statistics compu-97

tation, an implicit aggregating or upscaling process, which is typically an98

average based on the arithmetic mean, involves successive shot elevation val-99

ues that occurs at the scale of the studied water body. As a result from100

this aggregating process, the satellite ’measurement’ is thus compared to the101

corresponding ground data. The use of an arithmetic average assumes that102

successive shots are considered as independent (Morris and Gill, 1994) and103

identically distributed, allowing the usual statistics computation on measure-104

ment uncertainties, such as the SDOM (Standard Deviation of the Mean).105

The centimeter differences observed between satellite measurements and106

ground measurements and the uncertainty of both measurements can make107
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the error word inappropriate to qualify the observed deviations between108

satellite and ground measurements. If not, how to estimate the bias (mean)109

and dispersion of these deviations ? To answer this question, we need to110

first consider the satellite and ground measurements as random variables and111

to verify their significant deviations by computing the uncertainty of each112

measurement, ground measurements and satellite measurements, at water113

body scale. The uncertainty of satellite measurements at water body scale114

can be estimated using the SDOM only if the shot elevation values are, for115

high frequencies, independent in time and space. If not, the correlation be-116

tween successive shot altimetrical values, denoted further as autocorrelation,117

must be modeled and estimated. Uncertainty at the water body scale must118

be computed accordingly. Although infrequent in satellite elevation data,119

the support effect accounts for the dependence between sequential measure-120

ments in upscaling and is a typical practice used on spatial data (Chiles and121

Delfiner, 1999) (Atkinson and Tate, 2000). It has already been used for re-122

mote sensing data accuracy assessments (Crosson et al., 2010) and even on123

LIDAR data (Bailly et al., 2010).124

This paper aims to i) explore the high frequencies autocorrelation in125

GLAS-ICESat water elevation shot data, ii) assess the consequences of this126

autocorrelation in the uncertainty statistics on water level estimates and iii)127

assess the consequences of this autocorrelation in deviations to ground sta-128

tion elevation data from the Great Lakes. To ensure a proper comparison,129

ICESat data pre-processing was first performed. It consisted of i) the ex-130

clusion of shots with waveform saturation corresponding to data near land131

(Baghdadi et al., 2011), ii) the exclusion of shot outliers from atmospheric132

disturbance, iii) the application of saturation corrections to initial elevations133

(Urban et al., 2008) and iiii) the exclusion of data when lake water surface134
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can not be considered as flat for accuracy and deviations estimates. The135

autocorrelation between successive shot elevation values was first tested and136

modeled for each of the considered sets of shots. A set of shots consist137

of a GLAS transect within a Great Lake, spatially coherent with a given138

ground water-level station (a water body) and temporally located in the139

same satellite track. We thus proposed an explicative model of the auto-140

correlation presence. In cases of significant autocorrelation and absence of141

trend in transect shot data, a block kriging process (Wackernagel, 1995) was142

used to estimate a mean water elevation at the transect scale and its un-143

certainty, Finally, the ground measurements and satellite measurements and144

their relative uncertainties at the transect scale were estimated. By con-145

sidering these two water elevation estimates as random variables, according146

deviations statistics (bias and standard deviations) were proposed.147

2. Study site and data set description148

2.1. Study site149

Due to the lack of data on one of the five Great Lakes in North America,150

the assessment of GLAS-ICESat elevation data accuracy was assessed for the151

following lakes: Superior, Michigan, Erie and Ontario. One of the youngest152

natural features on the North American continent, the Great Lakes make up153

the largest surface freshwater system on Earth. Covering more than 94,000154

square miles and draining more than twice as much land, these freshwater155

seas hold an estimated 22.7 trilliards cubic meters of water, approximately156

one-fifth of the world’s surface freshwater and nine-tenths of the U.S. supply.157

A network of 52 hydrometric stations monitor the Great Lakes (25 Canadian158

MEDS station and 27 US NOAA stations) for level measurement (Fig. 1).159
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The Great Lakes have from 1 to 4 cm tides but no prevalent ocean tides.160

