

Évaluation de la qualité du Vistre sur le tronçon aval de Caissargues

V. Archaimbaud, Christian Chauvin, B. Dumont, Alain Dutartre, Bernard Montuelle, Soizic Morin, E. Trichet

▶ To cite this version:

V. Archaimbaud, Christian Chauvin, B. Dumont, Alain Dutartre, Bernard Montuelle, et al.. Évaluation de la qualité du Vistre sur le tronçon aval de Caissargues. [Rapport de recherche] Irstea. 2011, pp.96. hal-02596799

HAL Id: hal-02596799 https://hal.inrae.fr/hal-02596799

Submitted on 15 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Évaluation de la qualité du Vistre sur le tronçon aval de Caissargues

Rapport Final

Convention Syndicat Mixte du Bassin Versant du Vistre

Avril 2011

(1)Archaimbault V. – (3)Chauvin C. – (2)Dumont B. – (3)Dutartre A. – (1)Montuelle B. (coordination) – (3)Morin S. – (1)Trichet E.

- (1) Cemagref Lyon, UR Milieu Aquatique, Ecologie et Pollution
- (2) Cemagref Aix, UR Hydrobiologie Ecosystèmes Eau Courante
- (3) Cemagref Bordeaux, UR Qualité des Eaux

Évaluation de la qualité du Vistre sur le tronçon aval de Caissargues.

Rapport Final

Convention Syndicat Mixte du Bassin Versant du Vistre ó Cemagref

Cemagref Lyon, UR Milieu Aquatique, Ecologie et Pollution Cemagref Aix, UR Hydrobiologie - Ecosystèmes Eau Courante Cemagref Bordeaux, UR Qualité des Eaux

Rédaction:

Archaimbault V.

Chauvin C.

Dumont B.

Dutartre A.

Montuelle B. (coordination)

Morin S.

Trichet E.

SOMMAIRE

I -	Contexte	et objectifs	
II -		et Méthodes	
II -		r étudié	
		etres suivis - Campagnes réalisées	
	II - 2.1.	Paramètres chimiques	
	II - 2.2.	Paramètres hydromorphologiques et quelques aspects dynamiques	
	II - 2.2.1	Protocole de description du chenal et des rives	
	II - 2.2.1	Régime thermique printanier et estival	
	II - 2.2.2 II - 2.2.3	Données nycthémérales	
	II - 2.2.3	Processus microbiens	
	II - 2.3.1		
		Protocoles de mesure	
	II - 2.3.2	Caractérisation de la diversité	
	II - 2.3.3	Traitement des données	
	II - 2.4.	Invertébrés	
	II - 2.4.1	Prélèvement des organismes	
	II - 2.4.2	Traitement des échantillons au laboratoire	
	II - 2.4.3	Traitement des données	
	II - 2.5.	Diatomées	
	II - 2.5.1	Echantillonnage	
	II - 2.5.2	Traitement des échantillons au laboratoire	17
	II - 2.6.	Macrophytes	17
III -	Résultats		19
III	- 1. Chimie	·	19
	III - 1.1.	Chimie sédiment	19
	III - 1.2.	Données chimiques antérieures à lœtude (2007)	20
	III - 1.3.	Évaluation de la qualité de l'eau (SEQ-eau)	
	III - 1.4.	Contaminants : métaux et pesticides	
III	- 2. Hydror	norphologie - Faciès et classes de vitesse	
	III - 2.1.	Hydrologie et Régime thermique	
	III - 2.2.	Cycles nycthéméraux.	
Ш		sus microbiens	
	III - 3.1.	Biomasse microbienne	
	III - 3.2.	Activités microbiennes et dégradation	
	III - 3.3.	Changement de biodiversité bactérienne	
Ш		brés	
111	III - 4.1.	Approche taxonomique	
	III - 4.1. III - 4.2.	Approche fonctionnelle	
ш		tion aquatique	
111	III - 5.1.	Diatomées	
	III - 5.1. III - 5.2.		
		Macrophytes	
	III - 5.2.1	A	
	III - 5.2.2		
** 7	III - 5.2.3		
IV -		ons	
		e et processus microbiens	
	•	morphologie, thermie et cycle nycthéméral	
		brés benthiques	
		phytes et diatomées	
V -		es de précédentes études et bibliographie citée	
VI -	Liste des	Annexes	63

Liste des FIGURES

Figure 1 : Carte schématique des points déchantillonnage sur le Vistre et le Vistre Fontaine2
Figure 2 : Principe de description des formes fluviales.
Figure 3 : Exemple de løen-tête des feuilles de saisie des variables à renseigner pour la description
hydromorphologique døin tronçon de rivière
Figure 4 : Situation géographique et positionnement des diverses interventions sur le tronçon
« Bastide » du Vistre lors des campagnes des 27-28 avril 2010 et des 23-24 septembre 20108
Figure 5 : Hydrologie du Vistre à la station de Bernis 2009 - 2010. Les flèches indiquent la date des
campagnes 2009 et 2010 (données banque Hydro ó Eaufrance)
Figure 6 : Évolution temporelle de løabondance relative de la classe 0- 50 µm des sédiments19
Figure 7 : Évolution de la teneur en matière organique des sédiments
Figure 8 : Caractérisation physico-chimique du Vistre en 2007 sur 3 stations déchantillonnage
(døaprès les données Aquascop). J, F, M, A, M, J, J: mois de janvier à juillet20
Figure 9 : ACP du tableau des analyses chimiques : a) Histogramme des valeurs propres ; b) Cercle
des corrélations F1xF2; c) projection des relevés regroupés par années sur le plan factoriel
F1xF223
Figure 10 : Débits moyens journaliers du Vistre à Bernis (BV : 291 km²) en 2010. Données de la
Banque Hydro (http://www.hydro.eaufrance.fr/)
Figure 11 : Débits moyens journaliers du Vistre à Bernis (BV : 291 km²) et températures moyennes
dans les secteurs amont-aménagé et aval-non-aménagé. Période du 27 avril au 21 septembre
2010. Débits : Données de la Banque Hydro (http://www.hydro.eaufrance.fr/)
Figure 12 : Distributions des températures minimales et maximales pour chacune des stations par
classes døintervalle de 2°C
Figure 13 : VistreóBastide. Cycle nycthéméral du 27 au 28 avril 2010 pour débit de 1,74 m³/s.
Paramètres : Température (°C) ; Turbidité (NTU) ; Oxygène dissous (mg/l, %)29
Figure 14 : Variations brutes des hauteurs déeau aux quatre points déenregistrement. V1, V2 : amont,
aval du secteur aménagé; V3, V4: amont, aval du secteur non aménagé30
Figure 15 : Variations de la conductivité aux quatre points de la conductivité aux qu
secteur aménagé ; V3, V4 : amont, aval du secteur non aménagé31
Figure 16 : Variations de la turbidité aux quatre points dœnregistrement. V1, V2 : amont, aval du
secteur aménagé; V3, V4 : amont, aval du secteur non aménagé. Rem : la mesure de la turbidité
au point V1, faussée par le blocage doun peu doargile sur le capteur, noest pas présentée31
Figure 17: Variations de la température aux quatre points dœnregistrement. V1, V2: amont, aval du
secteur aménagé; V3, V4: amont, aval du secteur non aménagé
Figure 18: Variations de løoxygène dissous aux quatre points døenregistrement. V1, V2: amont, aval
du secteur aménagé; V3, V4: amont, aval du secteur non aménagé33
8. · · · · · · · · · · · · · · · · · · ·
Figure 20 : Evolution spatiale et temporelle de la densité bactérienne en sédiment (pas de données en
2010). C= Château ; B= Bastide, J= Jardins ; F= Vistre Fontaine. De Septembre 2007 (0907) à
Septembre 2009 (0909)
Figure 21 : Evolution des activités de dégradation de la matière organique sur les trois stations du
Vistre et sur løaffluent Vistre Fontaine35
Figure 22 : Evolution de la dégradation de la matière organique (respiration : Resp; méthanisation :
meth) et des nitrates (dénitrification : Denit). Activités exprimées en masse de gaz produit par
heure et gramme sec de sédiment (NB : pour Met, løordonnée est en échelle log compte tenu des
écarts deintensité du processus)
Figure 23 : Ordination conjointe des fonctions microbiennes sédimentaires, des stations et des facteurs
environnementaux significatifs, en fonction des dates déchantillonnage. Leaxe 1 explique 50,7
% et løaxe 2 7,9 %. Les cercles jaunes représentent la station de Fontaine. Les cercles verts
représentent la station de Château. Les cercles bleus foncés représentent la station de Bastide.
Les cercles bleus clairs représentent la station de Jardins. Meth : métahnisation ; denit ;
dénitrification; resp: repsiration; xyl: xylosidase; glu: glucosidase; pep: peptidase; num:
numération; Shan: indice de Shannon
Figure 24 : Evolution temporelle de la diversité bactérienne en sédiment (S : mesurée selon løindice de
Shannon)
3H4HHUH

Figure 25 : Analyse de redondance de la diversité bactérienne en sédiment, avec løordination des
stations (caractérisées par leur diversité ARISA) et les principaux facteurs physico-chimiques.
Chaque couleur représente 1 station vert = château ; jaune = Bastide ; rouge = Jardins : bleu
=Fontaine. Les pourcentages de variance expliquée par l'axe 1 sont de 16.72 % et par l'axe 2 de
6.31 %
Figure 26 : AFC du tableau faunistique (55 taxons x 9 relevés) a) Projection des taxons (cercles noirs)
sur F1xF2. b) Projection des relevés sur F1xF2 avec regroupement des relevés par station. c)
Projection des relevés sur F1xF2 avec regroupement des relevés par saison. Chaque petit cercle
vert représente un relevé échantillonné à une date donnée, et chaque rectangle représente la
position moyenne (= centre de gravité) døune station ou døune année par rapport aux différents
relevés correspondants sur le plan factoriel
Figure 27 : Proportion des différents groupes taxonomiques dans chacune des stations41
Figure 28: Evolution du nombre døapparition et de disparition de taxon sur les stations aval (soumises
aux anciens et nouveaux rejets de STEP) par rapport à la station amont témoin (Château)43
Figure 29 : Evolution spatio-temporelle des principaux indices de structure et de composition le long
du tronçon étudié. Pour les indices EPT et GOLD les chiffres en gras représentent la richesse de
ces groupes
Figure 30 : Comparaison de la dynamique des Gammares et des Aselles sur les 3 stations aux 3 dates.
45
Figure 31: Evolution des notes IBGN sur les 3 stations aux 3 dates suivies. Les chiffres en gras
correspondent au groupe faunistique indicateur
Figure 32 : Distribution de fréquences døutilisation des modalités de 4 traits biologiques des 3 stations
suivies aux 3 dates déchantillonnage
Figure 33 : Distribution de fréquences doutilisation des modalités de 4 traits écologiques des 3 stations
suivies aux 3 dates déchantillonnage
Figure 34 : Evolution de la distribution des groupes bioécologiques dans la communauté49
Figure 35 : CAH basée sur la structure spécifique des communautés et abondances relatives des
espèces dominantes
Figure 36 : Notes døindices (IBD, IPS) obtenues en 2009 pour les 5 stations étudiées53
Figure 37 : A) Valeurs de l'IBMR ; B) Richesse taxonomique. Campagnes 2009 et 2010 menées sur
les stations Fontaine, Château, Bastide et Jardins54
Figure 38 : Pourcentages de recouvrement des principaux macrophytes en 2009. (codes : POT.PEC :
Potamogeton pectinatus; POT.NOD: Potamogeton nodosus; RHI.SPX: Rhizoclonium sp.;
MYR.SPI: Myriophyllum spicatum; LEM.MIN: Lemna minuta)55
Figure 39 : Pourcentages de recouvrement des principaux macrophytes en 2010. (CLA.SPX :
Cladophora sp.; POT.PEC: Potamogeton pectinatus; VAU.SPX: Vaucheria sp.; POT.NOD:
Potamogeton nodosus; MYR.SPI: Myriophyllum spicatum; RHI.SPX: Rhizoclonium sp.)56
$Figure\ 40: Profils\ d'affinit\'e\ trophique\ des\ peuplements\ observ\'es\ \grave{a}\ chaque\ station,\ d'apr\`es\ la\ r\'epartition$
des effectifs des côtes spécifiques58

Liste des TABLEAUX

Tableau 1 : Récapitulatif des principaux paramètres chimiques suivis et de leur norme døanalyse3
Tableau 2 : Variables utilisées dans la description des formes fluviales et de la structure du lit et des
berges.
Tableau 3 : Modalités de variables utilisées pour la description du lit. (NB : les sables ont été
regroupés en une catégorie)6
Tableau 4 : Codes déphabitabilité utilisés dans ce document pour évaluer les tronçons via la présence
des supports minéraux benthiques
Tableau 5 : Types de substrats potentiellement présents associés à leur ordre døhabitabilité (classés
par ordre décroissant) et leur mode døchantillonnage
Tableau 6 : Principales caractéristiques biologiques et écologiques des 6 groupes bioécologiques
définis par Usseglio-Polatera et al. (2001).
Tableau 7 : Valeurs des différents paramètres physico-chimiques mesurés sur le Vistre de septembre
2007 à janvier 2010. Le code couleur correspond aux classes de qualité du SEQ-eau (MEED &
Agences de l'eau, 2003). Rouge : classe de qualité -Mauvaiseø; Orange : classe de qualité
-Médiocreø; Jaune : classe de qualité -Moyenneø; Vert : classe de qualité -Bonneøet Bleu :
classe de qualité :Très bonneø gris : non analysé
Tableau 8 : Caractéristiques des tronçons aménagé et non-aménagé décrits pour un débit de 1,7 m ³ /s.24
Tableau 9 : Occurrences et surfaces de deux types granulométriques (le plus gros et le plus dominant)
inventoriés dans chacun des tronçons.
Tableau 10 : Caractéristiques des assemblages des types granulométriques dominants des tronçons
aménagé et non aménagé
Tableau 11 : Structure des tronçons décrits (radier, plat, mouille)
Tableau 12 : Note de løhabitabilité de chacun des faciès døécoulement dans les secteurs aménagé et
non-aménagé
Tableau 13 : Spécificité taxonomique de chacune des stations pour les 3 années de suivi confondues :
taxons uniquement présent sur cette station. *: abondance au moins 10 fois supérieure à celle
des autres stations
Tableau 14 : Liste des taxons dominants et des codes correspondants
1 auteau 14. Liste des taxons dominants et des codes correspondants

I - Contexte et objectifs

Dans le cadre du programme pluriannuel dont l'objet est d'évaluer la récupération des fonctionnalités et de la qualité écologique du Vistre après la levée de différents types de pressions, différents compartiments physico-chimiques et biologiques ont fait l'objet de mesures de 2007 à 2010. La convention SMBVV-Cemagref vient en complément des conventions Agence de lø Eau-Cemagref et permet de renforcer le jeu de données biologiques et physico-chimiques.

Løbjectif général de ces travaux est dœvaluer les gains écologiques associés à des opérations de réduction des rejets dœffluents de station dœpuration (STEP) dans le Vistre. Suite à løinstallation døune station dœpuration totalement nouvelle (et compte tenu des futures performances envisagées pour cette nouvelle STEP) et au déplacement du point de rejet dænviron 1 km en aval de son exutoire, le site de la Bastide est particulièrement favorable à lœtude de la trajectoire de restauration de la qualité écologique du Vistre. En effet suite à ces modifications, la qualité des intrants chimiques devrait être améliorée de façon importante et leur quantité fortement réduite.

Le tronçon détude, situé entre léancien et le nouveau rejet, devrait ainsi voir sa qualité modifiée, et on peut seattendre à une amélioration de la qualité biologique du milieu.

Il s'agit de caractériser les peuplements de stations subissant des pressions d'origine anthropique différentes. La suppression de l'ancienne station d'épuration de l'agglomération nîmoise et son remplacement récent par une nouvelle installation située plusieurs kilomètres plus en aval permettent d'observer la réponse du milieu après l'amélioration de la qualité physico-chimique des eaux. De plus, avant la suppression du rejet, un tronçon du Vistre dans ce secteur a également fait l'objet d'une restauration morphologique partielle. L'analyse des peuplements devrait donc permettre de mettre en relation la restauration de la qualité du cours d'eau et les réponses biologiques observées.

Les travaux ont donc pour finalités :

- de contribuer à caractériser la dynamique de restauration biologique døun tronçon du Vistre suite à løarrêt du fonctionnement de løancienne STEP de Nîmes (site de la Bastide),
- de suivre lœvolution du milieu en aval des rejets de la nouvelle STEP, en mettant en ò uvre différents bio-indicateurs.

II - Matériel et Méthodes

II - 1. Secteur étudié

Le secteur du Vistre qui fait løbjet de cette étude particulière est situé à løaval de Caissargues sur une longueur døenviron 3 km. Quatre stations ont fait løbjet døun suivi, dont 3 sont situées sur le Vistre proprement dit (Figure 1). Ceux-ci sont communs aux études Cemagref-Agence de løEau :

- 1 station amont, servant de station témoin (cœst à dire le Vistre sans les rejets de la STEP de Nîmes), elle est située au niveau du Château de Nages
- 1 station sous les rejets de løancienne STEP de Nîmes, cøest la station de la Bastide. Cette station est située dans la partie du secteur ayant fait løbjet døun réaménagement physique partiel du chenal.

- 1 station en aval des rejets de la nouvelle STEP de Nîmes (station de « Gratte Fer », également intitulée « Jardins »)
- une quatrième station déchantillonnage a également été prise en compte : il séagit de de station sur le Vistre Fontaine, affluent du Vistre, et dont le chenal évacuait les rejets de léancienne STEP.

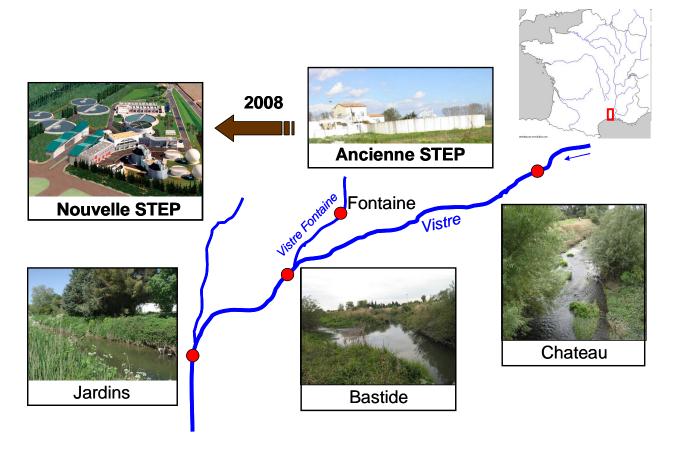


Figure 1 : Carte schématique des points déchantillonnage sur le Vistre et le Vistre Fontaine.

II - 2. Paramètres suivis - Campagnes réalisées

Le cadre environnemental a été caractérisé au moyen døanalyses physico-chimiques sur løau et les sédiments et par une enquête hydromorphologique destinée à quantifier certains aspects de løorganisation du lit mouillé. Des éléments complémentaires ont été apportés par des enregistrements de cycles thermiques saisonniers et de quelques cycles nycthéméraux (dont celui de løoxygène dissous).

Sur un plan biologique et écologique, différents niveaux dœtudes ont été réalisés sur:

- les communautés microbiennes, dont les activités reflètent le niveau trophique du système et contribuent à læssentiel des processus døautoépuration en milieu aquatique. La dégradation de la matière organique (MO) et la minéralisation de composés carbonés sont les principaux indicateurs de cette capacité døautoépuration et seront évaluées sur les compartiments sédimentaires et sur les biofilms benthiques (lorsquøil y en a),
- les communautés døinvertébrés : basées sur la caractérisation de leur diversité et de leurs principaux traits biologiques. Elles sont un maillon important du fonctionnement écologique des milieux aquatiques et sont un des principaux bio-indicateurs normalisés utilisés pour évaluer la qualité des milieux,

- le couvert en macrophytes, basé sur la diversité et løabondance des espèces végétales aquatiques, mettant en ò uvre løndice Biologique Macrophytique en Rivière normalisé (IBMR), permettra également de classer la qualité du cours døeau en ses différentes stations de suivi. Ce bio-indicateur sera complété par løanalyse des diatomées et løexpression de løndice Biologique Diatomées (IBD).

II - 2.1. Paramètres chimiques

Sur chaque station ont été effectués des prélèvements dœau et de sédiments. Les paramètres analysés sont :

- Les nutriments : pH, conductivité, température, carbone organique dissous, azote (nitrite, nitrate, ammonium), phosphore (total et orthophosphates), ainsi que différents anions et cations (cf. Tableau 1). Ces paramètres permettent de caractériser la charge en nutriments et donc le niveau trophique du cours dœau.

Tableau 1 : Récapitulatif des principaux paramètres chimiques suivis et de leur norme døanalyse.