Thus, the Great Lakes are an excellent site for accuracy studies.161

Here is located Fig. 1162

2.2. Data set163

2.2.1. ICESat data164

The GLAS elevation data used in this study are the Level-2 altimetry165

products GLA14 and GLA01 (Release 31) that provide surface elevation166

measurements (land, water, etc.) and corresponding waveforms. GLA14167

data also include the laser footprint geolocation with a precision smaller168

than 4 m (Duong et al., 2006). GLA01 data include waveforms that have169

been decomposed into multiple Gaussian distributions (Wagner et al., 2006;170

Jutzi and Stilla, 2006; Chen, 2010) corresponding to 544 or 1000 samples of171

received power in volts at 1 ns sampling rate (see Zwally et al. (2002) for a172

detailed description of ICESat full waveform data). These data record the173

period between 20 February 2003 and 11 October 2009. In this study, 237174

ICESat transects, with lengths ranging from 5 to 20 km, containing 20,224175

shots have been used (Table 1). These 237 selected transects are the set of176

continuous tracks of shots that are i) in a radius of 20 km from an available177

hydrometric station to avoid the influence of natural spatial lake level varia-178

tions and ii) at least 2 km from the shore to avoid measurement disturbance179

from land-water transition effects on waveform saturation (Baghdadi et al.,180

2011).181

Next we developed a two step GLA14 data cleaning procedure, close to182

the one proposed by Zhang et al. (2011). In step 1, each of the 237 GLAS183
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ICESat transects was first visualy inspected on time-elevation bivariate plots184

(Figs. 5-a and 5-b) in order to remove obvious outliers and to verify that the185

water level was almost constant. Some parts of the transects were accord-186

ingly excluded when the mean water level varied or when observations were187

’constant’ due to i) cloudy episodes with outlier elevations in transect (in-188

dicating a difference in elevation of approximately 1000 m) (Wesche et al.,189

2009), ii) the proximity of river outlets. Fig. 2 shows the only example190

of this phenomenon: the extended transect of 14 June 2005 for Station 21191

(Holland station) on Lake Michigan is located near an important river out-192

let (Fig. 2-a). The transect profile shows the 85 km elevation profile track193

that increases in the middle near the outlet, producing an upper water level194

of approximately 70 cm. In Step 2, for each transect, the median elevation195

value of the remaining shots was calculated and the shots which were at least196

4 meters far from this median value were removed.197

Here is located Fig. 2198

2.2.2. Water level reference data199

The reference lake level data in this study were obtained from 27 of the 52200

water level stations located throughout the Great Lakes basin. The selected201

stations are near (less than 20 km) the transect of the GLAS footprints.202

Eleven stations are operated by the Marine and Environmental Data Service203

(MEDS) of Canada’s Department of Fisheries and Oceans, and 16 stations204

are operated by the U.S. National Oceanic and Atmospheric Administration205

(NOAA). Both NOAA and MEDS stations continuously monitor the surface206

levels of the four lakes at 6 minutes intervals (Braun et al., 2004) with a207
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standard deviation of 2 cm (Hovis et al., 2004).208