Paramètre analysé	Unité	Méthode
Température in situ	°C	Conductimètre LF 330 (WTW)
Conductivité in situ	μS/cm	Conductimètre LF 330 (WTW)
pH in situ		pH-mètre: pH 330 (WTW)
O2 in situ	mg/l	Oxymètre: OXY 330 (WTW)
pH		NF T 90-008
Conductivité	μS/cm	NF EN 27888
COT (eau brute)	mg/l	NF EN 1484
COD (eau filtrée)	mg/l	NF EN 1484
Ammonium	$mg/l NH_4^+$	NF T 90-015-2
Nitrite	$mg/l NO_2$	NF EN 26777
Nitrate	$mg/l NO_3^-$	NF EN ISO 10 304
Phosphore Total	mg/l P	NF EN ISO 6878
Orthophosphate	$mg/l PO_4^{2-}$	NF EN ISO 6878
Hydrogénocarbonate	mg/l HCO ₃	NF EN ISO 9963-1
Chlorures	mg/l Cl ⁻	NF EN ISO 10 304
Sulfates	$mg/l SO_4^{2-}$	NF EN ISO 10 304
Silice	$mg/l SiO_2$	NF T 90-007
Calcium	mg/l Ca ²⁺	NF EN ISO 14 911
Magnésium	$mg/l Mg^{2+}$	NF EN ISO 14 911
Sodium	mg/l Na ⁺	NF EN ISO 14 911
Potassium	mg/l K ⁺	NF EN ISO 14 911

- Les contaminants : un suivi des métaux lourds (As, Cu, Cd, Cr, Pb, Zn) et une recherche de pesticides (par analyse multi-résidus permettant de rechercher jusquœ 300 substances et métabolites secondaires) dans lœau et les sédiments. Une campagne de mesure des pesticides et 2 campagnes de mesures des métaux ont été réalisées. Les métaux ont été analysés au Cemagref (en CL/MS-MS) et les pesticides au Laboratoire Départemental døAnalyse (LDA) de Valence (analyse multirésidus).

Pour chaque valeur de paramètre mesuré, nous avons attribué, par station et par date le code couleur correspondant aux classes de qualité de lœau du SEQ-eau, version 2 (MEED & Agences de l'Eau, 2003).

Par ailleurs, les données ont été analysées à l'aide d'une Analyse en Composantes Principales (ACP) normée. L'ACP permet de souligner les relations existant entre les paramètres chimiques et les similitudes spatio-temporelles entre relevés. Le nombre de paramètres chimiques, trop conséquent par rapport au nombre de relevés, a été réduit pour une meilleure analyse :

- (a) suppression des relevés de mars 2008 à cause d'un manque de données,
- (b) suppression de paramètres corrélés entre eux (cf. matrice des corrélations en Annexe 1) : un seul paramètre par groupe de paramètres corrélés entre eux est conservé.

L'analyse finale (3 stations x 9 campagnes x 7 paramètres) a été réalisée sur les chlorures (Cl⁻), les hydrogénocarbonates (HCO₃⁻), l'ammonium (NH₄⁺), les nitrites (NO₂⁻), les nitrates (NO₃⁻), le phosphore total (P_{tot}) et le calcium (Ca⁺) sur une période allant de septembre 2007 à janvier 2010.

Par ailleurs, afin døaffiner la caractérisation chimique des stations en 2007, les données issues døétudes antérieures réalisées par le bureau døétude Aquascop (2006) ont été analysées.

II - 2.2. Paramètres hydromorphologiques et quelques aspects dynamiques

Nous avons choisi de comparer les tronçons, aménagé et non aménagé, situés de part et døautre du rejet de la nouvelle station døépuration de Nîmes pour les raisons suivantes : la mise en service de la nouvelle station søest accompagnée du déplacement du point de rejet des eaux épurées vers løaval du tronçon aménagé en 2004. Cela offre løpportunité de comparer les réponses des deux tronçons, løun aménagé par recalibrage du lit mouillé avec suppression døune pression polluante, løautre non recalibré et bénéficiant *a priori* døune meilleure performance épuratoire de la STEP. La question est de savoir si les actions entreprises ont des effets écologiques comparables ou différents.

Un descriptif géomorphologique permet de caractériser le potentiel déaccueil biologique de de cours de de cours de de cours de de cours de contraintes que toute eau courante possède et exerce sur le chenal découlement et les substrats mobilisables : la puissance de lécoulement règle via ses caractéristiques temporelles et géographiques (intensité, durée, fréquence), les alternances des phases érosion / sédimentation à léorigine de la mobilité sédimentaire, et de léentretien des formes et de léhabitabilité aquatique.

Cette offre déhabitabilité physique (espace, supports, vitesses) pour le vivant est un processus-clé dynamique, plus ou moins rythmé selon les saisons, inscrit dans une histoire interannuelle. Elle est à la base de la combinaison écologique qui façonne le biologique au gré des variables de qualité de lœau (température, nutriments, etc.), et qui règle les modalités des cycles biologiques (croissances, densités de colonisation) les plus adaptés aux conditions environnementales des lieux. Les objectifs dœun bilan hydromorphologique sont dœtablir ce cadre des contraintes, le cadre paysager fonctionnel, dans lequel se réalise la dynamique des divers flux aquatiques.

Le bilan hydromorphologique nøa pu être effectué que tardivement au printemps 2010 après une longue série de débits soutenus. La description des secteurs, aménagé et non aménagé, a été effectuée les 27 et 28 avril 2010 pour un débit jaugé à 1,7 m³/s.

II - 2.2.1 Protocole de description du chenal et des rives

Pour répondre aux besoins de connaissances de løarchitecture du milieu, nous avons opté pour une méthode simple dont la mise en ò uvre ne nécessite pas løusage døoutils sophistiqués (une boussole et un distancemètre). Sa mise en ò uvre est assurée par deux personnes cheminant døaval en amont dans le lit mouillé.

La méthode consiste à approximer les formes fluviales présentes par la découpe du tronçon en quadrilatères successifs. Cette découpe est fondée sur une lecture du paysage aquatique qui combine des éléments préalablement retenus pour la description.

Chacun des quadrilatères est déterminé géométriquement par trois couples de mesures (Figure 2) :

- la largeur aval et le cap associé (L1, cap1),
- la longueur entre les points médians des largueurs amont et aval et le cap associé (L1-2, cap1-2),
- et la largeur amont et le cap associé (L2, cap2).

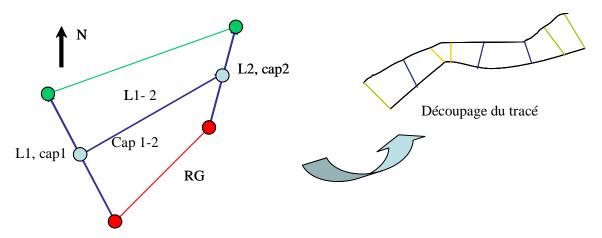


Figure 2 : Principe de description des formes fluviales.

La forme à déc*rire* étant *repérée dans ses limites amont et aval, on lui affecte en la parcourant les variables* descriptives prédéfinies dont les modalités figurent dans les Tableaux 2 et 3.

Tableau 2 : Variables utilisées dans la description des formes fluviales et de la structure du lit et des berges.

Paramètres	Description	Type(s)
Dimensions (m)	Longueur et largeur	numérique
Orientation (d°/nord)	Caps longueur et largeur	numérique
Type morpho	faciès	2 : Radier, autre
V max (cm/s)	Veine découlement max.	numérique
H max (m)	Profondeur maximale	numérique
V moy (cm/s)	Vitesse moyenne	5 classes
H moy (m)	Profondeur moyenne	7 classes
Granulo+	Granulométrie la plus grosse	11 classes utilisées
Gr_ dom	Granulométrie dominante	11 classes utilisées
Veg em	Végétation émergée	4 types
Veg imm	Végétation immergée	6 types
Rac	Chevelus Racines en % de linéaire	3 classes (totalité des 2 rives)
Nat riv	Nature des rives	4 types
Ripi riv	Nature ripisylve et importance	9 modalités
Enc riv (m)	Encaissement du lit	3 classes

Le tableau ci-dessous (Tableau 3) détaille quelques uns des codes et des bornes des classes utilisés.

Tableau 3 : Modalités de variables utilisées pour la description du lit. (NB : les sables ont été regroupés en une catégorie).

TYPE	V moy	H moy	Granulo		Veg emm	Veg imm	Rac	Nat Riv	Ripi	Enc
Type	Vitesse	Hauteur	Granulon	nétrie	Végétation	Végétation	racines,	Nature des	Ripisylve	Encaissement.
de	moyenne	eau			aquatique	aquatique	radicelles	rives		(m)
faciès	(cm/s)	moyenne			émergée	immergée	(en % de			
		(cm)					la zone)			
Radier	<5	< 5	Rocher		Typha	Herbier	1=<25	RocheMère	Herbe1	0-1
			>100cm							
Plat	5-25	5-10	Bloc >25	.6cm	Phragmite	Bryophyte	2=25-75	Racines	Herbe2	1-2
Mouille	25-75	10-30	Pierre		Jonc	Hépatique	3=>75	Artificielles	Herbe3	>2
			Grossière							
			>12.8 cm							
	75-150	30-60	Pierre	Fine	Canne	Chara	Non	Eau	Broussaille1	Non décrit
			>6.4 cm				décrit			
	>150	60-100	Caillou		Non décrit	Algu Fila	Abs	ALLuvions	Broussaille2	Abs
			Grossier							
			>3.2 cm							
	Non	100-200	Caillou	Fin	Abs	Nénuphar		Non décrit	Broussaille3	
	décrit		>1.6 cm							
	Abs	> 200		Gros		Non décrit		Abs	Futaie1	
			>0.8 cm							
		Non	Gravier	Fin		Abs			Futaie2	
		décrit	>0.2 cm							
		Abs	Sable						Futaie3	
			Limon-V	ase					Eau	
			Roche M	ère					Non décrit	
			Non décr	it					Abs	
			Abs							

Seul le type de faciès « radier » a été qualifié *in situ*, car son repérage est défini par un écoulement qui suit clairement une pente marquée du lit de la rivière, les autres faciès découlent de choix de bornes des variables. Løappellation « mouille » a ainsi été affectée aux

structures ayant une vitesse maximale inférieure à 30 cm/s et une profondeur maximale supérieure à 60 cm; par défaut les structures restantes sont qualifiées de « plat ».

Les découpes ont été organisées selon la sinuosité du tracé, puis selon les dominantes granulométriques identifiables et les classes dominantes de vitesse découlement. Ainsi une même structure de faciès peut être décomposée en éléments contigus.

La description du lit sœffectue selon un choix de variables organisées dans la feuille dœun tableur que læon remplit sous format papier sur le terrain (cf. Figure 3). Pour un quadrilatère donné, selon nécessité, des informations complémentaires sont renseignées telles que les pourcentages estimés de « roche-mère » et de « systèmes racinaires ».

Dans la suite du texte, nous avons qualifié de « roche-mère » la matrice compacte argileuse apparaissant en maints endroits du lit de la rivière.

La constitution des fichiers sœffectue ultérieurement par saisies des données ; les variables qualitatives sont renseignées à loaide de menus déroulants.

Heure début: Heure fin: Transparence de l'eau: Longmedaine N° 2016 Rader 75-150 1						< 5 cm 5-10 10-30 30-60 60-100 100-200 > 200	PiemeFii CalliouG CalliouF GravierG GravierF	.6cm 0ss # re > 12.8 re > 6.4 ross # re > 3.2 h > 1.6 ross > 0.8 h > 0.2 os> 0.5mm > 6 ym ase	Herbler Bryophyte Hepatique Chara Algu Fila Nemplar	Jussie Typka Phragmite John Canne	(un 1-<25 % 2-25-75	RockeMére Alloubus Raches		0-1 m 1-2 m		Herbe 1 Herbe 2 Herbe 3 Brosssal Brosssal Brosssal Frotale 1 Frotale 2 Frotale 3	le2	Cos file st Post Gré, Se ri Rejet						
	larg D	Cap D	Long méd	CapLong			Vmax	H max	% RM	TYPE	Vmoy	H moy	GraGros		Veg imm	Veg emm	Rac	Nat Riv	RipiRG	Enc RG		Ripi RD	Enc RD	
N" de Zone	Largeur Début faciès (m)	Cap Lang Début faoiès	Longueur médiane décrite (m)	Cap Long du faciès (degrés)			Vitesse max d'écoulement (cm/s)	Hauteur eau max (cm)	% de "noche- mère"		Vitesse moyenne (cm/s)	Hauteur eau moyenne (cm)	Granulométrie la + grosse	Granulométrie dominante	Végétation aquatique immergée	Végétation aquatique emmergée	racines, radicelles(%lin éaire des Rives)	Nature RG	Ripisylve RG	Encaissement RG (m)	Nature RD	Ripisylve RD	Encaissement RD (m)	REMARQ
					<u> </u>	<u> </u>																		\vdash

Figure 3 : Exemple de læn-tête des feuilles de saisie des variables à renseigner pour la description hydromorphologique dæn tronçon de rivière.

Une évaluation du potentiel déhabitabilité (capacité déaccueil) de la fraction granulométrique dominante, par type de tronçon ou par type de faciès, pourra être réalisée à partir de la hiérarchisation établie pour léchantillonnage des habitats de la faune benthique (Tableau 4).

Tableau 4 : Codes déhabitabilité utilisés dans ce document pour évaluer les tronçons *via* la présence des supports minéraux benthiques.

SUPPORTS	Classement Habitabilité
Bryophytes-Tuf	11
Hydrophytes	10
Litières	9
Chevelus racinaires	8
Pierres-Galets (CG, PF, PG)	7
Blocs (>256 mm)	6
Granulats grossiers (GF, GG, CF)	5
Hélophytes	4
Vase	3
Sable Limon (4µ-2mm)	2
Algues	2
Dalle, Rocher, Roche-mère	1

Enfin, une série de calculs, intégrés à une feuille de calcul, permettent de transformer les informations géométriques (caps, distances) pour formaliser :

- les coordonnées (x, y) des rives et des points médians de chacune des transversales. Par convention le point médian de la première transversale est affecté des coordonnées 0,0.
 - la surface de chaque quadrilatère,
 - et une estimation du volume de chaque structure décrite.

II - 2.2.2 Régime thermique printanier et estival

Les données ont été obtenues par la mise en δ uvre de deux capteurs-enregistreurs de marque HOBO® Water Temp Pro V2 (Précision : ± 0.2 °C de 0 à ± 50 °C; Résolution : 0.02 °C à ± 25 °C), programmés au pas de temps 15 minutes pendant 24 h le 27 avril 2010 et le 24 septembre 2010. Les capteurs ont été placés près du fond dans des ambiances hydrauliques où le courant est présent (Figure 4). Løun a été fixé en rive gauche dans le tiers amont du chenal aménagé ; løautre a été placé en rive droite en zone très ombragée au début des jardins privés (100 m en aval du rejet Nîmes). Løobjectif de ces enregistrements était de connaître les températures maximales atteintes en saison chaude.

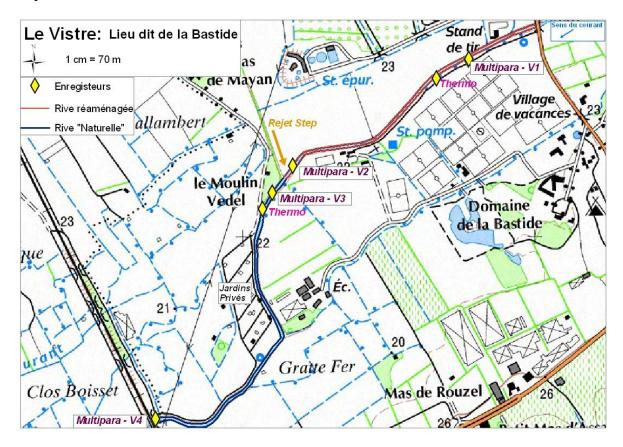


Figure 4 : Situation géographique et positionnement des diverses interventions sur le tronçon « Bastide » du Vistre lors des campagnes des 27-28 avril 2010 et des 23-24 septembre 2010.

II - 2.2.3 Données nycthémérales

A léchelle quotidienne, les cours décau ont des rythmes marqués, pilotés par lécheurent, où la température et la teneur en oxygène dissous rendent compte des temps déchauffement et de la balance production/consommation en oxygène. Cette dynamique est grandement indicatrice des métabolismes et des inerties présentes, notamment dans les systèmes à forte teneur en biomasse organique (vivante/morte; végétale/animale), où les phases de fin de nuit peuvent être limitantes pour les organismes les plus dépendants de léoxygène dissous.

Les données obtenues à un pas de temps de quinze minutes permettent de calculer les durées et les intensités des phénomènes, notamment par les taux de variation continue (ciaprès marginal) des valeurs.

Les données ont été obtenues par la mise en à uvre de quatre multi-paramètres enregistreurs In-Situ® (TROLL® 9000 et 9500) équipés avec des capteurs pour la température, la pression hydrostatique, la turbidité, løoxygène dissous et la conductivité. Le pas de temps utilisé entre chaque enregistrement a été fixé à quinze minutes.

Pour mesurer løoxygène dissous, les deux modèles les plus anciens sont équipés de sonde de Clark, alors que les deux modèles les plus récents sont équipés døune sonde oxygène à lecture optique (In-Situ® RDO® Optical DO Method). Le principe de mesure des sondes de Clark impose que celles-ci soient positionnées dans des écoulements assez vifs pour renouveler løeau autour de la membrane, donc souvent à faible profondeur, alors que les sondes RDO peuvent être installées dans des écoulements lents. Pour des raisons de sécurité, ces dispositifs coûteux sont installés discrètement dans le chenal pour une durée couvrant un cycle nycthéméral.

En avril 2010 un cycle nycthéméral a été enregistré en un seul point dans le secteur amont aménagé (Figure 4), par beau temps et fort débit, lors des journées de description hydromorphologique.

Les 23 et 24 septembre 2010 quatre enregistrements de cycles ont été effectués lors dœune transition météorologique « beau temps ó temps orageux », avec un déplacement ouestest de la cellule orageuse. Leurs implantations ont été choisies pour caler læmont et læval des secteurs aménagé et non-aménagé (cf. Figure 4). Ces enregistrements, initialement programmés en basses eaux pour évaluer le contexte oxygénation/charge organique, se situent après le passage inopportun du violent épisode orageux des 8 et 9 septembre 2010, pendant lequel le débit moyen journalier à Bernis a approché les 30 m³/s.

II - 2.3. Processus microbiens

Sur chaque station les sédiments et biofilms sont prélevés en triplicats pour chacun des paramètres mesurés. Les cailloux prélevés pour lœude du biofilm ont une taille comprise entre 1 et 3 cm et sont non enfoncés dans la marne. Les sédiments sont prélevés à la spatule en surface des zones de dépôts (prof < 5 cm). Tous les échantillons sont conservés au frais en glacière jusquœ lænalyse au laboratoire (48 h maxi). Dix campagnes ont été réalisées : entre septembre 2007 et Janvier 2010.

Deux grandes familles de paramètres microbiens sont mesurées :

- Des activités enzymatiques impliquées dans la dégradation de la matière organique. Elles contribuent à lœutoépuration du système, en hydrolysant des molécules complexes de grandes tailles en petites molécules qui seront alors disponibles pour le métabolisme microbien et seront ultérieurement et partiellement minéralisées ou transformées en composés gazeux. Trois enzymes sont étudiées : la glucosidase et la xylosidase, qui dégradent des composés organiques carbonés et løaminopeptidase, qui dégrade des composés organiques azotés (de type polypeptides).

- Des processus microbiens plus complexes (multi enzymatiques), qui font appel à des chaînes enzymatiques fonctionnant en cascade ou en parallèle, voire à des populations bactériennes spécialisées. Ces processus conduisent à la minéralisation complète de la matière organique et produisent des composés gazeux : CO₂ et CH₄, respectivement en conditions aérobies et anaérobies, pour les composés carbonés ; N₂O, en condition anaérobie, au départ de composés azotés de type nitrate ou nitrite. Ces processus constituent les processus dœutoépuration « vrais » en éliminant de lœau une fraction des composés carbonés et azotés dissous.

En complément, la biomasse microbienne des biofilms a été caractérisée. Elle permet dévaluer la quantité de biomasse (algale et bactérienne) supportée par les teneurs en nutriments de lœau et qui, en complément à ces activités de transformations de la matière organique dissoute, sert de ressource alimentaire aux invertébrés brouteurs. Les biofilms nont été retrouvés que sur le point amont Château, seul secteur dont løhydraulique évite un dépôt sédimentaire permanent sur le fond du cours dœau.

II - 2.3.1 Protocoles de mesure

La biomasse périphytique a été mesurée par calcul du poids sec sans cendre (AFDW). 2 ml de suspension de biofilm sont filtrés à travers des filtres individuels préalablement séchés (filtre Watman, 25 mm, fibre de verre, porosité 1,2 μ m). Chaque filtre est séché 24 h à 105°C et pesé afin de calculer le poids sec. Les filtres sont ensuite brûlés à 480°C (four Anbertherm P320) pendant 1 h et pesés à nouveau après refroidissement (en dessiccateur) pour obtenir le poids de la matière minérale. La biomasse est calculée en soustrayant la matière minérale du poids sec total. Les résultats sont exprimés en mg/cm².