North American Great Lakes are known to have low tides but are sensi-209

tive to short-term water-level fluctuations, such as up to 2.44 m in approxi-210

mately 2 hours, caused by wind or storm surges, which are known as seiches211

(Touchart, 2002). Considering this phenomenon and because the ICESat212

transect lasts very few seconds and a hydrometric station may have a timing213

bias of a few minutes, this study analyzed the dispersion of recorded ground214

measurement (hydrometric station data) in a 6-minute range around transect215

ICESat times for all stations. This analysis exhibits a constant dispersion216

for each station of 7 mm for one standard deviation.217

In addition, the geoid model G99SSS used in this study to convert the ref-218

erence data from ellipsoidal height (WGS84) to orthometric height (NAVD88)219

has a mean error of approximately 2.5 cm (Smith and Roman, 2001).220

Given that these different sources of uncertainty are independent, they221

can be summed (in variance). As a result, the computed uncertainty on222

reference ground data was estimated to 3.3 cm for one standard deviation223

(σR).224

2.2.3. Data consistency225

GLA14 products provide original elevation data with ellipsoidal heights226

based on the same ellipsoid used by the Topex satellite. The lake level data227

collected from hydrometric stations are in the International Great Lakes228

Datum of 1985 (IGLD85). Consequently, data transformations are required229

in order to conduct a consistent comparison in the same reference frame.230

GLAS heights and lake level heights were therefore converted to the same231

vertical datum NAVD88. Two successive transformations are required for232

GLAS heights: the first converts the Topex ellipsoidal heights to WGS84233
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ellipsoidal heigts using the geoid model EGM96; the second transforms the234

WGS84 ellipsoidal heights to NAVD88 orthometric heights using the geodic235

model G99SSS. For hydrometric station elevation data, the IGLD85 lake236

level datum converts to orthometric height NAVD88.237

3. Methods238

3.1. GLAS water elevation saturation correction239

Some ICESat waveforms exhibit distortions, or saturation events, when240

the high energy emitted by the laser returns, passes the inadequate automatic241

gain controls and overloads the detector (Sun et al., 2005). This occurs242

when the amplitude of the energy returned by a number of 1-ns bins is243

greater than the threshold function of gain (Urban et al., 2008; Abshire244

et al., 2005), producing an incorrect elevation. The ICESat science team245

has developed an analytical saturation correction, also available on the data246

products. Adding this correction to the elevation is recommended for ice247

and calm water data, but not over oceans (Urban et al., 2008). Corrections248

vary between 0 and 1.5 m. For some waveforms, the saturation should be249

corrected but the method used to calculate the correction coefficient cannot250

provide a correct value and is marked by ’-999.00’ flags. Fig. 3 shows some251

ICESat waveforms obtained across Lake Superior; the saturated waveform252

is clipped and widened artificially by the returning high energy.253

Here is located Fig. 3254

Fig. 4 illustrates an example of elevation transects before and after ap-255

plication of the saturation correction. The saturation correction allows a256
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reduction of error bias but does not reduce the error dispersion in the figure.257

Here is located Fig. 4258

3.2. GLAS water elevation estimation at transect scale259

To compute the GLAS water elevation estimate ẐG and uncertainty σG260

at the transect scale and considering autocorrelation, we used a statistical261

framework based on the regional variable and random field theories (Cressie,262

1993). In this framework, a GLAS transect is viewed as a temporal block, or a263

delimited part of a temporal random field (z(t)). For each GLAS transect, we264

developed the usual block kriging process (Wackernagel, 1995, p.77) based on265

an autocorrelation model, allowing both the estimation of the water elevation266

ẐG and its corresponding uncertainty σG, at the transect scale.267

3.2.1. Autocorrelation test and modeling268

A GLAS transect is composed from (t1 . . . tn) and (z1 . . . zn) series, re-269

spectively, where t refers to the laser shot (pulse) time, z to the elevation in270

the NAVD88 altimetrical system and n is the number of shots in the tran-271

sect. These series are denoted as z(t) and are considered to be a realization272

of a stationary temporal random function. We want to infer the main prop-273

erty of z(t), its temporal correlation (autocorrelation), especially the high274

frequency autocorrelation. When z(t) is stationary, with constant expecta-275

tion and homogeneous temporal covariance, this inference is possible using276

the variogram modeling of the field z(t), equivalent to the covariance.277

Elevation trend test at transect scale. To ensure a stationary process and278

reenforce the high frequency autocorrelation test power (Armstrong, 1984),279

13

Author-produced version of the article published in ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6), 833-844.
The original publication is available at http://www.isprs.org/
DOI : 10.1016/j.isprsjprs.2011.09.002

C
em

O
A

 : 
ar

ch
iv

e 
ou

ve
rte

 d
'Ir

st
ea

 / 
C

em
ag

re
f



a linear trend test is first performed. A linear model z(t) = m(t)+y(t), where280

m(t) = at+ b is the linear regression of z by t, and y(t) are the residuals of281

this linear regression, is fitted. Using the usual T-test on the coefficient a it282

is tested if a linear trend is significant.283

Next, when the trend tests positively, the initial z(t) field is decomposed284

in two additive term m(t) + y(t), with m(t) a deterministic trend term and285

y(t) a term consisting of random residuals. When the trend is negative, the286

m(t) term disappears and we write z(t) = y(t) for the sake of simplicity. To287

enable a valid comparison between ground station and GLAS measurements288

and to avoid natural spatial variations of lake water levels at high spatial fre-289

quencies, only transects without linear trends were kept further to compute290

the GLAS deviations and accuracy.291

Autocorrelation significance test. Next, to estimate the autocorrelation of292

z(t) transect data, an experimental variogram ˆγ(h), with h equal to lag293

time, is computed on the y(t) data (see Wackernagel (1995, p.35) for the294

usual experimental variogram formulation). This variogram was computed295

on 16 regular lag times each 62.5 ms ranging from 0 to 1 s, chosen to ob-296

tain numerous shot pairs for an accurate variogram estimation for each lag297

time h. An autocorrelation is considered significant when the experimental298

variogram graph shows a clear increasing shape from small time differences299

to large time differences. When the corresponding experimental variogram300

graph shows a flat variogram, no autocorrelation for this GLAS transect301

exists. To test the significance of the autocorrelation calculated from the ex-302

perimental variogram, we used the standard empirical Mantel test (Legendre303

and Fortin, 1989), which simulates data corresponding to the null hypothe-304

sis H0 through data permutations, where H0 corresponds to the absence of305
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autocorrelation (Fig. 5-c). At each permutation of the z data, a correspond-306

ing experimental variogram is computed. For numerous replications of the307

permutations, we obtained a quintile distribution of variograms representing308

H0 for each lag time h. The H0 acceptance area is thus represented in the309

variogram graph through a 95% confidence band of H0. In the case of sig-310

nificant autocorrelation, the actual experimental variogram for small values311

of h is below the 2.5% quintile of H0 (the lower line of the band). Here, we312

chose to reject H0 only when the first variogram point was below the 2.5%313

quintile of H0.314

Here is located Fig. 5315

Autocorrelation modeling. In the case of a significant experimental variogram316

(Fig. 5-d), we chose to model it with a single spherical model function given317

by:318

γ(h) =


nu+ (si− nu)(3h2r − h3

2r3
) if h < r

(nu+ si) if h ≥ r

(1)

Using a weighted least-square estimation (Pebesma and Wesseling, 1998),319

the model parameters nugget (nu), range (r) and sill (si) were fitted. This320

was done automatically for all GLAS transects from initial fitting parameters321

corresponding to a nugget equal to the experimental variogram at a smaller322

lag time, a sill equal to the maximum value of the experimental variogram323

and a range equal to the time duration at which the variogram reaches its324

maxium. After the fitting process, a variogram model γ(h) was obtained as325

shown in the example by the fitted line in Fig. 5-d.326

15

Author-produced version of the article published in ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6), 833-844.
The original publication is available at http://www.isprs.org/
DOI : 10.1016/j.isprsjprs.2011.09.002

C
em

O
A

 : 
ar

ch
iv

e 
ou

ve
rte

 d
'Ir

st
ea

 / 
C

em
ag

re
f



3.2.2. Transect water elevation estimation with autocorrelation: block kriging327

For a GLAS transect, when autocorrelation is significant and modeled,328

a mean value ẐG for the transect is estimated from transect data z(t) from329

Ŷ . The Ŷ estimate is computed through a block kriging process of y(t)330

(Wackernagel, 1995, p.77) using the variogram model γ(h). Ŷ is therefore a331

linear combination of y(t) data with kriging weights βi:332

Ŷ =
n∑

i=1

βiyi (2)