Les trois enzymes -D glucosidase (Glu), -xylosidase (Xyl) et leucine aminopeptidase (Lap), sont analysées selon le protocole de Romani et al. (2004). Les activités sont mesurées en fluorimétrie en utilisant respectivement des substrats analogues (4-methylumbelliferyl- -D-glucopyranoside (750 M), 4-methyl-umbelliferyl-xylopyranoside (1000 M) et L-leucine-4-methylcoumarinyl-7-amide HCl (1000 M), pour déterminer au préalable les conditions expérimentales (concentrations de saturation). Pour chaque essai, 6 ml de solution de substrat sont ajoutés aux échantillons de biofilm (biofilm non gratté, soit un cailloux par tube). Loincubation est de 30 min, à lobscurité à 20°C, sous agitation douce. Un contrôle, tué au formaldéhyde (formol 40 %), est également incubé pendant 30 min. Des blancs sont également préparés avec de lœau de rivière filtrée. Les incubations sont stoppées en plongeant les tubes dans de lœau bouillante et chaque tube est ensuite centrifugé pendant 10 min à 5000 g. Les produits fluorescents issus de løhydrolyse enzymatique sont mesurés après ajout de tampon glycine 0,05 M, pH 10,4, sur un lecteur de microplaques ó fluorimètre (SAFIRE, TECAN), avec une longueur døondes døexcitation de 663 nm et døémission de 441 nm pour le MUF et de 343 (excitation) et 436 (émission) pour le MCA. La quantification est achevée avec løutilisation døune solution standard de MUF et MCA (courbe étalon de fluorescence). Løintensité de fluorescence des blancs, ainsi que celle des contrôles, est soustraite de tous les échantillons pour correction de løhydrolyse chimique. Les résultats sont exprimés en nmol de composés hydrolysés par heure et par cm² de surface pour le biofilm.

Pour les mesures en sédiment, le protocole est le même, avec incubation de 1 g de sédiment par tube. Les résultats sont exprimés en nmol de substrats hydrolysés par heure et par gramme de sédiment sec.

II - 2.3.2 Caractérisation de la diversité

La technique de PCR-ARISA est une technique dømpreinte moléculaire appliquée à løévaluation de la diversité au sein de communautés. Le principe simplifié en est le suivant : après échantillonnage *in situ*, løADN total des microorganismes est extrait, puis amplifié (PCR), puis séparé en fragments par attaque enzymatique, puis par électrophorèse. Cette séparation donne des bandes ou pics (selon la méthode) donnant alors une image qualitative et quantitative des microbes. La méthode ARISA sépare les fragments døADN selon leur taille, avec un niveau de discrimination variable selon la longueur des fragments døADN. Ces unités moléculaires (ou phylotypes ou Observed Taxonomic Units-OTU) correspondent plus ou moins bien à løespèce référente décrite essentiellement sur des bases phénotypiques.

Løssentiel de cette approche est de mettre en évidence des changements de diversité, sans pouvoir attribuer un nom à un OTU particulier.

II - 2.3.3 Traitement des données

Une première approche simplifiée de la diversité est le calcul de løindice de diversité de Shannon et Weaver (1963) : Hø=- (p_i.log₂p_i), avec p_i løabondance relative du taxon i.

Un traitement multivarié par analyse de redondance (RDA) a été réalisé pour établir les relations entre métriques biologiques et variables environnementales (Ricart et al., 2010). Les données ont été transformées (\log_{10} (x+1) avant analyse. Les données ont été døabord traitées par DCCA (Detrented Canonical Correspondence Analysis), dont les critères de validité ont été vérifiés : longueur maximum de gradient de 1,75 indiquant que les méthodes linéaires étaient appropriées (1 < 3). Par la suite, nous avons réalisé différentes analyses RDA dans lesquelles les métriques microbiennes sédimentaires ont été contraintes par les variables environnementales [incluant les variables physiques (granulométrie sédimentaire) et chimiques]. Les variables retenues sont celles dont le seuil était inférieur à p = 0,1. La signification des axes de la RDA a été évaluée par des tests de permutation de MonteCarlo (999 permutations).

II - 2.4. Invertébrés

Avec løbjectif de réaliser un suivi spatio-temporel des communautés døinvertébrés en amont et en aval des rejets de STEP, cinq campagnes døchantillonnage (automne 2009, hiver 2010, printemps 2010, été 2010, automne 2010) étaient prévues entre septembre 2009 et septembre 2010 sur les 3 stations sélectionnées.

Les macro-invertébrés benthiques ont été échantillonnés selon le protocole mis en place pour le réseau de contrôle et de surveillance (RCS) (issu de la circulaire DE/MAGE/BEMA 07/n°4 parue au Bulletin Officiel le 11 avril 2007). Il a løavantage de pouvoir à la fois (i) estimer løaptitude du milieu à héberger des macro-invertébrés et (ii) être représentatif des habitats les plus présents. Il autorise également, en ne prenant en compte quøune partie seulement des prélèvements réalisés sur une station, le calcul døune note IBGN équivalente à celle obtenue en appliquant rigoureusement le protocole IBGN (AFNOR, 2004).

La campagne hivernale initialement prévue nøa malheureusement pas pu être réalisée à cause de conditions météorologiques très défavorables nøautorisant pas la période de stabilité des débits nécessaire à løcchantillonnage de la macrofaune benthique. Cette

campagne a été reportée à løhiver 2011. Toutes les autres campagnes ont été réalisées conformément aux prévisions. Seuls les prélèvements issus de la campagne de septembre 2009 ont été analysés. Les prélèvements de la campagne 2010 ont été formolés et sont en attente de tri et de détermination.

Dans le présent rapport, seules les données de septembre 2009 seront exploitées. Elles seront mises en relation avec celles que nous avions déjà recueillies, selon le même protocole déchantillonnage, en septembre 2007 (cœst à dire avant loarrêt de loancienne STEP) et en septembre 2008 (cœst à dire après la mise en service de la nouvelle STEP).

Notre jeu de données de base, exploité dans ce document, comprend donc 3 stations x 3 dates.

II - 2.4.1 Prélèvement des organismes

Les macro-invertébrés sont échantillonnés à løaide døun filet de type Surber (0,5 mm de vide de maille, surface échantillonnée : 1/20 de m²). 8 prélèvements sont réalisés sur les substrats dominants (*i.e.* substrats dont la surface de recouvrement estimée est supérieure à 5 % de la surface totale de la station) et 4 sur les substrats marginaux (*i.e.* substrats dont la surface de recouvrement estimée est inférieure ou égale à 5 % de la surface totale de la station).

Ces douze prélèvements sont répartis selon trois phases déchantillonnage de 4 prélèvements. La première phase consiste à échantillonner 4 habitats marginaux suivant léordre décroissant de leur habitabilité (informations fournies par le protocole, cf. Tableau 5). Les 2ème et 3ème phases consistent à échantillonner les habitats dominants. Les prélèvements de la phase 2 sont effectués selon leur habitabilité et ceux de la phase 3, en privilégiant la représentativité des substrats présents.

Tableau 5 : Types de substrats potentiellement présents associés à leur ordre déhabitabilité (classés par ordre décroissant) et leur mode déchantillonnage.

Substrats	Habitabilité	Mode de prélèvement
Bryophytes	11	Végétal seul (sur bloc) ou avec élément support (sur cailloux)
Spermaphytes immergées (hydrophytes)	10	Inclut la couche superficielle du sédiment
Débris organiques grossiers (litière)	9	Inclut la couche superficielle du sédiment
Chevelus racinaires, supports ligneux	8	Végétal seul
Sédiments minéraux de grande taille (pierres, galets) (25 à 250 mm)	7	Inclut les différentes classes granulométriques de sédiments
Blocs (>250 mm) inclus dans une matrice døléments minéraux de grande taille (25 à 250 mm)	6	Inclut les sédiments et la faune associés au bloc (abris sous bloc)
Granulats grossiers (graviers) (2 à 25 mm)	5	Inclut les différentes classes granulométriques de sédiments
Spermaphytes émergents de strate basse (hélophytes)	4	Inclut la couche superficielle du sédiment
Vases: sédiments fins (<0,1 mm) avec débris organiques fins	3	Couche superficielle du sédiment (<3 cm)
Sables et limons (<2 mm)	2	Couche superficielle du sédiment (<3 cm)
Algues	1	Inclut les éléments minéraux du support
Surfaces uniformes dures naturelles et artificielles (roches, dalles, marnes et argiles compactes)	0	Raclage de surface

En parallèle de chaque prélèvement, la hauteur dœau et la classe de vitesse du courant (4 classes : nulle, lente, moyenne et rapide) ont été relevées pour chacun des 12 prélèvements sur chaque station.

Chaque prélèvement est stocké indépendamment. Les échantillons sont conservés dans du formaldéhyde à 4 % de concentration finale.

II - 2.4.2 Traitement des échantillons au laboratoire

Chaque échantillon est rincé à lœau au moyen dœune colonne de trois tamis (2,5 mm, 1,25 mm, 0,5 mm), sous hotte aspirante. Le tri et lødentification sont réalisés dans de lœau, sous loupe binoculaire (Leica MZ 125).

Les individus récoltés sont identifiés selon les critères fournis par la circulaire DE/MAGE/BEMA 07/n°4 (2007), cœst à dire au genre à læxception des Diptères (famille) et des Oligochètes (classe). Løouvrage de référence utilisé est le guide « Invertébrés dæau douce ó Systématique, biologie, écologie » (Tachet et al., 2000).

II - 2.4.3 Traitement des données

Nous nous limiterons dans ce rapport à une première illustration commentée de l\(\text{ganalyse} exploratoire des donn\(\text{ées}, \) effectu\(\text{ée} \) pour apporter des premiers \(\text{él\(\text{ments} de r\(\text{éponse} \) aux questions :

- i) comment les communautés døinvertébrés répondent-elles à des opérations de réduction des rejets døeffluents de station døepuration dans la rivière Vistre,
- ii) quels sont les paramètres biologiques qui paraissent les plus pertinents pour suivre cette évolution ?

Løanalyse des données a été réalisée à partir du tableau brut des abondances des taxons par station et par saison (70 taxons x 3 stations x 3 campagnes pour un total de 116866 individus). Avant løanalyse, les données relatives aux taxons dont løoccurrence est égale à 1 et løabondance inférieure à 5 sont retirées du jeu de données afin de ne pas donner un poids trop important à des taxons rares. Cela nous donne comme tableau de travail : 55 taxons x 3 stations x 3 campagnes, pour un total de 11848 individus.

Les données sont analysées à léchelle globale de la station (*i.e.* 12 prélèvements confondus) sous deux approches, taxonomique et fonctionnelle.

Approche taxonomique

Løanalyse taxonomique repose essentiellement sur une étude de la composition des communautés sur les 3 stations. Elle est effectuée à partir du tableau de travail (55 taxons x 9 prélèvements) via :

- i) une Analyse Factorielle des Correspondances (AFC) : Les données déabondance de chaque taxon ont été transformées en $\log(x+1)$. Cette transformation permet de réduire les disparités numériques entre les taxons à forts et faibles effectifs tout en conservant læffet de læbondance
 - ii) des indices de structure et de diversité classiques :
 - løabondance (Q): nombre total døindividus capturés,
 - la richesse taxonomique (S) : nombre de taxa différents rencontrés,

- la diversité de Shannon et Weaver (1963) : Hø = (p_i.log₂p_i), avec p_i løabondance relative du taxon i,
- løindice døéquitabilité de Pielou (1966) : $J\phi = H\phi H\phi_{max}$, avec $H\phi_{max} = log_2 S$,

iii) des indices de composition :

- løabondance relative (en %) de chacun des groupes présents dans la communauté (*i.e.* Acarien, Achètes, Coléoptères, Crustacés, Diptères, Ephéméroptères, Hétéroptères, Cnidaire, Mollusques, Nématodes, Némertiens, Odonates, Oligochètes, Trichoptères et Turbellariés),
- le pourcentage døEPT (abondance relative des Ephéméroptères, Plécoptères, Trichoptères),
- le pourcentage de GOLD (abondance relative des Gastéropodes, Oligochètes, Diptères)

iv) des indices de sensibilité :

- le GFI : groupe faunistique indicateur (AFNOR, 2004),
- un équivalent IBGN: une note équivalente à løindice biologique global normalisé est calculée døaprès la norme AFNOR NF T 90-350 (2004) sur la base de la richesse taxonomique et du groupe faunistique indicateur [seuls les 8 prélèvements correspondants aux phases 1 et 2 de løéchantillonnage RCS (i.e. 8 habitats échantillonnés selon leur habitabilité) sont pris en compte pour ce calcul].
- v) la notion de spécificité taxonomique de chacune des stations : les taxons qui sont exclusifs døune station (cøest à dire présents uniquement dans celle-ci) ou toujours absents sont recensés.

Approche fonctionnelle

Løanalyse fonctionnelle se base sur les caractéristiques biologiques et écologiques des taxons. Pour cela, nous utilisons løorganisation en traits bioécologiques décrite dans Tachet et al. (2000). Les traits biologiques regroupent des variables renseignant sur le cycle de vie, la morphologie, la physiologie et le comportement des taxons. Les traits écologiques renseignent les préférences des taxons pour les variables environnementales (distribution spatiale, préférence en termes de mésohabitats).

Le tableau de traits que nous utilisons contient 106 modalités pour 22 traits (cf. Annexe 2). Les caractéristiques bioécologiques sont enregistrées en codage flou. Cela permet dontribuer, à chaque unité systématique composant la communauté donvertébré, une note positive, variant de 0 à 5, décrivant loaffinité du taxon pour chacune des modalités caractérisant un trait écologique ou biologique. Ces notes sont obtenues à partir des données issues de la bibliographie. Une note de 0 équivaut à loabsence donfinité du taxon envers cette modalité, tandis quoune note de 5 équivaut à une affinité maximale du taxon pour cette modalité.

En termes døanalyse, pour donner le même poids à chaque trait, la somme des notes døaffinités des modalités døun trait est ramenée à 1.

Cette analyse fonctionnelle repose sur :

i) le calcul des profils bioécologiques stationnels : sur la base du tableau des relevés faunistiques et du tableau des affinités des taxons pour chaque modalité de trait, le profil

bioécologique døune station pour un trait donné est obtenu en calculant la distribution de fréquences relatives des sommes de notes døaffinité des taxons de la communauté pour les modalités du trait correspondant. Chaque note døaffinité a été pondérée par løabondance dans le relevé du taxon présent correspondant. Les distributions de fréquences relatives ont été représentées sous forme døhistogrammes. Ces profils de station pour chaque trait permettent døbserver quelles modalités varient à la fois dans le temps et dans løespace.

ii) une approche de la diversité fonctionnelle : la diversité fonctionnelle peut être considérée comme une traduction numérique de la diversité des solutions et/ou des réponses bioécologiques adoptées par une communauté dans un contexte environnemental donné.

Ici, la diversité fonctionnelle est abordée en termes de traits biologiques et écologiques. Plus précisément, elle se base sur la répartition des organismes døune communauté à løintérieur de différents groupes constitués par des taxons considérés comme homogènes quant à leurs caractéristiques biologiques et écologiques, mais, taxonomiquement hétérogènes. En effet, en 2001, Usseglio-Polatera et al. ont réalisé une classification de 472 macro-invertébrés benthiques basée sur les traits bioécologiques. Il en est ressorti 6 groupes, 9 sous-groupes et 43 unités døinvertébrés ayant des combinaisons de traits biologiques et écologiques les plus similaires possibles.

La répartition des différents organismes dans ces groupes sœxplique principalement par leurs caractères reproducteurs (voltinisme, techniques de reproduction, dispersion, respiration, alimentation et habitudes alimentaires). Cette organisation des traits biologiques correspond à des organismes dont les combinaisons de traits devraient être plus particulièrement appropriées à une zonation longitudinale et transversale des cours dœau (du crénon vers le potamon et des conditions de chenal principal vers celles des marais ou zones très lentiques) (cf. Tableau 6)

Tableau 6: Principales caractéristiques biologiques et écologiques des 6 groupes bioécologiques définis par Usseglio-Polatera et al. (2001).

	Groupe	Groupe	Groupe	Groupe	Groupe	Groupe
Taille	Moyenne	Petite à moyenne			Petite	Grande
Voltinisme	Mono ou semi			Polyvoltins	Uni-	Uni-
	voltins				plurivoltins	plurivoltins
Respiration	Aquatique	Aquatique		1 1	Aérienne	Branchiale
		(tégumentaire)		aérienne		ou
	~ 6 : 1/	~		T7 1/		tégumentaire
Technique de		ñ ufs isolés,		Variées		Ovovivipare
reproduction Locomotion	pontes fixées Rampants	pontes fixées Rampants		Domnanta	Domnonto	ou asexuée
Locomotion	Kampants	Kampants		Rampants, nageurs	Rampants, nageurs	
Habitudes	Racleurs,	Racleurs,		Perceurs,	nageurs	Filtreurs,
alimentaires	broyeurs	broyeurs		broyeurs,		collecteurs
	010) • • • • • • • • • • • • • • • • • • •	010) 2015		prédateurs		001100000115
Alimentation	Microphytes,	Microphytes,		Macroinvertébrés		Fines
préférée	végétaux,	végétaux,				particules
-	macroinvertébrés	macroinvertébrés				organiques
						ou détritus
Substrats	Minéraux de		Très large	Large spectre	Tous: pas de	Sable, limon
préférés	grande taille		spectre	avec préférence	préférence	
				pour les substrats		
				organiques en		
Distribution	Crénon	Rhithron	Rhithron,	milieux lentiques		
longitudinale	Crenon	KIIIIIIIIII	Potamon			
Altitude	Montagne	Piémont, plaine	Plaine	Plaine		
Eutrophisation		Oligo-	Tame	1 lanic	Eutrophe	
du milieu	Ongotrophe	mésotrophe			Lutrophe	
Niveau		Oligo-	-	-mésosaprobes	à -	Polysaprobe
saprobique		mésosaprobe	mésosaprobes	1	mésosaprobes	J 1
Remarques	Taxons typiques	Taxons se	Taxons		Taxons	La plupart
générales	des conditions	rencontrant	colonisant		typiques des	des taxons
	rhéophiles	surtout dans les	plutôt les		zones très	invasifs se
		zones de chenal	zones		lentes	retrouvent
		ou berges	lentiques des			dans ce
			rivières,			groupe
			marais ou les			
			étangs			

Nous avons associé à chaque taxon de la liste faunistique le groupe, sous groupe et unité bioécologique selon Usseglio-Polatera et al. (2001). Les taxons non répertoriés dans la classification des auteurs nønt pas été pris en compte (Menetus et Hydracariens).

La fréquence relative des différents groupes bioécologiques présents par station et par date ainsi que loindice de diversité de Shannon (calculé sur la base de la distribution des taxons dans les différentes unités bioécologiques) ont été calculés pour chaque station.

II - 2.5. Diatomées

II - 2.5.1 Echantillonnage

Quatre échantillons de diatomées collectés sur substrats naturels (galets lotiques) dans les stations Château, Bastide, Jardins et Fontaine et fixés au formol sur le terrain ont fait l'objet d'inventaires au niveau spécifique.

II - 2.5.2 Traitement des échantillons au laboratoire

Au laboratoire, lødentification des diatomées présentes dans les échantillons de périphyton a été réalisée døaprès læxamen microscopique de leur squelette siliceux, rendu possible par un traitement permettant de débarrasser les échantillons døune grande partie des matières organiques. Le protocole normalisé AFNOR (NF EN 13946) préconise un nettoyage par digestion de la matière organique : un traitement des échantillons formolés à læau oxygénée (H₂O₂, 30 %) bouillante de 10 minutes permet de dégrader la matière organique. Un deuxième traitement, à løacide chlorhydrique (HCl, 35 %) bouillant pendant 5 min est parfois nécessaire pour obtenir un nettoyage satisfaisant des frustules. Les résidus dæau oxygénée et døacide sont éliminés par des cycles successifs de centrifugations (5 min à 2500 g) et de rinçages à læau distillée. Une partie aliquote est déposée sur une lamelle propre et déshydratée par séchage. La lamelle est ensuite retournée sur une goutte de résine réfringente, le Naphrax® (Brunel Microscopes Ldt, UK), déposée au préalable sur une lame, le chauffage permet de chasser les bulles døair et døaboutir à la fabrication de lames permanentes.

Lødentification des diatomées se fait par løbservation en microscopie photonique (au grossissement x1000) des lames préparées, selon la norme NF EN 14407 (2004). Løffort de détermination porte sur 400 valves au minimum. Les identifications ont été effectuées à partir des ouvrages de la Süßwasserflora (Krammer, 1986-1991) et de monographies récentes issues des séries Diatoms of Europe et Iconographia Diatomologica (A.R.G. Gantner Verlag et Koeltz Scientific Books).

Les résultats des inventaires exprimés en effectifs comptés et abondances relatives ont été soumis à divers calculs d'indices disponibles [Indice Biologique Diatomées (IBD) et Indice de Polluosensibilté Spécifique (IPS)] dans le logiciel OMNIDIA v.4 (Lecointe, 1993). Une attention a également été portée à l'évolution de la biodiversité [calcul de la diversité spécifique (indice de Shannon) le long du gradient]. Des compléments d'information ont également été obtenus à partir de l'examen des caractéristiques écologiques dominantes (notamment préférences en termes de courant) extraites des classifications de Denys (1991).

Une Classification Ascendante Hiérarchique (CAH) a été réalisée en utilisant la quasi-totalité des espèces, seuls les taxons très rares (observés à moins de 0,2 % døabondances relatives cumulées) ont été exclus de løanalyse. La discrimination des groupes se fait døaprès la méthode de Ward, en utilisant une distance euclidienne.