Uncertainty on ẐG is represented in the block kriging estimation standard333

deviation σG given by (Wackernagel, 1995, p.77):334

σG =

√√√√µBK + γ̄ + 2
n∑

i=1

βiγ̄(ti, T ) (3)

In this equation, µBK is the Lagrange multiplier deduced from the block335

kriging system, γ̄(ti, T ) is the average variogram computed between the sam-336

ple point ti and all points of the transect T (block) and γ̄ is the variance337

within the transect. In practice, both ẐG and σG are approximated through338

the average of gridded points within the considered GLAS transect. We339

chose a gridding step of 10ms here corresponding to 1/4 of the time lag340

between pulses. Note that σG only depends on the data temporal sampling341

scheme, not on the elevation values z. Consequently, given that the temporal342

sampling scheme of ICESat data is almost regular, except when outliers are343

excluded from the initial transect data, σG primarily depends on the transect344

total duration.345

When no autocorrelation is observed for a given GLAS transect (H0 is346

accepted), γ(h) is a pure nugget effect variogram. In this particular case,347
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kriging weights βi in equation 2 are all equal and equation 3 is simplified348

to the common SDOM formulation. Consequently ẐG equals the arithmetic349

mean z̄ of the values zi.350

3.3. GLAS deviations to reference water elevation at transect scale351

For each transect j where no linear trend has been observed, a GLAS352

estimated value ẐG having σG Gaussian uncertainty was compared to a353

reference value ZR having σR Gaussian uncertainty. As GLAS and reference354

elevations can be considered independent Gaussian random variables, the355

distribution of the deviations between GLAS and reference water elevations356

can be assumed also to be of Gaussian distribution N(µj , σj), with µj =357

ẐG − ZR and standard deviation σj =
√
σ2G + σ2R.358

From these Gaussian deviation distributions obtained for a transect,359

GLAS deviation statistics (accuracy) were computed at station, lake or Great360

Lakes scales, by simply averaging the cumulative probability functions of the361

Gaussian laws N(µj , σj) and computing the resulting empirical deviation362

distribution (not necessarily Gaussian).363

From this empirical distribution, the first (bias) and second (standard364

deviation) moments were estimated to propose GLAS accuracy statistics.365

4. Results and discussion366

4.1. Autocorrelation between GLAS shot measurments367

A significant high frequency autocorrelation is observed for 107 transects,368

i.e. 45% of the initial 237 transects. No direct explanation is known to the369

authors for the occurrence of the autocorrelation as shown in Fig. 6, although370

corrrelated and non-correlated transects look randomly distributed in space371

(Fig. 6-a), or in time (Fig. 6-b). It does not depend on the overall water372
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level (low or high) in the lake (Fig. 6-b). For the transects that do experience373

significant correlation the 107 fitted variogram models show:374

• a nugget
nugget+sill ratio ranging from 0.24 to 0.52 with a mean value of 0.4.375

This value means that there is in average 40 % of randomness between376

two consecutive, i.e. very close, shots.377

• a range ranging from 0.27 s to 0.34 s with a mean value of 0.3 s (time378

the variogram model becomes flat at sill value). This range corre-379

sponds to the duration of 11 pulses and a distance along the transect380

of approximately 1.9 km.381

Here is located Fig. 6382

4.2. Autocorrelation explanation383

To explore the physical explanation of the significant autocorrelation ob-384

served for 45% of the GLAS transects, we attributed to each one of the 237385

transects i) the environmental parameters from the ICESat data at the tran-386

sect time (surface temperature, surface humidity and pressure) and ii) the387

GLA14 instrument parameters (transmitted energy, received energy, gain,388

incidence angle, laser campaign, transect direction and transect dates ac-389

cording to the beginning and end of each laser campaign (Schutz et al.,390

2005, table 1, p.2)). To explore relationships between the presence of au-391

tocorrelation and these available system or environmental parameters, they392

were all first considered as potential temporal autocorrelation predictors. We393

used the multivariate classification tree (CART) method of Breiman et al.394

(1984) that computes predictor importance that explains autocorrelation by395
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using indifferrently quantitative or qualitative predictors. The obtained clas-396

sification tree in Fig. 7 shows separation between the autocorrelated (1) and397

non-autocorrelated (0) transects based respectively on the transmitted en-398

ergy (TE), temperature (temp) and pressure (pressure). This tree explain399

68% of the autocorrelation. These results show that the transmitted energy400

plays a major role in autocorrelation among all parameters. We thus draw401

from this analysis that significant autocorrelation occurs when the GLAS402

instrument transmits low energy which notably occurs at the end of each of403

three lasers life times, and when bad weather conditions are marked by either404

lower temperature or lower pressure. These results are consistent with no405

systematic autocorrelation observed in space or time that could have come406

from satellite system behaviour.407

Here is located Fig. 7408

4.3. Autocorrelation effect on GLAS water elevation uncertainties at transect409

scale410

ZG estimates and corresponding σG uncertainty parameters were com-411

puted for the 117 transects where no significant trend has been observed.412

When no autocorrelation is observed for the transect, we used the block413

kriging process (Equation 2), and if not, we used the Standard Deviation414

Of the Mean (SDOM). Fig. 8 depicts the distribution of the σG uncertainty415

parameters for transects as a function of the pulse number composing the416

transect and the presence or absence of autocorrelation. It appears clearly on417

this figure that the presence of autocorrelation multiplies the σG uncertainty418

by 8 on average. As expected, accounting for autocorrelation drastically419
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changes the σG estimation, even if the ẐG values differ only slightly (due to420

the regular time sampling of GLAS measurements). This usual geostatisti-421

cal result comes from autocorelation that acts as diminishing the number of422

data.423

Here is located Fig. 8424

4.4. GLAS water elevation deviation distribution425

The GLAS deviation, the difference between the GLAS and reference426

elevation, is considered as a random variable. The distributions of these427

deviations were computed for all Great Lakes together, for individual lakes428

and at station scale. For all Great Lakes, the probability of a GLAS water429

elevation deviation to be lower than 1 cm, 10 cm and 20 cm in absolute values430

is 7.5%, 66.8% and 91.9%, respectively, which seems close to a N(0, 10cm)431

value. The 2.5% and 97.5% quantiles are 29 cm and 16 cm, respectively.432

The expectation of this distribution is -4.6 cm.433

Examples of distributions are depicted in Fig. 9, for all Great Lakes,434

at lake scale (for lake Erie and lake Ontario), at station scale (for station435

Erie, Fermi Power, Rochester and Toronto) and at transect scale (transect436

number 5,8,26,24,88,85,92,90). The mix of deviation distributions at the437

lake scale gives the overall Great Lakes deviation distribution. Normality438

of deviation distributions is clearly low when downscaling. At station scale,439

there are various shapes of deviation distribution, non-symetric, with positive440

or negative pseudo-biases. The mix of these deviation distributions at the441

station scale, with weights equal to transect numbers for each station of a442

lake, provides the lake deviation distribution.443
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However, these results show that when aggregating numerous data, i.e.444

transects at the Great Lakes scale, and due to the general Law of Large Num-445

bers, the obtained shapes of deviation distribution become nearly Gaussian.446

This is not true at the station scale where shapes are asymmetrical and com-447

plex. In this latter case, attention must be paid in using common accuracy448

statistics, especially for dispersion parameters.449

Here is located Fig. 9450

4.5. GLAS accuracy parameters451

The right part of Table 1 summarizes the results of the biases and stan-452

dard deviations statistics at the Great Lakes, lake and station scales. At453

the Great Lakes scale, the GLAS deviation bias is -4.6 cm. In other words,454

GLAS is slightly underestimating the water elevation on average. The bias455

values range from -11.4 cm to -2.1 cm at the lake scale and from -14.5 cm456

to 3.8 cm at the station scale. The bias found on the stations of the Michi-457

gan Lake is the higher in magnitude, reaching up to -14.5 cm for Station458

Kewaunee. A standard deviation of 11.6 cm was computed at the Great459

Lakes scale. It varies from 7.9 cm to 12.9 cm at the lake scale and from460

3.3 cm to 13.7 cm at the station scale. The highest standard deviation was461

found at Station Ludington on Lake Michigan. Bias and standard deviation462

statistics clearly differ from one lake, or one station, to the next. All these463