Enfin certains "traits biologiques" susceptibles de traduire d'éventuels effets toxiques ont été évalués. Il s'agit de la distribution des biovolumes moyens calculés par relevé, pondérés par l'abondance des taxons. Ces volumes spécifiques ont été calculés à partir des dimensions moyennes relevées dans les flores en appliquant les formules proposées par Wetzel et Likens (1991), et Hillebrand et al. (1999).

L'abondance de formes anormales recensées lors des comptages a également été notée. Ces déformations qui affectent indifféremment le contour valvaire, la striation ou l'ensemble des valves sont généralement attribuées à des effets toxiques (herbicides ou métaux lourds), mais peuvent également être dues à dœutres stress environnementaux (Falasco, 2009).

II - 2.6. Macrophytes

Le protocole suivi pour le relevé de la végétation aquatique est celui de l'Indice Biologique Macrophytique en Rivière (IBMR) tel qu'il est décrit par la norme AFNOR T 90-395 et les documents d'application du Cemagref. La longueur de la zone de relevé est de 100

m, deux unités de relevé correspondant à deux types de faciès d'écoulements sont décrites séparément lorsque la distinction peut morphologiquement être faite.

Le relevé comprend une description des caractéristiques stationnelles et l'inventaire des taxons macrophytiques présents assortis de leur abondance respective, exprimée en pourcentage de recouvrement à l'échelle de la station.

Campagne 2009

En 2009, les relevés ont été réalisés les 17 et 18 août. Les conditions étaient celles d'un étiage caractérisé stabilisé, légèrement inférieur à la médiane (Figure 5). Ces conditions ont permis d'inventorier une flore de fin de saison estivale. A la station Bastide, qui reçoit les rejets des nouvelles installations d'épuration, l'impact visuel de cet apport a été noté : l'arrivée du flux rejeté (pic de fin de matinée) se traduit par une turbidité accentuée de l'eau et une charge en matières en suspension et flottantes non négligeable. Il s'avère donc que le rejet actuel n'est pas sans influence sur la qualité de l'eau, au moins visuellement.

Campagne 2010

La campagne de terrain a été réalisée du 30 mai au 2 juin.

Bien que la date fixée pour les relevés ait été un peu précoce pour positionner cette campagne de terrain dans un étiage caractérisé, et qu'un épisode de débit important l'ait précédé (Figure 5), le Vistre présentait tout de même des conditions d'écoulement permettant une prospection « macrophytes ». L'hydraulicité de la première moitié de 2010 se situe entre la quinquennale sèche et la quinquennale humide. Les débits étaient donc relativement soutenus avec un débit et un niveau d'eau plus élevés que lors de la campagne 2009.

Dans ces conditions, seule la station "Bastide" s'est révélée difficile à parcourir intégralement, car le substrat marno-argileux, formant un chenal d'écoulement central abrupt et profond, avec un courant assez fort, n'était pas parcourable à pied dans les conditions de débit du moment. Dans ce chenal central le relevé a été complété par des sondages au râteau télescopique.

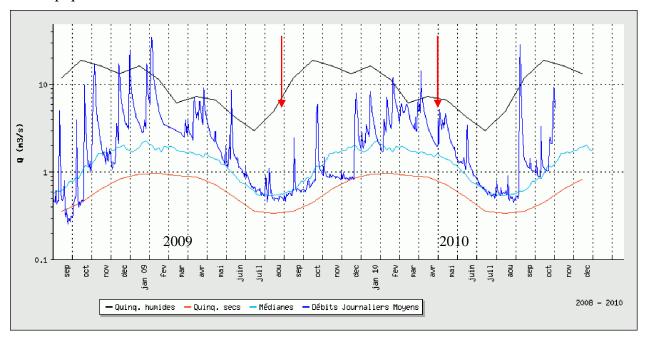


Figure 5 : Hydrologie du Vistre à la station de Bernis 2009 - 2010. Les flèches indiquent la date des campagnes 2009 et 2010 (données banque Hydro ó Eaufrance).

III - Résultats

III - 1. Chimie

III - 1.1. Chimie sédiment

La granulométrie témoigne globalement døun sédiment de type argilo-limoneux sur løensemble des trois stations du Vistre (avec souvent plus de 60 % des particules < 200 μ m). La variabilité saisonnière søexplique par la mobilité des sédiments liés au régime hydraulique du Vistre. (cf. tableau complet en Annexe 4).

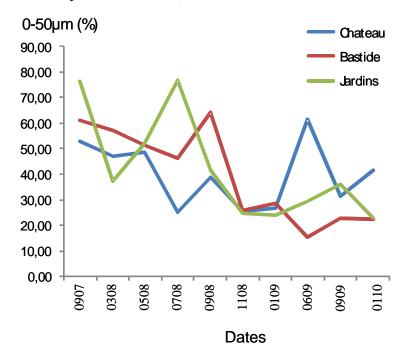


Figure 6 : Évolution temporelle de l\u00e1abondance relative de la classe 0- 50 \u00bcm m des s\u00e9diments.

Une baisse des particules les plus fines (limons) est observée sur les deux stations de Bastide et Jardins (Figure 6) dès la fin døannée 2008, en correspondance avec la transition hydrologique sæffectuant après une hydrologie antérieure bien plus faible (cf. Annexe 15).

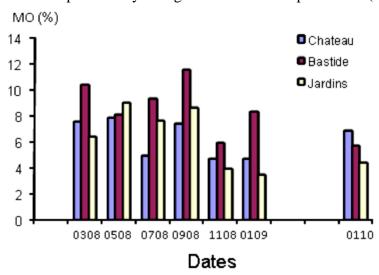


Figure 7 : Évolution de la teneur en matière organique des sédiments.

La Figure 7 nous montre que les teneurs en MO dans les sédiments ont tendance à diminuer sur les stations de Bastide et Jardins. Les teneurs en matière organique des sédiments sont assez élevées et varient entre 6 et 10 %.

Cette diminution sur lænsemble de la période de prélèvement est à mettre en relation avec lærrêt du fonctionnement de læncienne STEP sans que læn puisse exclure un effet de lænydrologie. Ces données sont cohérentes avec lævolution des proportions de la classe 0-50 µm, les plus riches en matières organiques.

III - 1.2. Données chimiques antérieures à lœétude (2007)

Ces données sont issues du rapport Aquascop et ne sont rappelées quà titre indicatif (Figure 8 ; Annexe 5). Elles précisent létat chimique du Vistre en 3 points déchantillonnage situés à proximité de points déchantillonnage du Cemagref, voire identiques. Par commodité, nous avons renommé les stations déchantillonnages Aquascop avec les noms de station choisis pour cette présente étude. On remarque la baisse de la conductivité sur les trois sites, clairement associée au mois de mai, et correspondant à la seule période un peu pluvieuse de cette année 2007.

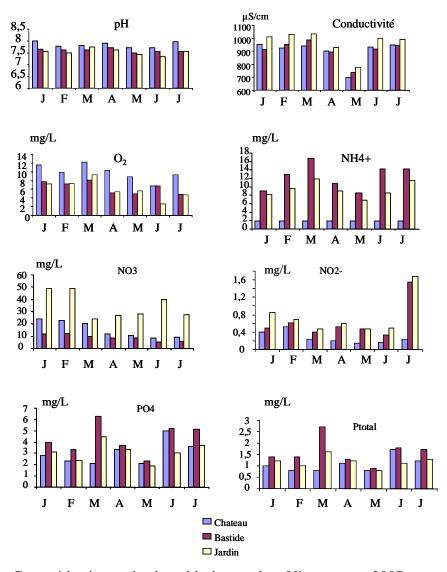


Figure 8 : Caractérisation physico-chimique du Vistre en 2007 sur 3 stations déchantillonnage (déaprès les données Aquascop). J, F, M, A, M, J, J : mois de janvier à juillet.

Les stations de Bastide et de Jardins apparaissent nettement plus dégradées en particulier en $PO_4^{\ 2^-}$, P_{tot} , $NO_2^{\ -}$, $NO_3^{\ -}$ et $NH_4^{\ +}$, composés liés au rejet de løancienne station døpuration de Nîmes (à løamont du point Bastide). Løapport døammonium très important, est partiellement nitrifié au fil de løeau, ce qui se traduit par une augmentation des taux de nitrates au point aval Jardins. La baisse de la teneur en O_2 est liée à cette nitrification, ainsi quà la minéralisation du carbone organique rejeté (il nøy a cependant pas de données sur ce paramètre ; les valeurs DCO_5 et DBO_5 fournies par Aquascop ne sont pas utilisables).

Globalement, et selon les grilles du SEQ eau, la qualité des eaux était médiocre avec N et P comme facteurs déclassants principaux.

Ces résultats confortent tout à fait les mesures effectuées en Septembre 2007 par le Cemagref. Elles permettent de consolider la caractérisation chimique de ce tronçon du Vistre et de conforter lœvolution chimique observée au cours des années 2008, 2009 et 2010, après løarrêt de løancienne station dœpuration de Nîmes et la mise en service de la nouvelle.

III - 1.3. Évaluation de la qualité de l'eau (SEQ-eau)

Les résultats de l'analyse chimique de l'eau des trois stations de septembre 2007 à janvier 2010 sont présentés dans le Tableau 7, avec une indication des classes de qualité du SEQ-eau.

Le pH, la conductivité ainsi que le chlorure, le calcium, le magnésium et le sodium se situent dans les classes de bonne ou très bonne qualité. La station des Château est globalement la station qui affiche les moins mauvaises valeurs, hormis pour les nitrites, le phosphore et les phosphates.

La qualité de la station Bastide qui subissait le rejet de l'ancienne STEP, s'améliore après l'arrêt du rejet : la quantité d'ammonium est 3,5 fois moins grande, celle du phosphore est divisée par 4 ainsi que celle des phosphates. En janvier 2010, tous les paramètres sont de bonne qualité et meilleurs pour les deux stations aval que ceux de la station amont. Le problème des nitrates persiste avec des valeurs de qualité moyenne.

La situation de la station Jardins soumise au nouveau rejet, s'améliore plus vite que celle de la station située juste à l'aval du rejet de l'ancienne STEP : à partir de septembre 2008, les concentrations en ammonium et en nitrites atteignent des niveaux de bonne qualité, exception faite des relevés de novembre 2008. Les valeurs en nitrates restent de qualité moyenne et stable, de même que le phosphore et les phosphates.

Au fil des années et quelles que soient les stations, la tendance générale est à l'amélioration de tous les paramètres chimiques.

Tableau 7 : Valeurs des différents paramètres physico-chimiques mesurés sur le Vistre de septembre 2007 à janvier 2010. Le code couleur correspond aux classes de qualité du SEQeau (MEED & Agences de l'eau, 2003). Rouge : classe de qualité :Mauvaiseø; Orange : classe de qualité :Médiocreø; Jaune : classe de qualité :Moyenneø; Vert : classe de qualité :Bonneø et Bleu : classe de qualité :Très bonneø gris : non analysé.

					Château					
	sept 2007		mai, juil, sept et nov 2008				janv, juin et sept 2009			
pH	7,5	7,7	7,5	7,7	7,9	7,9	8,5	8,05	6,9	
Conductivité (µS/cm)	905	870	885	850	875	845			850	
Ammonium (mg/L)	0,13	0,56	0,17	0,12	0,23	0,5	0,13	0,15	0,33	
Nitrites (mg/L)	0,2	0,81	0,86	0,27	0,25	0,36	0,38	0,12	0,27	
Nitrates (mg/L)	10	19	15	14	25	31	19	13	25	
Phosphore total (mg/L)	1,7	1	0,92	1,95	0,29	0,26	0,37	0,7	0,24	
Orthophosphates (mg/L)	4,65	2,5	2,7	4,15	0,79	0,53	0,86	2,05	0,65	
Chlorures (mg/L)	74	65	71	71	53	46	62	75	50	
Calcium (mg/L)	136	141	151	142	150	153	143	138	155	
Magnésium (mg/L)	7,7	6,1	8,8	7,6	8,4	7,6	8,1	8	7,3	
Sodium (mg/L)	47,5	36	41	43,5	28,5	23	36	50	24	
Potassium (mg/L)	7,3	4,5	5,6	7,1	3,3	2,2	5,4	4,8	2,2	
Hydrogénocarbonates (mg/L)	305	320	320	290	330	325	320	305	325	

	Bastide								
	sept 2007	mai, juil, sept et nov 2008			janv, juin et sept 2009			janv 2010	
pH	7,8	7,7	7,6	7,8	7,9	7,9	7,99	7,99	7,3
Conductivité (µS/cm)	1050	870	820	840	830	815			785
Ammonium (mg/L)	31,3	8,8	0,83	0,19	0,88	0,32	0,06	0,11	0,15
Nitrites (mg/L)	0,74	0,67	1,3	0,46	0,51	0,27	0,37	0,34	0,14
Nitrates (mg/L)	3,7	13	13	16	20	26	18	15	19
Phosphore total (mg/L)	4,65	1,11	0,6	0,56	0,24	0,2	0,26	0,5	0,13
Orthophosphates (mg/L)	11,5	3	1,55	1,25	0,64	0,34	0,58	1,4	0,38
Chlorures (mg/L)	67	49	48	59	41	40	39	53	38
Calcium (mg/L)	127	139	152	148	146	152	138	136	150
Magnésium (mg/L)	8,8	5,5	7,8	7,4	7,3	6,8	7,3	7,8	5,7
Sodium (mg/L)	82,5	31,5	30	38	24,5	21,5	25	35	19,5
Potassium (mg/L)	13	5,6	4,1	5,5	4,5	2,1	2,9	4,4	1,7
Hydrogénocarbonates (mg/L)	440	385	345	320	360	345	325	300	355

	Jardins								
	sept 2007	mai, juil, sept et nov 2008			janv, juin et sept 2009			janv 2010	
pН	7,8	7,7	7,6	7,7	7,9	7,9	7,85	7,85	7,4
Conductivité (µS/cm)	1040	890	865	870	845	835			795
Ammonium (mg/L)	11,3	8,3	0,53	0,17	0,65	0,31	0,06	0,09	0,14
Nitrites (mg/L)	1,35	0,81	1,05	0,3	0,47	0,24	0,27	0,17	0,13
Nitrates (mg/L)	49	15	17	14	19	23	15	14	18
Phosphore total (mg/L)	1,2	1	0,51	0,32	0,22	0,23	0,32	0,45	0,17
Orthophosphates (mg/L)	1,3	2,7	1,25	0,61	0,61	0,54	0,67	1,05	0,44
Chlorures (mg/L)	105	59	75	86	48	47	60	77	43
Calcium (mg/L)	122	137	145	129	141	148	128	109	145
Magnésium (mg/L)	8,3	5,5	8,3	7,6	7,5	6,9	7,9	8,3	5,9
Sodium (mg/L)	69,5	37	41	55,5	30,7	28	41,5	55	23
Potassium (mg/L)	13	6,4	6,9	11	6,1	3,8	8,2	8,3	2,9
Hydrogénocarbonates (mg/L)	295	375	310	280	355	345	315	285	345

Le résumé de løinformation des analyses est fourni par la Figure 9. Le premier axe factoriel de l'ACP extrait 39 % de l'inertie totale du tableau, 27,5 % pour le deuxième. Le premier plan factoriel (F1 x F2) représente donc 66,5 % de l'inertie totale. L'ACP sur les 7 paramètres chimiques discrimine bien les différentes années avec un décalage de la partie négative vers la partie positive de l'axe F1.

L'axe F1 est fortement corrélé avec l'ammonium et le phosphore total. La répartition des relevés est structurée dans le temps : les relevés de 2007 dans la partie négative de l'axe

F1 sont davantage en relation avec l'ammonium, le phosphore et les nitrites alors que les prélèvements de 2008 à 2010 glissent vers la partie positive de l'axe F1.

La station Château présente moins de variabilité entre les points de prélèvements alors que les stations plus en aval (Bastide et Jardins) ont des nuages de points plus étendus. La station Château est corrélée avec les nitrites et les nitrates alors qu'il n'existe pas de tendance claire pour les deux autres stations aval.

Il faut retenir de cette analyse que la variabilité inter station est très fortement réduite au cours du temps ce qui traduit une homogénéisation de la qualité chimique le long du tronçon.

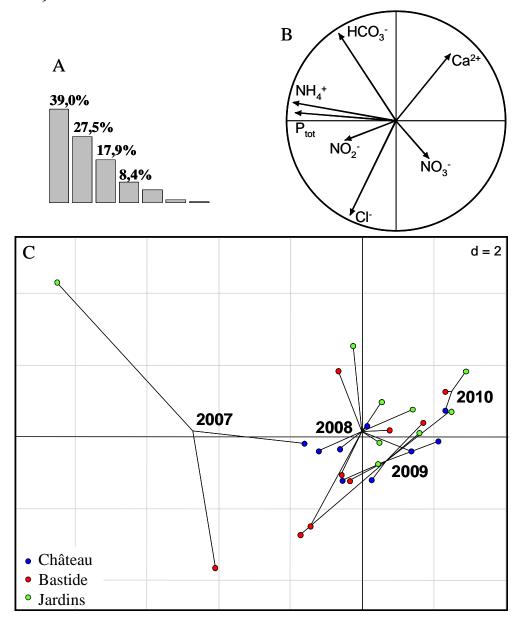


Figure 9 : ACP du tableau des analyses chimiques : a) Histogramme des valeurs propres ; b) Cercle des corrélations F1xF2 ; c) projection des relevés regroupés par années sur le plan factoriel F1xF2.

III - 1.4. Contaminants : métaux et pesticides

Les résultats des analyses concernant les métaux dans lœau et les sédiments ainsi que les pesticides dans lœau sont présentés en Annexe 6 et Annexe 7.

III - 2. Hydromorphologie - Faciès et classes de vitesse

Le secteur décrit (Tableau 8) approche les deux kilomètres et a été décomposé en 91 structures élémentaires dont 53 pour le secteur non aménagé et 38 pour le secteur aménagé.

Les linéaires des secteurs diffèrent en surfaces et surtout en largeurs moyennes en raison du gabarit bien plus petit du secteur aménagé, où la dynamique découlement est en conséquence bien plus forte.

Tableau 8 : Caractéristiques des tronçons aménagé et non-aménagé décrits pour un débit de 1.7 m³/s.

	longueur (m)	largeur (m)	surface (m²)	vitesse (cm/s)	profondeur (m)	Roche mère
TOTAL	1987.2	moyenne	18767	moyenne	moyenne	%surface
Aménagé	854.6	$6,6 \pm 0,8$	5558	68,8 ± 18,5	84,9 ± 23	46,7
Non Aménagé	1132.6	11,8 ± 1,1	13209	37,1 ± 33,7	92,8 ± 7,8	0

Dans ce tableau les moyennes des variables ÷vitesseø et ÷profondeurø sont issues des bornes minimales et maximales des intervalles utilisés pour décrire les dominantes de chacune des structures. Elles rendent compte des tendances observées et ne constituent pas un échantillonnage de points de mesure.

Au plan global, les secteurs diffèrent très fortement par le pourcentage de roche mère qui atteint presque 47 % dans le secteur aménagé.

Les relevés (Tableau 9) montrent que le secteur aménagé a une variété de types granulométriques dominants un peu plus diversifiée et plus équilibrée que celle du secteur non aménagé (Tableau 10).

Le substrat dominant le plus représenté globalement est formé par les graviers. Cependant les graviers grossiers (0,8-1,6 cm) représentent 40,2 % de la surface dans le secteur aménagé, derrière la roche mère à 46,7 %, alors que les graviers fins (0,2-0,8 cm) dominent fortement à 84,4 % dans le secteur non aménagé.

Tableau 9 : Occurrences et surfaces de deux types granulométriques (le plus gros et le plus dominant) inventoriés dans chacun des tronçons.

Type	Granulométrie	Granulométrie	Granulométrie	Granulométrie
granulométrique	la plus grosse	dominante	dominante	dominante
Aménagé	occurrence	occurrence	surface	surface (%)
Rocher	14	0	0	0.0
Roche Mère	6	19	2596	46.7
Bloc	18	2	343	6.2
Pierre Fine	0	0	0	0.0
Caillou Grossier	0	0	0	0.0
Caillou Fin	0	2	179	3.2
Gravier Grossier	0	13	2233	40.2
Gravier Fin	0	2	207	3.7
Sable	0	0	0	0.0
Non Aménagé				
Rocher	1	0	0	0
Roche Mère	0	0	0	0
Bloc	1	0	0	0
Pierre Fine	14	0	0	0
Caillou Grossier	9	0	0	0
Caillou Fin	2	4	852	6.5
Gravier Grossier	19	2	221	1.7
Gravier Fin	0	40	11145	84.4
Sable	0	7	992	7.5

En termes déhabitabilité des supports minéraux, où léhabitabilité est au maximum de 7, le fort pourcentage de « roche mère » pénalise le secteur aménagé avec une note de 3,2 (Tableau 10). Le secteur non-aménagé présente un meilleur score de 4,8. La relative pauvreté de léaccueil benthique dans ce secteur ne peut être compensée que par les supports végétaux, en grande majorité des hydrophytes, car les chevelus racinaires dans cette partie du Vistre sont très rares en situation rivulaire (ils sont absents du secteur non aménagé).

Tableau 10 : Caractéristiques des assemblages des types granulométriques dominants des tronçons aménagé et non aménagé.

	Aménagé	Non Aménagé
total surface (m²)	5558	13210
types granulo. domin.	5	4
Indice de Shannon	1,63	0,84
Equitabilité	0,70	0,42
Habitabilité	3,2	4,8

Au plan structurel, les tronçons diffèrent également par les faciès car aucune mouille (au sens défini précédemment) nœst présente dans le secteur aménagé (Tableau 11).

Dans le secteur amont aménagé, bien que les largeurs y soient plus petites, le faciès *radier* occupe une surface plus grande que dans le tronçon aval, et il est donc proportionnellement nettement plus important (13,6 % contre 4 %). Ces radiers sont toutefois assez inhospitaliers pour la faune benthique avec un pourcentage cumulé de roche mère et de blocs proche de 70 %. Le reste de ce secteur est composé de plats où lécoulement est assez dynamique, mais avec un pourcentage de roche-mère atteignant 50 %.

Tableau 11 : Structure des tronçons décrits (radier, plat, mouille).

Surface (m²)		Aménagé		Non aménagé		
Type						
granulométrique						
dominant	Radier	Plat	Mouille	Radier	Plat	Mouille
Rocher	0	0	0	0	0	0
Roche Mère	177	2419	0	0	0	0
Bloc	343	0	0	0	0	0
Pierre Fine	0	0	0	0	0	0
Caillou Grossier	0	0	0	0	0	0
Caillou Fin	123	55	0	385	467	0
Gravier Grossier	111	2122	0	0	221	0
Gravier Fin	0	207	0	139	4303	6703
Sable	0	0	0	0	852	139
Total	755	4803	0	524	5844	6842
Surface (%)		Aménagé		N	lon aménag	jé
Type						
granulométrique						
dominant	Radier	Plat	Mouille	Radier	Plat	Mouille
Rocher	0	0	0	0	0	0
Roche Mère	23.5	50.4	0	0	0	0
Bloc	45.4	0	0	0	0	0
Pierre Fine	0	0	0	0	0	0
Caillou Grossier	0	0	0	0	0	0
Caillou Fin	16.3	1.2	0	73.5	8.0	0
Gravier Grossier	14.8	44.2	0	0	3.8	0
Gravier Fin	0	4.3	0	26.5	73.6	98.0
Sable	0	0	0	0	14.6	2.0

Dans le secteur non aménagé, la roche mère est absente, et la plus grosse granulométrie dominante est formée par les cailloux fins (1,6 - 3,2 cm), nettement dominants dans les radiers, alors que le reste des structures présentes sont composées essentiellement de graviers fins et de sables.

Ces assemblages granulométriques traduisent donc une meilleure habitabilité de tous les faciès dans le tronçon non aménagé (Tableau 12).

Tableau 12 : Note de løhabitabilité de chacun des faciès døccoulement dans les secteurs aménagé et non-aménagé.

		Aménagé			Non aménagé		
	Radier	Plat	Mouille	Radier Plat Mouill			
habitabilité	4.5	3.0	-	5.0	4.6	4.9	

III - 2.1. Hydrologie et Régime thermique

La dynamique interannuelle des écoulements du Vistre est marquée par une transition entre 2007 et 2008. Løannée 2007 (hydraulicité de løordre de 0,6) correspond à løannée la plus sèche de la série 2004-2010. Après un regain pluvieux au printemps 2008, la transition est surtout marquée en fin døannée 2008 et début 2009 (cf. Annexe 15)

En 2010, les débits du Vistre ont été particulièrement soutenus jusquœ fin juin où ils sont passés sous la valeur de 1 m³/s (Figure 10).

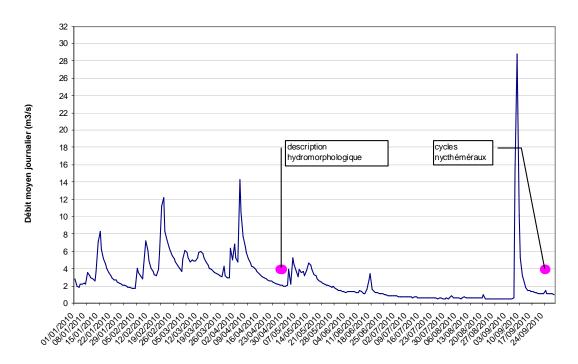


Figure 10 : Débits moyens journaliers du Vistre à Bernis (BV : 291 km²) en 2010. Données de la Banque Hydro (http://www.hydro.eaufrance.fr/).

Au plan thermique, les secteurs comparés ont des températures moyennes journalières proches. Le secteur amont aménagé présente toujours une température moyenne journalière inférieure à celle de løaval (Figure 11). Sur la période considérée, en moyenne løécart est de 0,8°C.

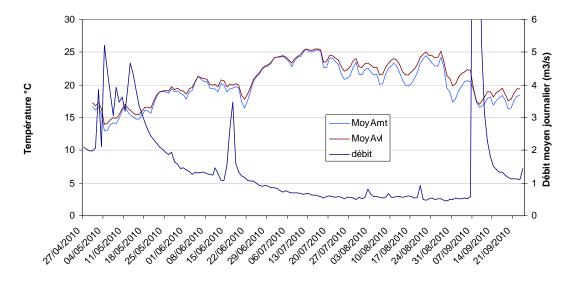


Figure 11 : Débits moyens journaliers du Vistre à Bernis (BV : 291 km²) et températures moyennes dans les secteurs amont-aménagé et aval-non-aménagé. Période du 27 avril au 21 septembre 2010. Débits : Données de la Banque Hydro (http://www.hydro.eaufrance.fr/).

La différence entre les stations søaccentue quand le débit devient durablement inférieur à 1 m³/s. Cette différence est traduite par une importance accrue des classes de températures supérieures à 20°C pour les minima et des classes de température supérieures à 24°C pour les maxima (Figure 12).

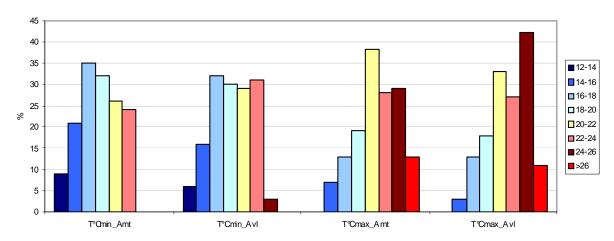


Figure 12 : Distributions des températures minimales et maximales pour chacune des stations par classes døintervalle de 2° C.

III - 2.2. Cycles nycthéméraux

Cycle du 27 au 28 Avril 2010

La figure suivante présente lévolution de trois paramètres, la température, léoxygène dissous et la turbidité dans le secteur aménagé (en amont du rejet de la station dépuration de Nîmes).

Le débit a été stable et le ciel est resté dégagé pendant la période dœnregistrement.

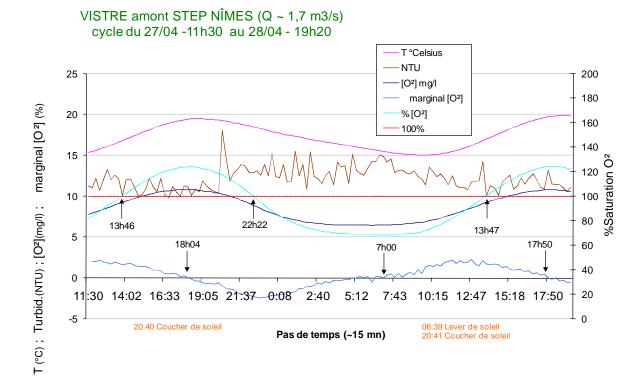


Figure 13 : VistreóBastide. Cycle nycthéméral du 27 au 28 avril 2010 pour débit de 1,74 m³/s. Paramètres : Température (°C) ; Turbidité (NTU) ; Oxygène dissous (mg/l, %).

Pour løxygène dissous, deux courbes complémentaires ont été ajoutées, le pourcentage de saturation et le taux de variation continue (marginal). Pour cette époque, et malgré un débit de 1,74 m³/s, les eaux oscillent déjà entre 15 et 20°C. La turbidité est faible (10 à 15 NTU) en rapport avec la bonne transparence de lœau. On remarque toutefois une légère hausse des valeurs nocturnes de turbidité, qui témoigne probablement de déplacements døanimaux plus fréquents.

La chronologie ne révèle pas de problème sévère døxygénation, mais la saturation en oxygène fluctue déjà fortement, entre 120 % et 60 %, ce qui témoigne døune présence végétale active et døune consommation døxygène importante hors période diurne.

On observe classiquement un retard des maxima thermiques par rapport aux maxima de la teneur en oxygène.

Cycles du 23 au 24 septembre 2010

La Figure 14 présente lévolution des hauteurs dévau absolues où ont été placés les enregistreurs. Lépisode a été marqué par le passage de front orageux qui remontait le bassin versant. Les numéros des séries sont croissants vers léaval.

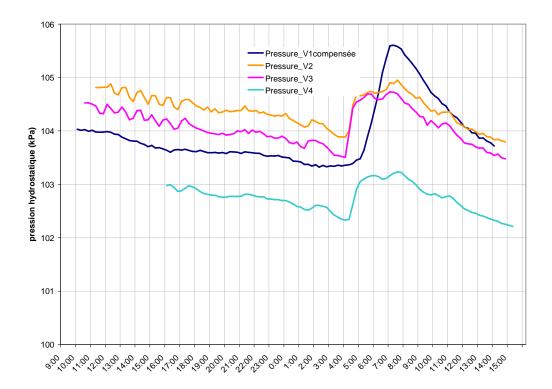


Figure 14 : Variations brutes des hauteurs dœau aux quatre points dœnregistrement. V1, V2 : amont, aval du secteur aménagé ; V3, V4 : amont, aval du secteur non aménagé.

On distingue clairement que le ruissellement urbain arrive en premier au niveau des points V2 et V3 encadrant le rejet de la station dépuration. Léonde de crue issue du bassin versant amont arrive nettement plus tard au point V1 le plus amont dans le secteur aménagé. Les hauteurs ne sont pas indicatrices de débits différents, car elles dépendent de la configuration du profil en travers ; ainsi la plus forte variation au point V1 est due à une section mouillée plus petite.

La Figure 15 suivante rend compte, via la conductivité, de la brusque arrivée dœau de ruissellement par le réseau urbain au point V3 où la conductivité est divisée par deux. Le point V4 témoigne de løapport conséquent de ce ruissellement toujours visible un kilomètre en aval.

Aux points V1 et V2 les évolutions de conductivité sont cohérentes avec løonde de crue plus tardive en provenance de løamont.

A noter les oscillations régulières de la conductivité enregistrées au début de la chronique au point V3. Cet aspect sera commenté plus loin avec deux autres paramètres.

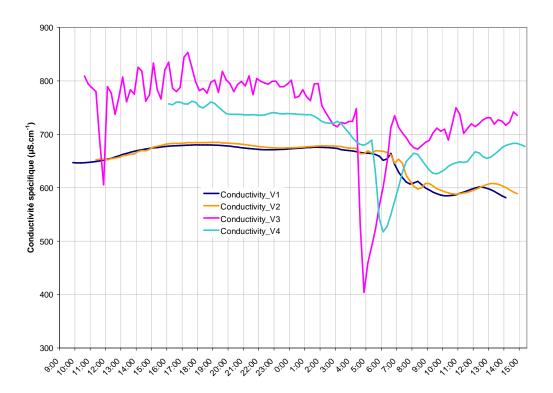


Figure 15 : Variations de la conductivité aux quatre points dœnregistrement. V1, V2 : amont, aval du secteur aménagé ; V3, V4 : amont, aval du secteur non aménagé.

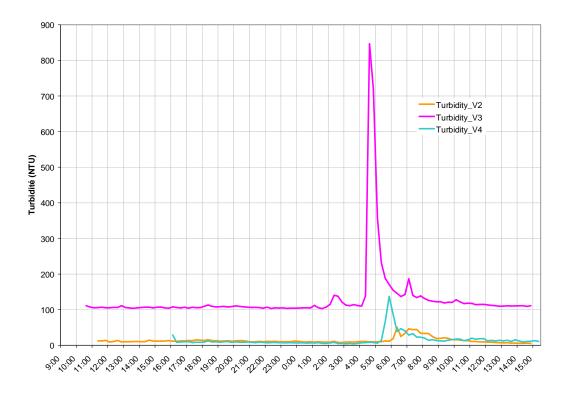


Figure 16 : Variations de la turbidité aux quatre points dœnregistrement. V1, V2 : amont, aval du secteur aménagé ; V3, V4 : amont, aval du secteur non aménagé. Rem : la mesure de la turbidité au point V1, faussée par le blocage dœn peu dœngile sur le capteur, nœst pas présentée.

La turbidité témoigne en Figure 16 du flux important de particules en suspension apportées et/ou remobilisées par le ruissellement au point V3. A noter que le niveau de base

de turbidité, avant lépisode orageux, est plus fort au point V3 situé en proximité aval du rejet. Au point V4 le pic turbide sest déjà nettement atténué et témoigne de decantation efficace dans le linéaire.

Les aspects les plus surprenants de ces enregistrements sont apportés par les figures suivantes illustrant les résultats pour la température et l\(\phi \) xyg\(\text{e} n \) dissous.

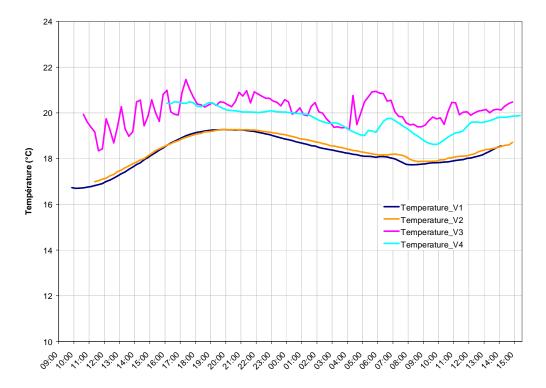


Figure 17 : Variations de la température aux quatre points dœnregistrement. V1, V2 : amont, aval du secteur aménagé ; V3, V4 : amont, aval du secteur non aménagé.

En Figure 17 les courbes thermiques, aux points V1 et V2 les plus amont, sont régulières et similaires, et traduisent le passage døune bouffée légèrement réchauffée, entre 6h et 8h du matin, lors du passage de løonde de crue.

Aux points V3 et V4, løcchauffement des eaux est nettement plus marqué entre 4h30 et 7h, et la température des eaux est aussi plus élevée quøen amont du rejet (de 1 à 2°C en moyenne), ce qui témoigne de løinfluence urbaine sur le réchauffement du ruissellement.

Enfin en løabsence døépisode météorologique particulier, la température nøest manifestement pas stable au point V3 le plus proche du rejet. Cela paraît traduire un mode de fonctionnement par à coups. Le phénomène se propage døailleurs au point V4 où la courbe de température nøest pas aussi régulière que celles des points V1 et V2.

Cette irrégularité dans la dynamique, apparue également avec la conductivité, est confirmée avec la Figure 18 où la fluctuation désordonnée, voire en tout ou rien, de la teneur en oxygène est surprenante.

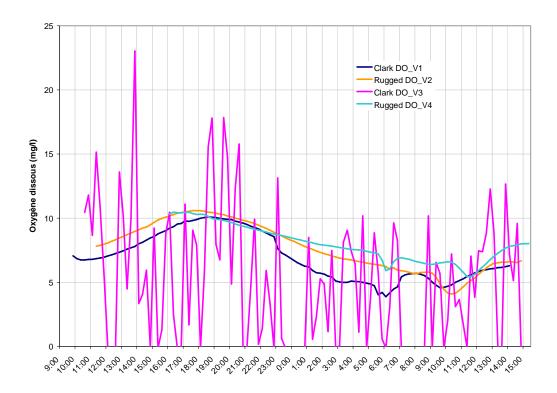


Figure 18 : Variations de løxygène dissous aux quatre points dønregistrement. V1, V2 : amont, aval du secteur aménagé ; V3, V4 : amont, aval du secteur non aménagé.

En Figure 18 dans le secteur aménagé, løamont du secteur V1 présente globalement un moins bon bilan que le point V2, surtout au cours de løépisode orageux où la déplétion de la concentration en oxygène est plus forte et tombe à 4 mg/l vers 6h du matin. La présence døun très grand tronçon lentique en amont du secteur aménagé est probablement la cause du phénomène.

Dans le secteur non aménagé, løamont du secteur V3 est sous løinfluence du rejet issu du site industriel de dépollution. La variation de la teneur en oxygène ressemble à un phénomène en tout ou rien. Nous avons vérifié *a posteriori* que le capteur nøétait pas en cause en procédant à une série døenregistrements dans un autre cours døeau après ce constat.

En V4, aval du secteur non aménagé, le phénomène døscillation a disparu et le bilan oxygène parait globalement meilleur pendant læpisode orageux que dans le secteur aménagé.

III - 3. Processus microbiens

III - 3.1. Biomasse microbienne

Les biomasses développées sont fortes. Elles traduisent le niveau trophique élevé du Vistre, entraînant des proliférations microalgales qui forment un biofilm épais sur les cailloux du fond, avec des valeurs de biomasse supérieures à 2 mg/cm² (Figure 19). Sur une autre rivière (Ardières, Beaujolais), les biomasses périphytiques sont beaucoup plus faibles de 0,1 à $0.5~\mu g/cm^2$ (Blanc, 2005), mais le milieu était impacté par des phytosanitaires et les teneurs en $PO_4^{2^-}$ étaient plus faibles.

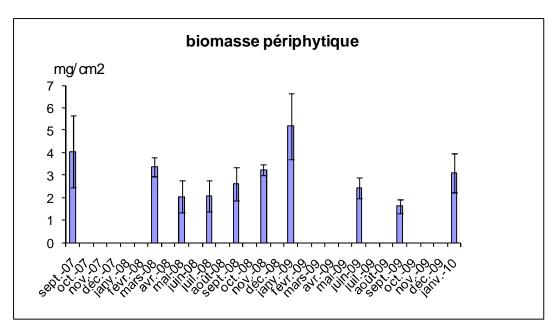


Figure 19 : Biomasse périphytique sur la station Château (2009).

Seule la station de Château présente des radiers permettant le développement de telles formations, car la vitesse du courant y limite le dépôt de particules fines aux secteurs où les macrophytes se développent (cf. Annexe 8)

En sédiment, les densités bactériennes indiquent également de fortes biomasses (Figure 20), qui reflètent la richesse du sédiment en matière organique, support de la croissance bactérienne. Elles traduisent également un potentiel élevé de biodégradation de cette même matière organique. Le tableau des données totales de mesures microbiologiques sur les sédiments sont disponibles en Annexe 9.

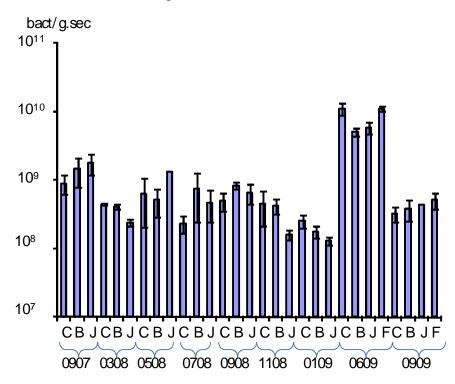
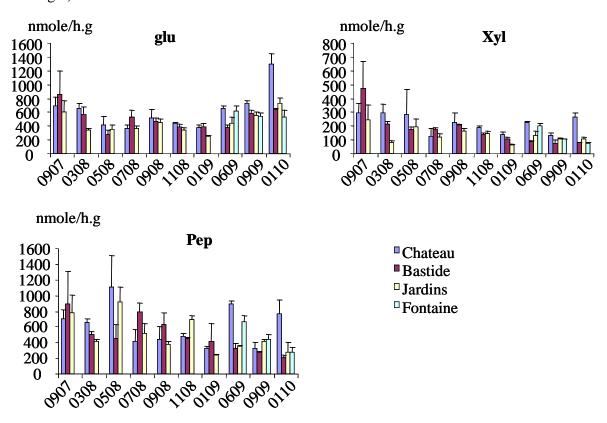
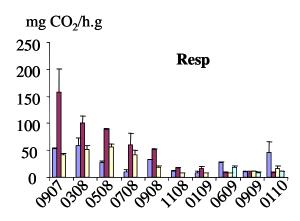
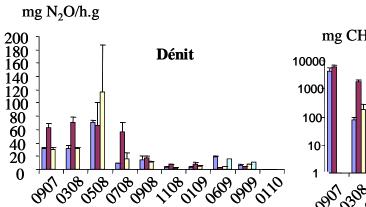


Figure 20 : Evolution spatiale et temporelle de la densité bactérienne en sédiment (pas de données en 2010). C= Château ; B= Bastide, J= Jardins ; F= Vistre Fontaine. De Septembre 2007 (0907) à Septembre 2009 (0909).

III - 3.2. Activités microbiennes et dégradation

Réalisées par les bactéries, les activités enzymatiques de dégradation de la matière organique carbonée et azotée (Figure 21) ont une intensité remarquable comparativement à døautres sédiments. Ainsi les travaux de Blanc (2005) ont montré que des sédiments de rivière du Beaujolais (rivière Ardières) développaient des activités enzymatiques de dégradation de la matière organique døun facteur 1000 fois inférieures à celle des sédiments du Vistre (glucosidase : de 4 à 100 nmol/g.h; Xylosidase : de 10 à 30 nmol/g.h; LAP : de 50 à 120 nmol/g.h).