standard deviations must be compared in magnitude with the reference data464

uncertainties (3.3 cm for one standard deviation) and GLAS water elevation465

estimate uncertainty at the transect scale (Fig. 8). They are clearly of higher466

magnitude than the reference data uncertainties but are of the same order467
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as the GLAS water elevation estimate uncertainty when autocorrelation is468

significant.469

Here is located table 1470

5. Conclusions471

This study explored the accuracy of GLAS-ICESat inland water eleva-472

tion data at various spatial scales with a specific emphasis on uncertainties473

originating from in situ measurements and impacts of autocorrelation be-474

tween successive ICESat shots, i.e. at temporal high frequencies. This study475

also benefited from the pre-processing of the GLAS data with the saturation476

correction of the GLAS waveforms and spatial filtering to avoid measure-477

ment disturbance from land-water transition effects on waveform saturation478

as previously observed. A set of 237 GLAS transects near the available hy-479

drometric ground stations for four of the Great Lakes of North America was480

analyzed. A significant autocorrelation between successive shot elevation481

values was observed for 45% of the transects. This autocorrelation of an482

approximately 11 pulses duration seems to occur when a combination of a483

low transmitted energy from the GLAS instrument and bad weather with484

low temperature and low pressure occurs. The main consequence of this485

autocorrelation is a drastic increased uncertainty (by 8 times) of the GLAS486

water elevation at the transect scale.487

After removing the 120 transects where a linear trend was observed and488

assuming Gaussian uncertainties for both reference data and GLAS data489

upscaled at the transect scale, we derived empirical distributions on GLAS490

deviations at the Great Lakes, lake and station scales. At the Great Lakes491
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scale, a bias of -4.6 cm (underestimation) and a standard deviation of 11.6492

cm were computed on the various shapes of GLAS deviation distributions.493

However, these statistics were highly variable among the stations.494

This study indicates that accuracy statistics computation is highly de-495

pendent to the assumptions made on satellite data and reference data as496

well. These assumptions can highly affect the computed accuracy statistics497

and conclusion. Even if the impact of the temporal correlation in GLAS raw498

data was partially smoothed by the reference data uncertainty, this can be499

crucial when reasoning with few data, such as a small number of transects,500

at the station scale.501

The accuracy results of this study confirm that satellite ranging LIDAR502

provides data with a decimeter accuracy to monitor water level in inland503

water for the Great Lakes or a wide river section.504
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Lake Id Station Number of Number of Bias Standard Deviation

shots used transects used (m) (m)