Figure 21 : Evolution des activités de dégradation de la matière organique sur les trois stations du Vistre et sur løaffluent Vistre Fontaine.

Ces différences sont dues à la densité bactérienne plus importante sur le Vistre (densité de 5 à 10 fois supérieure à celle des sédiments de løArdières) et des teneurs en matières organiques plus importantes.

Døune façon similaire, les processus de minéralisation sont également très développés dans les zones sédimentaires (Figure 22).

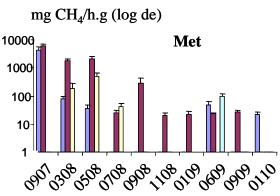


Figure 22 : Evolution de la dégradation de la matière organique (respiration : Resp; méthanisation : meth) et des nitrates (dénitrification : Denit). Activités exprimées en masse de gaz produit par heure et gramme sec de sédiment (NB : pour Met, løordonnée est en échelle log compte tenu des écarts døintensité du processus).

A titre de comparaison, les travaux menés sur des sédiments de løArdières (Beaujolais) ont donné des activités respiratoires < 1500 ng CO_2/g .h et de dénitrification comprises entre 300 et 1500 ng N_20/g .h, soit des activités respectivement 100 à 200 fois plus importante sur le Vistre pour la respiration et de 100 à 600 fois plus élevées pour la dénitrification.

Une explication de ces différences est liée à la densité bactérienne qui est 50 à 100 fois plus élevée dans les sédiments du Vistre que dans ceux de løArdières (entre 3 et 5 108 cell/g).

Enfin la présence døactivité de méthanisation dans les sédiments du Vistre est révélatrice de conditions sédimentaires très réductrices, situation rare en cours dœau de cette taille. Elle est spécifique de sédiments limoneux, riches en matière organique biodégradable.

Løanalyse par RDA des stations caractérisées par leur niveau fonctionnel donne des indications sur lævolution spatiale et temporelle de ce secteur du Vistre.

Plusieurs paramètres physico-chimiques (Figure 23) contrôlent lévolution des processus microbiens sédimentaires : teneur en PO₄²⁻, en nitrites et en Cl⁻, granulométrie et pH. Cette évolution résulte des modifications de rejets de station dépuration (arrêt de léancienne STEP qui rejetait au niveau de Bastide et mise en service déune nouvelle rejetant en amont de Jardins). Ceci explique la trajectoire de la station de Bastide le long de léaxe 1 (50,7 % déexplication de la variance), trajectoire liée à la réduction des apports en matière

organique particulaire et en phosphate, avec des conséquences marquées sur la méthanisation et la dénitrification (réduction de ces activités microbiennes au cours du temps). Les autres processus enzymatiques impliqués dans la dégradation de la matière organique, ainsi que la densité bactérienne ne sont pas fortement influencés par ces paramètres physicochimiques.

Les stations Château (amont) et Jardins (aval) ne montrent pas dévolution temporelle ; ceci est logique pour la station amont, non soumise à léinfluence de rejets de station dépuration.

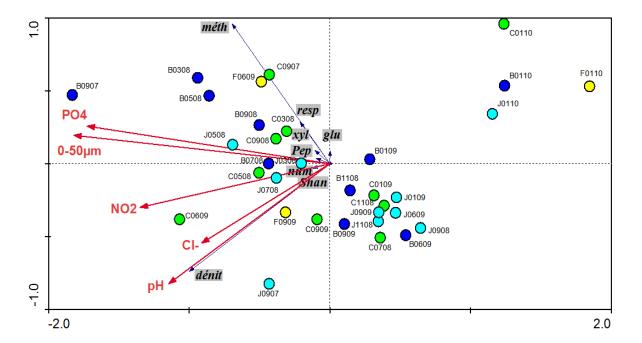


Figure 23 : Ordination conjointe des fonctions microbiennes sédimentaires, des stations et des facteurs environnementaux significatifs, en fonction des dates déchantillonnage. Le explique 50,7 % et le explique 27,9 %. Les cercles jaunes représentent la station de Fontaine. Les cercles verts représentent la station de Château. Les cercles bleus foncés représentent la station de Bastide. Les cercles bleus clairs représentent la station de Jardins. Meth : métahnisation ; denit ; dénitrification ; resp : repsiration ; xyl : xylosidase ; glu : glucosidase ; pep : peptidase ; num : numération ; Shan : indice de Shannon.

Les échantillons de Janvier 2010, regroupés, ne correspondent pas au patron général de caractérisation des stations (cause suspectée : un artéfact dans la mesure, les données de diversité ne montrant pas dépriginalité particulière ó cf. Figure 25)

III - 3.3. Changement de biodiversité bactérienne

En complément au calcul des indices de Shannon, effectué sur les estimations døOTU de chaque station (Figure 24), une étude de la diversité a été effectuée sur la base des profils dømpreintes moléculaires (Figure 25). Cette méthode PCR-ARISA, comme toute méthode moléculaire, présente des biais méthodologiques qui contraignent løinterprétation des résultats et restreignent løinformation obtenue. Typiquement, trois limitations sont à avoir en mémoire :

- cette technique ne permet pas lødentification døspèces ni même leur quantification précise.
- chaque bande døADN peut recouvrir plusieurs « espèces » bactériennes (on parle døOTU : Operational Taxonomic Unit)
- les espèces rares (<1 % de løADN total døun échantillon, en théorie) ne sont pas détectées.

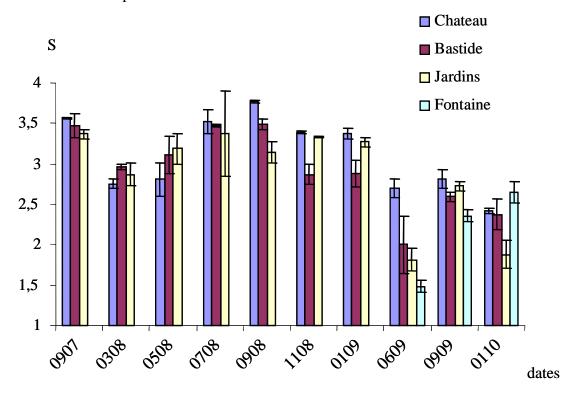


Figure 24 : Evolution temporelle de la diversité bactérienne en sédiment (S : mesurée selon løndice de Shannon).

La comparaison des indices de diversité de Shannon nøndique pas de patron évident døvolution de la diversité bactérienne sédimentaire, que ce soit avec le temps ou spatialement døamont en aval. Les facteurs de contrôle de la diversité bactérienne se situent très probablement à une échelle très restreinte (niveau infra-centimétrique, voir de løagrégat sédimentaire) et les facteurs de forçages plus globaux à løchelle de la station ne compensent pas de façon visible la variabilité locale. Cependant løanalyse multivariée par RDA permet de mettre en évidence une tendance évolutive sur la station de Bastide, la plus impactée par les changements de rejets de station døpuration.

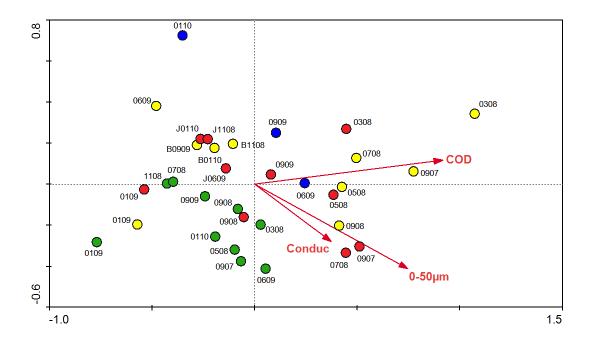


Figure 25 : Analyse de redondance de la diversité bactérienne en sédiment, avec lørdination des stations (caractérisées par leur diversité ARISA) et les principaux facteurs physicochimiques. Chaque couleur représente 1 station vert =château ; jaune =Bastide ; rouge =Jardins : bleu =Fontaine. Les pourcentages de variance expliquée par l'axe 1 sont de 16.72 % et par l'axe 2 de 6.31 %.

Comme pour les approches fonctionnelles, Bastide se distingue par une évolution de diversité, avec comme facteurs de forçage principaux le COD, la granulométrie (fraction limoneuse) et la conductivité. Cette tendance est cependant moins nette que sur le plan fonctionnel (axe 1 expliquant seulement 16,7 %). La station amont de Château présente la plus grande homogénéité en termes de diversité (pas de changements environnementaux marqués au cours du temps, car ce point nétait pas sous influence du rejet) et se distingue également des deux autres stations du Vistre (ainsi que de celle du Vistre Fontaine).

III - 4. Invertébrés

NB : le point Vistre Fontaine, nøoffrant pas døintérêt dans le cadre de cette étude pour ce paramètre, nøa pas été échantillonné.

III - 4.1. Approche taxonomique

Les deux premiers axes factoriels de løAFC réalisée sur le tableau faunistique (Figure 26) représentent 62 % de la variance expliquée, ce qui est considérable pour une analyse faunistique. Løaxe le plus structurant de ce jeu de données est løaxe 1, très fortement corrélé au gradient temporel. En outre, même si cet axe permet également de clairement différencier les communautés de la station amont, des communautés des stations aval, une faible séparation des stations aurait tendance à se faire selon løaxe F2.

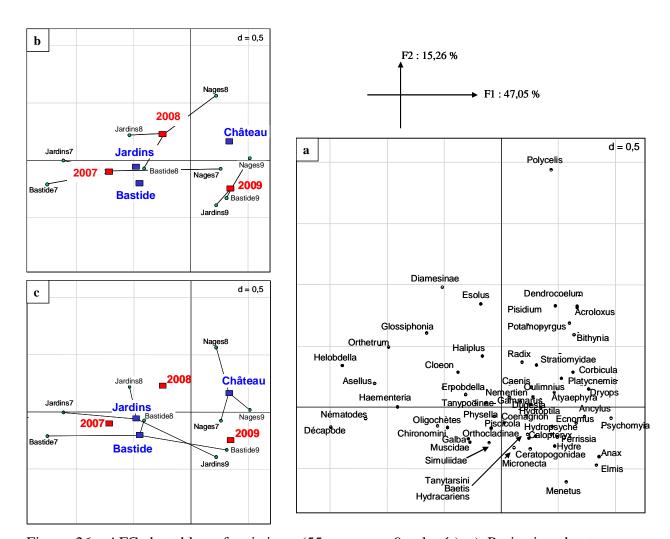


Figure 26 : AFC du tableau faunistique (55 taxons x 9 relevés) a) Projection des taxons (cercles noirs) sur F1xF2. b) Projection des relevés sur F1xF2 avec regroupement des relevés par station. c) Projection des relevés sur F1xF2 avec regroupement des relevés par saison. Chaque petit cercle vert représente un relevé échantillonné à une date donnée, et chaque rectangle représente la position moyenne (= centre de gravité) døune station ou døune année par rapport aux différents relevés correspondants sur le plan factoriel.

Døun point de vue taxonomique (Figure 26 a) les taxons les plus ubiquistes, cœst-àdire ceux qui sont susceptibles dœtre rencontrés dans toutes les stations sont classiquement regroupés au centre du plan factoriel. Il est également à noter que les taxons rencontrés dans le quart inférieur droit sont les taxons rencontrés sur toutes les stations en 2009.

Les taxons rencontrés dans le quart supérieur gauche du plan factoriel sont plutôt inféodés à la station Jardins (soit la plus en aval). Ce sont des taxons qui ont des exigences écologiques assez larges et plutôt représentatifs de milieux assez riches du point de vue de la matière organique. Les taxons rencontrés dans le quart inférieur gauche de ce premier plan factoriel sont plutôt représentatifs de la station Bastide et ceux rencontrés dans le quart supérieur droit plutôt représentatifs de la station Château (cœst à dire notre témoin sur le Vistre).

Deux faits marquants ressortent de cette analyse :

1) La forte dispersion des points autour des positions moyennes des stations aval témoigne dœune très forte variabilité dans la composition des communautés soumises aux rejets de STEP (ancien et nouveau), alors que la composition de la station témoin semble beaucoup moins variable au cours de ces trois années.

2) La faible dispersion des points autour des positions des stations en 2009, après une période de forte hydraulicité, signifie que les 3 stations sont beaucoup plus semblables taxonomiquement parlant en 2009 que les années précédentes.

Cela montre que léamélioration de la qualité chimique du Vistre, dans léeffet conjugué de léarrêt des rejets de léancienne STEP et de la forte hydraulicité de léautomne 2008 au printemps 2009, a un effet bénéfique sur les communautés des stations aval, qui, en léespace déun an, retrouvent une composition beaucoup plus proche de la composition des communautés amont.

Globalement, et uniquement grâce à cette représentation graphique, nous pouvons supposer que les communautés macrobenthiques répondent favorablement et rapidement à une baisse de la pression polluante dans le Vistre.

Les analyses suivantes vont nous permettre de compléter et préciser ces premières observations plutôt positives.

La Figure 27 nous montre les proportions des différents groupes taxonomiques dans chacune des stations. En 2007, alors que løancienne STEP de Nîmes fonctionnait toujours (et donc que le rejet en amont proche de la station de Bastide était opérationnel), nous observons un effet drastique du rejet sur la composition des communautés puisque en aval du rejet, seuls sont retrouvés des Oligochètes, Crustacés, Diptères et très peu døAchètes. En septembre 2008, après arrêt de løancienne STEP le 10 juin, la réponse de la communauté est déjà très marquée, car, même si la station Bastide reste dominée par les Oligochètes, nous voyons réapparaître sur cette station des Ephémères, des Mollusques, des Odonates et des Turbellariés. Ces nouveaux taxons sont également observés en plus faible proportion à løaval des nouveaux rejets, même si la station Jardins est très majoritairement dominée par les Crustacés au détriment døune forte diminution des Oligochètes par rapport à 2007.

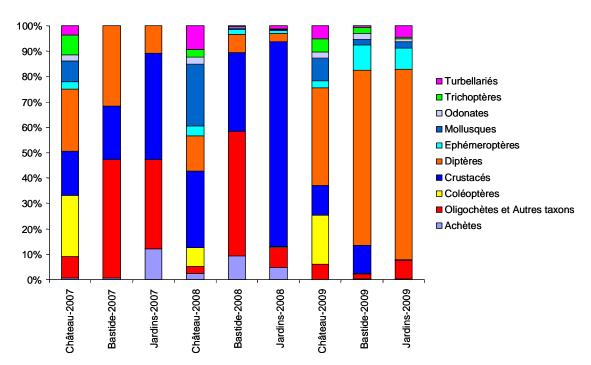


Figure 27 : Proportion des différents groupes taxonomiques dans chacune des stations.

En 2009, la dominance des Crustacés et des Oligochètes est complètement remplacée par celle des Diptères, et ceci est observé sur toutes les stations.

Notons que la station de Bastide accueille une communauté de plus en plus diversifiée, et que les Coléoptères semblent être le groupe qui a le plus de mal à søinstaller sur les stations aval.

Le Tableau 13 nous montre en détails les spécificités taxonomiques de chacune des stations. Ainsi, nous pouvons voir que sur la somme des 3 années de suivi seule la station Château (station amont témoin) présente des taxons exclusifs. En effet, seuls *Acroluxus* et *Polycelis* sont uniquement rencontrés à løamont. Ce sont des taxons pourtant relativement polluorésistants (cøest à dire avec une polluosensibilité moyenne).

Les stations de Bastide et Jardins ne présentent pas, quant à elles, de taxons exclusifs. Elles sont plus caractérisées par les taxons que nous nøy retrouvons pas et par leurs taxons dominants qui sont tous des taxons polluorésistants avérés.

Tableau 13 : Spécificité taxonomique de chacune des stations pour les 3 années de suivi confondues. ° : taxons uniquement présent sur cette station. * : abondance au moins 10 fois supérieure à celle des autres stations.

Château		Bastide		Jardins	
Exclusifs° Absents	Dominant*	Exclusifs° Absents	Dominant*	Exclusifs° Absents	Dominant*
•	Dryops				_
	Oulimnius				
	Muscidae				
	Gammarus				
	Caenis				
	Hydroptila			Dryops	
	Psychomyia			Elmis	
	Ancylus			Esolus	
	Radix			Stratiomyida	ıe
	Bithynia			Acroloxus	
Helobde	ell Corbicula			Bithynia	
a	Potamopyrgus	Acroloxus		Potamopyrgi	us
Ecreviss	se Pisidium	Menetus	Oligochètes	Galba	Aselus
S	Dendrocoelun	n Dendrocoeli	umPiscicola	Anax	Simulidae
Polycelis Orthetru	Polycelis	Pisidium	Nematodes	Psychomyia	Helobdella
Acroloxus m	Dugesia	Polycelis	Haementeria	a Polycelis	Haementeria

Si nous nous intéressons uniquement à løannée 2007 (Figure 28), nous voyons quøil y a un grand nombre de taxons présents sur la station amont qui disparaît (presque les ¾), alors que très peu de nouveaux taxons sont observés sur les stations aval. Notons également que cette même année, entre les stations Bastide et Jardins, il nøy a pas de disparition de taxons alors que 6 réapparaissent à Jardins qui est à moins døun kilomètre en aval du nouvel emplacement du rejet. Nous pouvons donc penser à une faible récupération du milieu dès la station de Jardins.

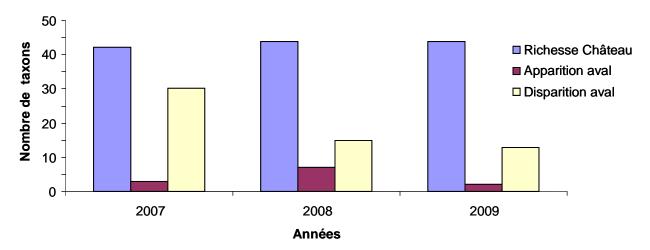


Figure 28 : Evolution du nombre déapparition et de disparition de taxon sur les stations aval (soumises aux anciens et nouveaux rejets de STEP) par rapport à la station amont témoin (Château).

Les deux autres années de suivi, beaucoup moins de taxons sont perdusø sur les stations aval. En revanche, plus de différences sont observées entre les stations de Bastide et Jardins. Ainsi, en 2008, 8 taxons présents sur la station de Bastide ne le sont plus en aval où 1 seul apparaît, et en 2009, 9 taxons présents sur la station de Bastide ne le sont plus à Jardins où 3 nouveaux taxons apparaissent.

La valeur des différents indices de composition, structure et diversité calculés sur notre jeu de données est fournie en Annexe 10. Nous nøillustrerons ci-dessous que quelques exemples remarquables.

Globalement (Figure 29), du point de vue de sa structure, la station amont est très stable dans le temps : elle présente une communauté plutôt riche, diversifiée et bien équilibrée (cœst à dire, sans la dominance dœun taxon particulier). La richesse et la diversité baissent drastiquement sur la station de Bastide, juste à lœuval des rejets de læncienne STEP, en 2007. En 2008 et en 2009, après lærrêt du rejet, on retrouve très rapidement une bonne richesse (quasiment équivalente à celle de læmont), tandis que la diversité et læquitabilité restent encore assez impactés (dominance des Crustacés et des Diptères comme vu précédemment).

En 2007, du point de vue des indices de composition et de structure, la station Jardins (plus en aval), semble récupérer un peu par rapport à la station de Bastide. En revanche, suite à la mise en service de la nouvelle STEP, et donc, du rapprochement du nouveau rejet, cette station montre un fort déséquilibre en 2008 qui semble toutefois moins important en 2009.

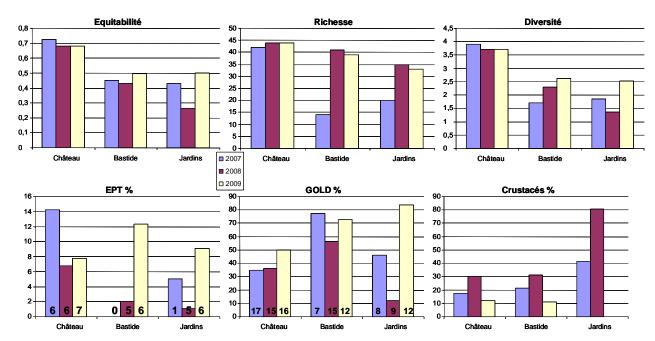


Figure 29 : Evolution spatio-temporelle des principaux indices de structure et de composition le long du tronçon étudié. Pour les indices EPT et GOLD les chiffres en gras représentent la richesse de ces groupes.

Les pourcentages de EPT, GOLD et Crustacés se apparentent plus à des indices de sensibilité.

Comme nous pouvions nous y attendre, cœst la station Château qui montre le plus fort pourcentage dœPT (même si en fait il sœagit uniquement dœPT car les Plécoptères sont totalement absents du Vistre sur ce tronçon) malgré une richesse relativement faible. Cela ne sœbserve néanmoins quœn 2007 et en 2008. De la même façon, il nœst pas surprenant de nœbserver aucun EPT sur la station Bastide en 2007. Il est en revanche très intéressant de noter quœn 2008, les taxons reviennent sur les stations initialement impactées par les rejets de la STEP, et quœn 2009, ce sont sur les stations aval et en particulier la station de Bastide quœst observée, même si elle reste relativement faible, la meilleure valeur de løindice.