Erie 1 Bar Point 975 8 0.008 0.035

Erie 2 Fermi Power 1634 16 -0.057 0.102

Erie 3 Marblehead 198 2 -0.012 0.034

Erie 4 Cleveland 607 8 0.006 0.055

Erie 5 Fair Port 240 6 0.038 0.054

Erie 6 Erie 711 10 -0.058 0.112

Erie 7 Sturgeon 2148 18 -0.051 0.089

Erie 8 Port Colborne 2034 16 -0.012 0.093

Erie 9 Port Dover 287 5 -0.044 0.051

Erie 10 Port Stanley 782 9 0.028 0.061

Erie 11 Erieau 651 18 -0.038 0.059

Erie Mean -0.021 0.109

Ontario 12 Port Weller 1220 14 -0.097 0.092

Ontario 13 Rochester 979 14 -0.031 0.084

Ontario 14 Oswego 253 5 -0.140 0.034

Ontario 15 Kingston 221 5 -0.033 0.038

Ontario 16 Cobourg 1631 17 -0.028 0.074

Ontario 17 Toronto 743 8 -0.022 0.084

Ontario Mean -0.048 0.087

Michigan 18 Green bay 213 3 -0.088 0.124

Michigan 19 Kewaunee 384 4 -0.145 0.056

Michigan 20 Calumet 571 7 -0.143 0.128

Michigan 21 Holland 264 4 -0.022 0.084

Michigan 22 Ludington 425 6 -0.120 0.137

Michigan Mean -0.114 0.129

Superior 23 Ontanagon 213 15 -0.048 0.093

Superior 24 Marquette 384 8 -0.091 0.042

Superior 25 Ross Port 571 12 -0.042 0.062

Superior 26 Thunder Bay 264 5 -0.004 0.087

Superior 27 Grand Marais 425 6 0.010 0.033

Superior Mean -0.042 0.079

ALL LAKES Mean -0.046 0.116

Table 1: Left : Number of GLAS shots and transects used across each hydrometric station

of the four Great Lakes; Right: biases and standard deviation of deviations (GLAS-

reference) resulting from comparison between ICESat elevations and reference elevations

on the Great Lakes of North America at lake and hydrometric station scales.
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Fig 1: GLAS-ICESat shots forming transects over the Great Lakes and the location of the

27 hydrometric stations.

Fig 2: (a) GLAS transect of 14 June 2005 at Holland station (Number 21) on Lake

Michigan; (b) the corresponding ICESat elevation profile (with abscissae = shot number)

in comparison to hydrometric station data (reference elevation).

Fig 3: Example of GLAS waveforms on Lake Superior: (a) Unsaturated waveform ; (b)

Waveform with low saturation ; (c) and (d) waveforms with high saturation. Ordinate =

energy in volts and abscissae = bins number (bins spacing = 1 ns).

Fig 4: Example of a GLAS-ICESat transect compared to reference elevation. Abscissae

= shot number and ordinate = elevation (ICESat with and without saturation correction

and hydrometric station).

Fig 5: (a) and (b): temporal series z(t), and (c) and (d): corresponding experimental

variograms obtained on the transect at Port Colborne station from 2 February 2005 (a, c)

and Bar Point station from 10 May 2007 (b, d). The dashed lines in (c, d) represent the

two H0 envelopes, the straight lines in (a, b) represent the reference elevation, and the

curve lines in (c, d) are the spherical model function fitted to the experimental variogram

(points on c, d). (a, c): absence of autocorrelation. (b, d): significant autocorrelation.

(d) Variogram range = 0.32 s.

32

Author-produced version of the article published in ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6), 833-844.
The original publication is available at http://www.isprs.org/
DOI : 10.1016/j.isprsjprs.2011.09.002

C
em

O
A

 : 
ar

ch
iv

e 
ou

ve
rte

 d
'Ir

st
ea

 / 
C

em
ag

re
f



Fig 6: (a) Correlated and non-correlated GLAS transects on the Great Lakes - exact

locations of transects have been slightly translated to depict overlapping transects; (b)

correlated and non-correlated GLAS transects along the ICESat mission dates - the ordi-

nate is the deviation between the reference elevation of a given lake at each transect date

and the mean elevation of the lake calculated using reference elevations for all dates.

Fig 7: Classification tree explaining the autocorrelation of the transects. A value of

0 on leaves denotes the absence of autocorrelation, and a value of 1 on leaves denotes

autocorrelation. The 0/1 value on a leaf means that it mixes correlated and non-correlated

transects in equal proportions.

Fig 8: Distribution of the standard deviation σG characterizing the uncertainty of esti-

mated water elevations at the transect scale from GLAS data. This distribution is shown

as a function of the shot number composing the transect and presence (right) or absence

(left) of autocorrelation.

Fig 9: GLAS water elevation deviation distribution and upscaling: For transect scale

(down), for station scale, for lake scale and all lake scale (up). Not all distributions for

lake, station and transect scales are depicted but only examples. The black wide central

line on density plots denote the biases values and the thin lines denotes the 2.5 % and 95.5

% quantiles respectively. The two examples of deviation distribution selected at transect

scale for each lake are for a correlated transect (wide on the left) and a not-correlated

transect (thin on the right).
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