Cela pourrait vouloir dire que les efforts de restauration physiques effectués quelques années auparavant sur la station Bastide ont permis une meilleure ou, du moins, plus rapide, récupération des communautés (døun point de vue de leur richesse uniquement) suite à la baisse de la pression chimique. De plus, les valeurs observées sur la station Jardins en 2009 pourraient être la conséquence des efforts constants qui ont été faits pour løamélioration de la qualité chimique des rejets de la nouvelle STEP (qui présentent une qualité meilleure que la rivière elle-même pour les paramètres relatifs à løazote et au phosphore), ce qui favoriserait løinstallation de taxons plus sensibles. Ces deux hypothèses seront à vérifier avec les échantillons qui nøont pas encore été exploités.

Le pourcentage de GOLD est un indice souvent utilisé pour révéler une pollution organique du milieu. Sa valeur est relativement importante sur tout le tronçon, notamment à Bastide en 2007 et à Jardins en 2008 et 2009. En effet, alors quæn terme de richesse ces taxons ne représentent pas plus dæn tiers de la communauté, ils peuvent représenter jusquæn plus de 80 % de læbondance. La très faible valeur observée sur la station de Jardins en 2008 est à mettre en relation avec læxplosion de Crustacés cette année là. En 2009 ; lændice est maximal sur Jardins alors quæl næy a plus de Crustacés. Nous pouvons donc supposer une compétition entre ces différents groupes taxonomiques sur cette station, ou des sensibilités globales à la pression polluante assez différentes entre les groupes.

La Figure 30 illustre justement lévolution des Crustacés sur ces 3 stations au cours du temps.

Le fait marquant est le remplacement des Gammares par les Aselles le long du gradient en 2007 et en 2008 et la disparition des Aselles en 2009.

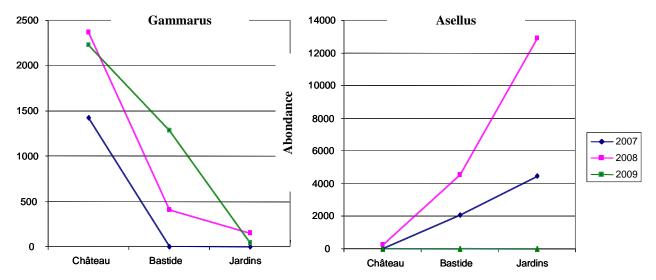


Figure 30 : Comparaison de la dynamique des Gammares et des Aselles sur les 3 stations aux 3 dates.

Quelle que soit løannée, les Aselles ne sont quasiment pas présentes sur la station amont. Løabondance des Gammares chute brusquement en 2007 juste à løaval des rejets. Nous observons en fait une disparition totale des Gammares au bénéfice des Aselles qui les remplacent. Løabondance des Aselles croit le long du gradient de 2007 à 2008. En revanche, en 2009, les Crustacés ont totalement disparus de la station la plus en aval. Les Crustacés et particulièrement les Gammares étant très sensibles aux pesticides, ce facteur chimique pourrait être la cause de leur disparition.

Le remplacement des Gammares par les Aselles et la réapparition des Gammares sur la station de Bastide après lørrêt de løancienne STEP est à mettre en relation døune part avec la qualité physico-chimique du milieu, et notamment la pollution organique du Vistre, et døautre part avec les exigences écologiques de ces taxons. Les Aselles sont des taxons que løon rencontre fréquemment en cas de pollution organique. Elles sont plus représentatives des zones aval de cours døau que les Gammares.

La présence døAselle et le rapport Gammares sur Aselles pourrait être un indicateur intéressant à prendre en compte dans le suivi de la récupération du milieu suite à une levée de pression chimique organique.

Pour pouvoir être interprétables, les notes IBGN (Figure 31) ont été calculées uniquement à partir des 8 habitats les plus biogènes échantillonnés sur chaque station.

Døune manière générale, la note IBGN de la station témoin (Château), qui peut donc être assimilée à celle du Vistre, est plutôt bonne (note de 15 ou 16) alors que le GFI est pourtant assez faible (5). Malgré cette note, cela ne reflète pas une très bonne sensibilité de la communauté. En 2007, les rejets de løancienne STEP de Nîmes ont pour conséquence un appauvrissement considérable du milieu : løBGN passe de 15 en amont à 5 en aval du rejet, avec un GFI de 2. Løindice reflète une mauvaise classe de qualité et montre quøl ne reste dans la communauté en place que des taxons très résistants. Ceci étant, après løarrêt des rejets de la

STEP, le GFI remonte à 5, ce qui montre quøil y a une très bonne réactivité de la communauté. En løabsence de fortes contraintes, les organismes venant de løamont peuvent recoloniser la station, et se maintenir, bien que la richesse reste plus faible quøà løamont et que la note de løndice reste également moins bonne (classe de qualité moyenne).

Le mise en service de la nouvelle STEP nøa pas døeffet sur le GFI qui reste à 5, et donc sur la sensibilité des taxons telle quœlle a été définie pour løBGN. Notons en revanche des notes døindice inférieures à celles observées sur les stations non soumises à ce nouveau rejet, imputables à la plus faible richesse.

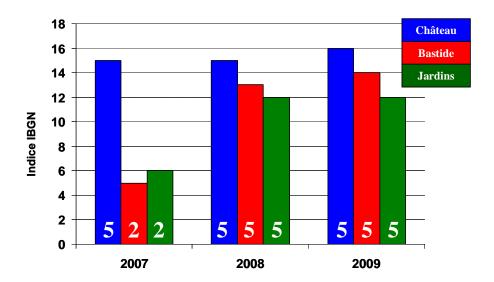


Figure 31 : Evolution des notes IBGN sur les 3 stations aux 3 dates suivies. Les chiffres en gras correspondent au groupe faunistique indicateur.

Løndice IBGN semble donc particulièrement bien adapté à révéler un impact sur le milieu quand la pression chimique est importante (et plus particulièrement si elle est due à des éléments nutritifs ou à une pollution organique). Si on ne considère que le GFI, cet indice peut néanmoins rester utile pour évaluer une pression de plus faible intensité même si son utilisation ne mettra pas autant de choses en évidence quøune analyse complète de la communauté.

LøIBGN réagit bien à la baisse de la pression chimique, mais, sans station témoin comme élément de comparaison, ne parait pas suffisant pour un suivi efficace.

III - 4.2. Approche fonctionnelle

Tous les profils biologiques et écologiques calculés sont fournis en Annexe 11 sous la forme du pourcentage doutilisation de la modalité en question dans la communauté. Nous noillustrerons ici que quelques exemples remarquables.

La Figure 32 représente les profils biologiques stationnels de 4 traits : Respiration, Mode déalimentation, Locomotion et Taille maximale potentielle.

Døune manière générale, deux tendances søindividualisent :

- 1) les profils de la station amont sont relativement constants dans le temps
- 2) les profils des stations aval en 2009 sont très différents de ceux observés en 2007 et 2008 et se rapprochent beaucoup plus de ceux observés sur la station témoin.

En effet, les profils observés sur la station Bastide sont très différents de ceux observés sur la station amont, mais également très différents de ceux observés sur la station aval. Les profils de la station Bastide 2007 et 2008 sont très proches, pourtant, nous devons nous souvenir que la composition taxonomique était très différente. Cela suggère donc que même si la communauté se diversifieg son fonctionnement ne change pas, ou très peu. En 2009 en revanche, le changement est très net. Sur la station Jardins, les profils observés sont très modifiés après la mise en service de la nouvelle station.

Les profils biologiques observés sont essentiellement structurés par la forte dominance des Crustacés, des Oligochètes et des Diptères sur les stations comme nous løavons précédemment vu. Ainsi, la respiration tégumentaire est fortement corrélée à la présence døOligochètes et la respiration branchiale est fortement corrélée à la présence de Crustacés.

Sur une station fortement impactée, quelques mois suffisent pour retrouver une communauté plus diversifiée, mais, il faut au moins un an et demi pour observer une modification du fonctionnement (soit au moins un cycle biologique).

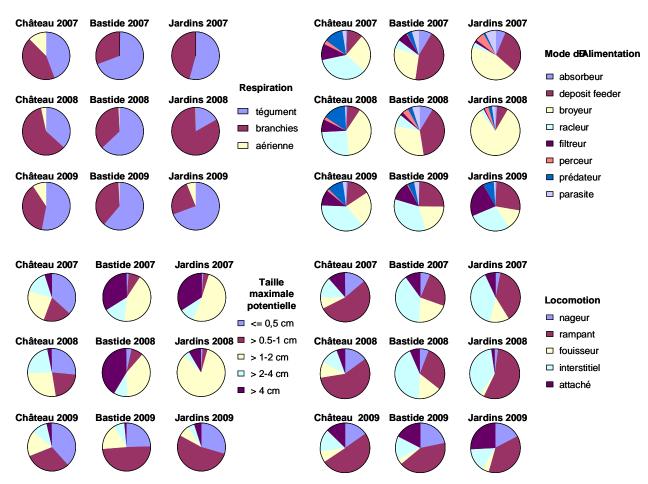


Figure 32 : Distribution de fréquences døutilisation des modalités de 4 traits biologiques des 3 stations suivies aux 3 dates døcchantillonnage.

Les profils écologiques (Figure 33) à lœxception de celui de lœaltitude sont nettement moins différents le long du tronçon que ceux que nous avons observés pour les profils biologiques. Seules quelques légères variations sont observées, mais, encore une fois, les profils de la station amont sont très stables dans le temps.

De 2007 à 2009, nous constatons que, quelle que soit la station considérée, løaffinité de la communauté pour les caractéristiques trophiques du milieu est la même, et pourtant, les communautés comportent une proportion plus importante de taxons xénosaprobes en 2009. Nous observons également des taxons qui sont de moins en moins spécifiques des zones aval de plaine avec de fortes affinités pour les vitesses lentes ou nulles. Le profil de la station aval à propos de la vitesse de courant est le plus parlant : la mise en service de la nouvelle STEP, et donc ce nouveau rejet, a complètement changé le comportement de la communauté vis à vis de ce paramètre. Encore une fois, les profils écologiques observés en 2009 sur les stations aval sont beaucoup plus proches de ceux observés sur la station amont. On a donc un retour à des conditions plus normales pour cette rivière.

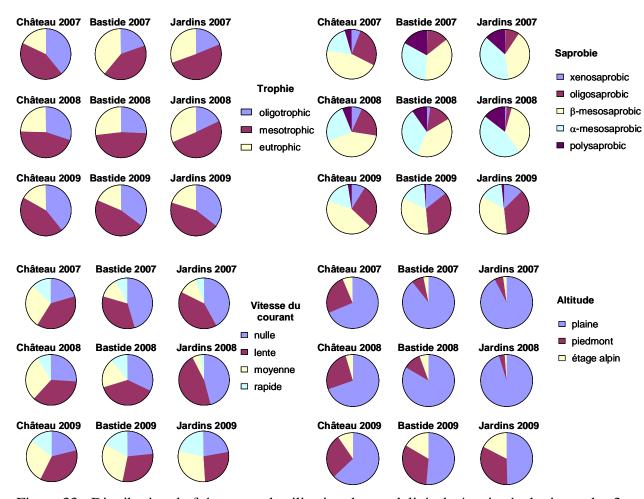


Figure 33 : Distribution de fréquences døutilisation des modalités de 4 traits écologiques des 3 stations suivies aux 3 dates døcchantillonnage.

La Figure 34 présente la composition des communautés vis à vis des différents groupes bioécologiques. Voir Annexe 12 pour le détail des informations.

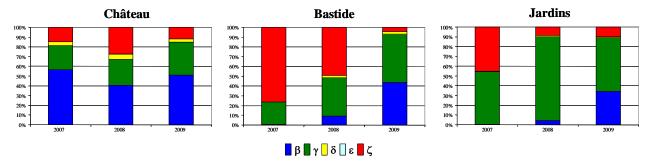


Figure 34 : Evolution de la distribution des groupes bioécologiques dans la communauté.

La station amont est dominée par le groupe qui est quasiment absent des stations aval en 2007 et 2008, mais, qui réapparaît en 2009. Les organismes du groupe sont des taxons plus représentatifs du rhithron, avec des environnements oligo-mésotrophes, se rencontrant plus particulièrement dans les zones de chenal et de berges des cours dœau de piedmont ou plaine. Les individus ont une taille petite à moyenne, ils sont plutôt oligo à mésosaprobes et eurythermes.

La station de Bastide est dominée en 2007 et 2008, par le groupe . Ce groupe est aussi très présent à Jardins en 2007. Les organismes du groupe sont des organismes uniplurivoltins, utilisant souvent les ò ufs ou les cocons comme stade de résistance. Ils utilisent beaucoup la dérive comme tactique de dispersion, sont ovovivipares ou ont une reproduction asexuée. Ce sont essentiellement des filtreurs ou des collecteurs, se nourrissant de fines particules organiques ou de détritus, avec une respiration branchiale ou tégumentaire. La taille et løaffinité au substrat est très variable pour ce groupe. Il se rencontre plus particulièrement dans des milieux polysaprobes, et est très représentatif døune pollution organique forte.

Løbservation de la diminution de ce groupe au cours du temps, pourrait être un descripteur très intéressant à suivre pour illustrer la récupération du milieu suite à une levée de pression chimique organique.

Le groupe est peut-être celui qui définit le mieux la totalité du tronçon : il est majoritaire sur la station la plus en aval, mais, se retrouve en proportion non négligeable tout le long du tronçon. Les taxons de ce groupe colonisent plutôt les marais, les étangs ou les zones lentiques des cours dœau de plaine du rhithron et du potamon. Ce sont des organismes de taille moyenne, eurythermes, -mésosaprobes et vivants sur une large variété de substrats organiques ou minéraux. Ils ont une large amplitude écologique et se rencontrent le plus souvent dans des milieux de qualité moyenne.

Le groupe est très peu représenté. Les organismes qui le composent sont eurythermes et -mésosaprobes. Ils sont marcheurs ou nageurs. On les rencontre sur un large spectre de substrats même søls ont une légère préférence pour les substrats organiques dans les cours dœau lentiques, ou les marais des zones de plaines. Les genres sont surtout polyvoltins, et ont un large spectre de techniques de reproduction et de dispersion. Leur respiration est à la fois aquatique et aérienne. Ce sont surtout des perceurs, des broyeurs ou des prédateurs qui se nourrissent dœautres invertébrés.

Les groupes bioécologiques les plus sensibles ne sont pas du tout présents sur le Vistre.

En 2009, nous observons là encore un net rapprochement des communautés le long du tronçon étudié, ce qui suggère une homogénéité de fonctionnement et donc, un retour de la communauté finalement assez rapide (un peu plus dœun an après la levée de pression) à un état assez proche de celui avant cette pression.

Le calcul de la diversité fonctionnelle ne donne pas de résultats différents. Encore une fois, les différences sont plus marquées døun point de vue de la composition que de la diversité.

III - 5. Végétation aquatique

III - 5.1. Diatomées

Un nombre total de 105 taxons a été identifié lors de cette campagne déchantillonnage. Les 44 espèces représentant plus de 1 % déabondances relatives cumulées sont listées dans le Tableau 14, avec leurs biovolumes cellulaires moyens respectifs.

Tableau 14 : Liste des taxons dominants et des codes correspondants.

Code		Biovolume
taxon	Nom complet du taxon	(μm^3)
ARPT	Achnanthes rupestoides Hohn	198
	Achnanthidium lauenburgianum (Hustedt)	
ADLB	Monnier Lange-Bertalot & Ector	99
	Achnanthidium minutissimum (Kützing)	
ADMI	Czarnecki	76
	Achnanthidium saprophilum (Kobayasi et	
ADSA	Mayama) Round & Bukhtiyarova	66
APED	Amphora pediculus (Kützing) Grunow	41
CEUO	Cocconeis euglyptoides (Geitler) Lange-Bertalot	2533
CPED	Cocconeis pediculus Ehrenberg	2281
	Cocconeis placentula Ehrenberg var. lineata	
CPLA	(Ehrenberg)Van Heurck	2871
	Conticribra weissflogii (Grunow) Stachura-	
CTWE	Suchoples & Williams	509
CMEN	Cyclotella meneghiniana Kützing	1244
CTUM	Cymbella tumida (Brébisson)Van Heurck	6291
DCOF	Diadesmis confervacea Kützing var. confervacea	416
EOMI	Eolimna minima (Grunow) Lange-Bertalot	88
	Eolimna subminuscula (Manguin) Moser Lange-	
ESBM	Bertalot & Metzeltin	112
	Gomphonema parvulum (Kützing) Kützing var.	
GPAR	parvulum f. parvulum	326
	Gomphonema pumilum var. rigidum Reichardt &	
GPRI	Lange-Bertalot	270
GSCI	Gyrosigma sciotense (Sullivan et Wormley) Cleve	2923
KGES	Kolbesia gessneri (Hustedt) Aboal	289
LHUN	Lemnicola hungarica (Grunow) Round & Basson	436
MVAR	Melosira varians Agardh	3267
NANT	Navicula antonii Lange-Bertalot	434
NCPR	Navicula capitatoradiata Germain	705
NCTE	Navicula cryptotenella Lange-Bertalot	386
NCTO	Navicula cryptotenelloides Lange-Bertalot	100
NERI	Navicula erifuga Lange-Bertalot	431
NROS	Navicula rostellata Kützing	854
NTPT	Navicula tripunctata (O.F.Müller) Bory	966
NTRV	Navicula trivialis Lange-Bertalot var. trivialis	1097

NVEN	Navicula veneta Kützing	279
	Naviculadicta seminulum (Grunow) Lange	
NVDS	Bertalot	69
NAMP	Nitzschia amphibia Grunow f. amphibia	337
	Nitzschia dissipata (Kützing) Grunow var.	
NDIS	dissipata	625
	Nitzschia filiformis (W.M.Smith) Van Heurck var.	
NFIL	filiformis	737
	Nitzschia frustulum (Kützing) Grunow var.	
NIFR	frustulum	258
NPAL	Nitzschia palea (Kützing) W.Smith	391
NREC	Nitzschia recta Hantzsch in Rabenhorst	871
	Planothidium frequentissimum (Lange-Bertalot)	
PLFR	Lange-Bertalot	219
PRST	Planothidium rostratum (Østrup) Lange-Bertalot	267
PTCO	Platessa conspicua (A. Mayer) Lange-Bertalot	130
	Rhoicosphenia abbreviata (C. Agardh) Lange-	
RABB	Bertalot	568
SUTE	Surirella tenera Gregory	44689
	Thalassiosira bramaputrae (Ehr.) Hakansson &	
TBRA	Locker	19493
TAPI	Tryblionella apiculata Gregory	656
UULN	Ulnaria ulna (Nitzsch) Compère	4724

La Figure 35 nous montre une très nette séparation des stations situées le long du Vistre et de son affluent Fontaine. Ce dernier présente une richesse spécifique (25 taxons identifiés) bien moindre que les 4 autres stations localisées sur le Vistre (54 \pm 4 taxons). Cæst également le moins diversifié (S = 2,4 contre 4,3 \pm 0,2). A Fontaine, la communauté est largement dominée par læspèce NAMP (58,5 %), suivie de CMEN (11,9 %) et NPAL (8,5 %).

Dans les stations localisées sur le Vistre même, on observe des similarités très fortes entre les assemblages des stations Château et Bastide, en termes de structure spécifique (37 espèces en commun) et døabondances relatives des espèces dominantes, en dépit des apports en espèces par le Vistre Fontaine.

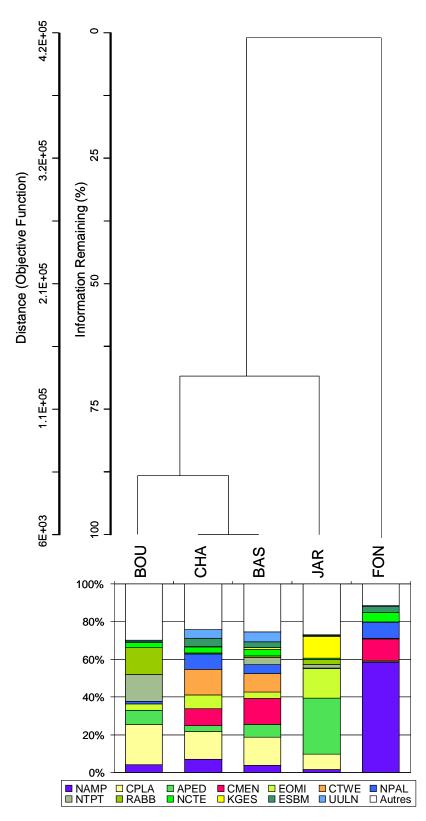


Figure 35 : CAH basée sur la structure spécifique des communautés et abondances relatives des espèces dominantes.

Sur le Vistre, les communautés de la station la plus aval (Jardins) se distinguent par des abondances accrues de Naviculacées (61,0 %) telles que APED et EOMI, et løaugmentation des Monoraphidées avec notamment løapparition de KGES (11,3 %). Ce développement massif døspèces déjà présentes ou de taxons « nouveaux » pour le Vistre pourrait être lié à des apports via les rejets de la STEP de Nîmes. Au niveau de cette station,

on note également une réduction importante du biovolume cellulaire moyen (640 μ m³, contre 1650 \pm 240 μ m³ pour les stations amont) liées à une prédominance de très petites espèces (66,2 % de taxons de biovolume cellulaire moyen inférieur à 100 μ m³).

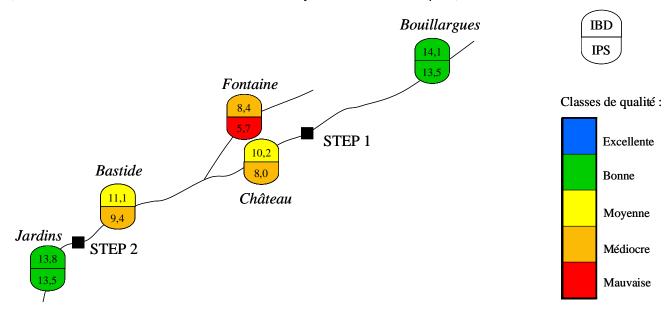


Figure 36 : Notes døindices (IBD, IPS) obtenues en 2009 pour les 5 stations étudiées.

La Figure 36 indique, pour chaque station, les notes calculées døIBD et døIPS. Cæst au niveau des stations les plus amont (Bouillargues) et aval (Jardins) que la qualité de læau est la meilleure (considérée comme « bonne »), alors quæ Bastide et Château elle est considérée comme médiocre à moyenne. Cette dégradation de la qualité de læau à læaval de la STEP 1 (aval de læagglomération de Caissargues) estimée par les indices diatomiques est liée à un remplacement de taxons considérés comme polluosensibles (CPLA, NTPT, RABB) par des Centriques plus tolérantes à la pollution (CTWE, CMEN). A Jardins, la modification sensible de la structure de la communauté (notamment læaugmentation des abondances des espèces polluosensibles KGES et APED) explique le changement positif de classe de qualité par rapport à Bastide.

Sur le Vistre Fontaine, les trois espèces dominantes (représentant 79 % des abondances relatives) sont typiques de milieux pollués ; les indices diatomiques traduisent pour cet affluent une qualité de lœau mauvaise à médiocre.

III - 5.2. Macrophytes

III - 5.2.1 Valeurs IBMR et richesse taxonomique

L'ensemble des résultats des relevés est reporté en Annexe 13 et Annexe 14.

La Figure 37 présente les notes IBMR et le nombre de taxons pour les campagnes 2009 et 2010.

${f A}$ Valeurs IBMR 6 5 3 2 1 CHÂTEAU **FONTAINE** BASTIDE **JARDINS 2009 2**010 B Nombre de taxons 18 16 14 12 10 8 6 2 CHÂTEAU **FONTAINE** BASTIDE **JARDINS**

Figure 37 : A) Valeurs de l'IBMR ; B) Richesse taxonomique. Campagnes 2009 et 2010 menées sur les stations Fontaine, Château, Bastide et Jardins.

Pour les deux années, les valeurs de løindice IBMR varient entre 4,41 et 6,39 sur 20. Ces valeurs traduisent un niveau trophique très élevé, largement décalé par rapport à la situation qui pourrait être attendue dans ce type de cours d'eau. Ces résultats indiquent donc une situation écologique dégradée pour les communautés de macrophytes.

Les valeurs d'IBMR des stations situées sur le cours principal du Vistre sont relativement similaires lors des campagnes 2009 et 2010. La valeur, légèrement plus élevée obtenue en 2010, peut être une conséquence de la période de relevé. En effet, les conditions de fin de printemps, présentant des eaux plus froides et des écoulements plus importants, sont moins favorables à la production primaire et le niveau trophique résultant apparait alors moindre.

La différence de pression subie par le cours d'eau à chacune de ces stations se traduit par des valeurs d'IBMR différentes : un gradient apparaît de la station située en amont des sites de rejet ancien et actuel (Château 5,96 / 6,39) à celle qui subissait l'ancien rejet (Bastide 5,61 / 4,97) et au niveau de la station sous influence du nouveau rejet (Jardins 4,41 / 5,31).

La station Fontaine montre une réactivité temporelle plus importante avec une différence de valeur d'IBMR plus marquée entre les deux campagnes. Le niveau général est très comparable à celui observé sur la station témoin (Château), mais la situation y est légèrement différente et inversée (6,38 / 5,56). Ce type de réponse peut être lié à l'amélioration de la qualité de l'eau par la suppression du rejet, principal perturbateur, ce qui provoque un "déséquilibre" entre une situation antérieure très perturbée régulière et une nouvelle situation où s'expriment à la fois des indicateurs de récupération de qualité et ceux témoins de la rémanence du sur-enrichissement nutritionnel. Cette hypothèse serait à

confirmer par l'analyse de l'évolution du peuplement sur un cycle annuel complet et par un futur suivi annuel.

La richesse taxonomique montre les mêmes tendances relatives entre les stations, avec un gradient amont-aval présent les deux années mais mieux marqué dans les conditions d'étiage caractérisées de la campagne 2009. On notera toutefois que le nombre de taxons par station reste faible, voire très faible, avec par exemple seulement 6 taxons inventoriés à la station Jardins en août 2009. Ces tendances et cette faible richesse taxinomique ne sont *a priori* pas corrélées à la diversité des substrats rencontrés sur chaque station. Ce paramètre mésologique conditionne généralement dans une grande proportion la diversité des peuplements, ou au moins sa richesse. On peut ici considérer, de façon très synthétique, que la station amont présente le substrat théoriquement le plus biogène, avec la présence d'éléments grossiers et de cailloux, la station Bastide le plus défavorable (argiles et marnes), et Jardins un substrat plutôt favorable aux macrophytes (graviers, petits cailloux). Le gradient de richesse observé répond donc visiblement de façon majoritaire à d'autres facteurs que le substrat et donc, probablement, à la qualité générale du milieu et de lœau.

III - 5.2.2 Composition floristique des peuplements

Les taxons les plus significatifs dans les peuplements observés sur chacune des stations sont trois algues filamenteuses : Cladophora sp., Vaucheria sp., Rhizoclonium sp. et trois phanérogames : Potamogeton pectinatus, Potamogeton nodosus, Myriophyllum spicatum.

Ces genres d'algues sont caractéristiques de situations dégradées (enrichissement en nutriments phosphorés, fort éclairement). Les espèces de phanérogames sont également indicatrices de niveaux trophiques assez élevés, surtout pour *P. pectinatus*, dont la prolifération constitue, à l'instar des algues, un indicateur de perturbation trophique notable.

Les résultats des relevés réalisés en 2009 montrent des recouvrements très variables selon les stations (Figure 38).

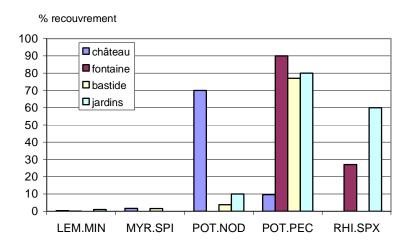


Figure 38: Pourcentages de recouvrement des principaux macrophytes en 2009. (codes: POT.PEC: Potamogeton pectinatus; POT.NOD: Potamogeton nodosus; RHI.SPX: Rhizoclonium sp.; MYR.SPI: Myriophyllum spicatum; LEM.MIN: Lemna minuta)

Le potamot pectiné (*P. pectinatus*) est très largement prédominant sur les stations situées en aval de l'ancien rejet. Le potamot des rivières (*P. nodosus*), très présent au niveau de la station Château reste peu présent sur les stations aval. Le myriophylle en épis

(*Myriophyllum spicatum*) est très peu abondant sur les stations Château et Bastide, absent sur les deux autres stations. Ces deux espèces présentent de moindres affinités trophiques que le potamot pectiné. La lentille d'eau *Lemna minuta* a été observée seulement en 2009 sur les stations Château, Fontaine et Jardins. L'algue filamenteuse *Rhizoclonium* présente des recouvrements importants au niveau des stations Fontaine (30 %) et Jardins (50 %).

Les recouvrements de l'année 2010 sont également très variables (Figure 39) et présentent des similitudes mais aussi quelques différences notables avec les résultats de 2009.

Les trois genres d'algue filamenteuses *Cladophora, Rhizoclonium* et *Vaucheria* ont été observés lors de cette campagne. Non observée en 2009, *Cladophora* présente des recouvrements de 60 à 70 % sur les stations Fontaine et Bastide, elle est également faiblement présente sur la station Jardins. Le recouvrement de *Rhizoclonium* sur la station Jardins est de l'ordre de 15 %. Elle est également présente sur la station Bastide mais avec un très faible recouvrement. *Vaucheria*, non observée en 2009, a été notée sur les quatre stations avec des recouvrements inférieurs à 5 % sur les stations Fontaine et Jardins, et proches de 20 % sur les stations Château et Bastide.

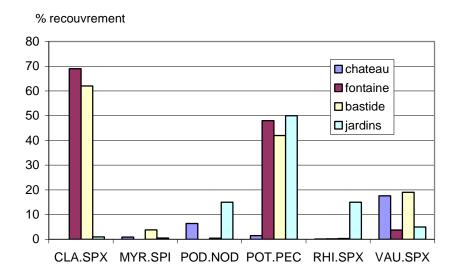


Figure 39: Pourcentages de recouvrement des principaux macrophytes en 2010. (CLA.SPX: Cladophora sp.; POT.PEC: Potamogeton pectinatus; VAU.SPX: Vaucheria sp.; POT.NOD: Potamogeton nodosus; MYR.SPI: Myriophyllum spicatum; RHI.SPX: Rhizoclonium sp.)

En 2010, la forte présence des algues filamenteuses peut sœxpliquer par la période plus précoce qu'en 2009 à laquelle nous avons réalisé la campagne de terrain (28 mai ó 2 juin). Sur la plupart des cours dœau, *Vaucheria* est classiquement mieux développée en début et en fin de saison de croissance des macrophytes, préférant les températures plus fraiches. Elle régresse fortement en milieu de saison, à cause de lœaugmentation de la température de lœau. *Cladophora* se développe de préférence en milieu de saison : nous lœavons probablement repéré dans le début de sa phase de croissance.

L'alternance observée, entre les deux années, des deux genres d'algues *Rhizoclonium* et *Cladophora* peut s'expliquer par les cycles de développement de ces populations d'algues. Les algues présentent des cycles de développement courts et intenses, aussi plusieurs taxons peuvent se succéder lors du cycle annuel, en fonction de l'évolution des paramètres mésologiques (principalement température et éclairement) ou des évènements hydrologiques, occupant la même place fonctionnelle dans le système.

Comme en 2009, le myriophylle en épi (*M. spicatum*) n'a pas été observé sur la station Fontaine. Il est présent sur les autres stations avec de très faibles recouvrements, avec un maximum de 5 % sur la station Bastide. Le potamot des rivières (*P. nodosus*) n'a pas non plus été observé à la station Fontaine. Ses recouvrements sur les autres stations varient entre quelques % (stations Bastide et Château) et près de 15 % à la station Jardins. Ces deux espèces peuvent s'accommoder de niveaux trophiques moyens mais restent sensibles à des niveaux trophiques élevés, ce qui peut expliquer les différences observées entre 2009 et 2010 et leur absence de la station Fontaine lors des deux campagnes.

Il n'en est pas de même pour le potamot pectiné (*P. pectinatus*) dont le recouvrement se situe entre 40 et 50 % sur les stations Fontaine, Bastide et Jardins. On peut noter la même évolution pour cette espèce lors des deux campagnes avec de faibles recouvrements sur la station Château et des recouvrements élevés, de même ordre de grandeur sur les autres stations. La réalisation plus précoce de la campagne 2010 par rapport à celle de 2009 doit probablement être une des causes de la plus faible valeur de recouvrement de cette espèce (40 à 50 %) contre 75 à 90 %, la campagne 2010 intervenant plus tôt dans son développement.

En première approche, ces résultats montrent donc une persistance de la mauvaise qualité antérieure du Vistre Fontaine qui recevait le rejet de la station d'épuration. La similitude des peuplements entre la station Fontaine et le secteur aval est perceptible, alors que la station Château, située sur le cours principal en amont de la confluence du Vistre Fontaine, présente un peuplement relativement différent, par exemple en nombre de taxons.

Il conviendrait d'étayer cette hypothèse par une analyse plus poussée, complétée par les informations concernant la qualité physico-chimique des eaux. De même, nous n'intégrons pas ici d'informations sur les autres sources potentielles d'apports au Vistre. Il est en effet possible que d'autres rejets présentent des impacts non négligeables dans ce secteur du cours d'eau comportant une occupation agricole intensive et de vastes zones périurbaines.

III - 5.2.3 Profils écologiques

Le profil écologique de chaque peuplement peut être illustré par les côtes spécifiques (CS) des taxons répertoriés. Une côte est une note dans une gamme de 1 à 20 représentant l'affinité trophique du taxon, les valeurs faibles correspondant à des niveaux eutrophes, les valeurs élevées à des niveaux oligotrophes. En intégrant les côtes des taxons rencontrés sur chaque station, on obtient alors une vision globale de l'affinité trophique de ce peuplement et de l'homogénéité de cette information.

La Figure 40 montre une évolution entre les 3 stations situées sur le cours principal du Vistre. La station Château présente un profil relativement réparti entre les domaines "eutrophe" et "très eutrophe", dans lequel se trouve cependant un pôle de taxons eutrophes et assez ubiquistes (CS de 10 et 11). La station Bastide présente un profil comparable mais, si l'on intègre l'information des deux campagnes annuelles, on peut voir un très léger glissement de la tendance vers des valeurs plus basses. La station Jardins montre plus nettement cette évolution du profil trophique, avec un pôle de taxons à valeur faible (CS 4) et un fond de peuplement ubiquiste moins important.

On met donc en évidence une inversion du profil entre la station située en amont de la confluence et celle sous l'influence des rejets actuels.

La station Fontaine montre un profil plus hétérogène. On distingue assez nettement un pôle central ubiquiste majoritaire (CS de 10 et 11), entraîné par une tendance aux valeurs très faibles de quelques taxons (CS 2 à 6), mais "compensée" par des indicateurs plus mésotrophes (CS 12 et 13).

C'est d'ailleurs la seule station où une valeur de CS de 13 a été relevée en 2009 et 2010. On peut y voir l'antagonisme entre une qualité d'eau restaurée et la rémanence d'une situation trophique antérieure très fortement dégradée.

Globalement, les peuplements analysés sur les différentes stations du Vistre présentent donc des profils d'affinité trophique élevée (faibles valeurs de CS). Ces profils sont cohérents avec les observations réalisées sur place et avec les preferenda écologiques connus des taxons dominants. La qualité du milieu apparait comme globalement dégradée, quel que soit le tronçon. L'enrichissement de l'eau en nutriments est encore général et la discrimination des différentes situations observées, par rapport aux positionnements antérieur et actuel des rejets de la station d'épuration, reste donc difficile et relativement médiocre.

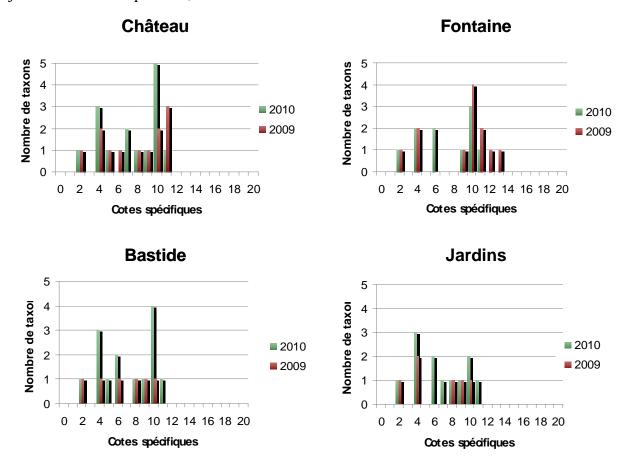


Figure 40 : Profils d'affinité trophique des peuplements observés à chaque station, d'après la répartition des effectifs des côtes spécifiques.

IV - Conclusions

IV - 1. Chimie et processus microbiens

© La qualité physico-chimique d'une part, et les fonctionnalités morphologiques d'autre part, restent significativement perturbées. Cependant, une amélioration de qualité est visible depuis la mise en service de la nouvelle station dépuration (la station amont apparait légèrement plus dégradée que la station aval). Il est prématuré de dire que cette évolution est totalement imputable au nouveau processus dépuration, car le contexte hydrologique a été bien plus dynamique après la mise en service de la nouvelle STEP. Seul un suivi ultérieur dans des conditions proches de 2007 pourrait faire la part des causalités.

- © Une évolution de la communauté microbienne est visible, indiquant une réponse à un changement détat du milieu, indépendamment de variabilités à petite échelle (temporelle et spatiale).
- © Les changements de profils de diversité ne peuvent pas être interprétés comme un signal døamélioration du milieu
- © La réduction de processus microbiens typiques de conditions sédimentaires très anoxiques, tel que la méthanisation, est un indice døamélioration des massifs sédimentaires du cours døau. La réduction de ce processus, ainsi que de la respiration, témoigne døune réduction de la charge en matière organique biodégradable.

IV - 2. Hydromorphologie, thermie et cycle nycthéméral

- © Dans le secteur aménagé de Bastide, la restriction du gabarit du chenal détiage, avec une largeur moyenne environ deux fois plus petite que celle du secteur Jardins, a permis de dynamiser efficacement lécoulement, en plus que triplant la proportion du faciès radier.
- © La redynamisation de lécoulement seaccompagne toutefois de une puissance accrue des capacités dérosion et de transport, qui se manifeste par un surdimensionnement du lit mouillé initial, et par la forte réduction des dominances en granulats grossiers et en sédiments plus fins, laissant place à une dominance de blocs, déargile et de marne. En conséquence léhabitabilité globale du substrat minéral dans ce secteur aménagé est globalement plus faible que celle du secteur Jardins.
- © Le constat négatif fait sur les conséquences physiques de cette recalibration est toutefois à replacer dans le contexte global de ce tronçon, où faute de foncier disponible, il nøa pas été possible de créer une large table alluvionnaire de débordement qui aurait permis de diminuer les vitesses et les hauteurs en forte crue.
- ©© Les classes de température atteintes dans les deux tronçons sont voisines, mais le secteur aval semble avoir une température moyenne toujours supérieure døun peu moins de 1°C. Løcchauffement estival reste très fort avec 50% des maximales dépassant les 24°C. Toute gestion végétale favorisant lømbrage du chenal est à encourager.
- ©® Lœtude de deux cycles nycthéméraux dans des conditions hydrologiques différentes montre que, (i) le cours dœau possède encore une charge organique qui induit de fortes variations du taux døxygène, entre 120 et 60%, dès le printemps; (ii) que le ruissellement urbain apporte des flashs de crues réchauffées en été, et (iii) que la gestion des rejets issus du site de la nouvelle STEP a provoqué dans le cours dœau des anomalies de température et de désoxygénation quøil conviendrait de surveiller.

IV - 3. Invertébrés benthiques

- ® Même si la qualité physico-chimique du tronçon étudié sœst nettement améliorée suite à løarrêt de løancienne STEP, la qualité globale, tout en étant meilleure à løaval quøa løamont reste moyenne. Ceci a pour conséquence løabsence totale de taxons appartenant aux groupes bioécologiques les plus sensibles.
- © Les communautés macrobenthiques répondent favorablement et rapidement (en quelques mois) après løarrêt des rejets de løancienne STEP dans le Vistre. Les différences sont toutefois plus marquées døun point de vue de la composition que de la structure.

- © Un peu plus døun an après la baisse de la pression chimique, løhomogénéité accrue de fonctionnement des communautés macrobenthiques observée le long du tronçon met en évidence un retour des communautés perturbées à un état assez proche de celui observé sans cette pression initiale.
- © Døune manière générale, le long du tronçon, les diatomées montrent des communautés plus équilibrées et plus diversifiées que les invertébrés; les communautés macrobenthiques de la station Jardins restant très déséquilibrées.
- © Plusieurs métriques biologiques semblent être particulièrement adaptées pour suivre la récupération du milieu lors døune levée de pression chimique organique :
 - løIBGN, même si, sans station témoin comme élément de comparaison, cet indice ne parait pas suffisant pour un suivi efficace,
 - la présence døAselle ou le rapport Gammares/Aselles,
 - løbservation de la diminution du groupe bioécologique au cours du temps.
 - © Deux hypothèses méritent døêtre vérifiées à plus long terme :
 - les efforts de restauration physique effectués quelques années auparavant sur la station de Bastide semblent avoir permis une récupération plus rapide des communautés et donc du milieu, suite à la baisse de la pression chimique,
 - løamélioration des indices biologiques observés sur la station de Jardins en 2009 pourrait être la conséquence des efforts constants réalisés pour løamélioration de la qualité chimique des rejets de la nouvelle STEP, en favorisant løinstallation de taxons plus sensibles.

IV - 4. Macrophytes et diatomées

- © LøIBMR semble être bien adapté pour différencier les types de niveau trophiques sur le tronçon étudié.
- © Eles indices diatomiques attribuent une meilleure qualité du milieu aux stations les plus aval. Les indices macrophytiques et invertébrés répondent en revanche en sens inverse en attribuant tous les deux des valeurs døindices, et donc de qualité du milieu, inférieures aux stations aval. Cela sæxplique par la relation étroite qui existe entre løBD et la qualité chimique du milieu tandis que løBGN et løBMR prennent également en compte le compartiment physique.
- ② Le Vistre présente sur certains secteurs des substrats particuliers, comme l'argile ou la marne, peu favorables à l'implantation et à la diversification des peuplements de macrophytes.
- © L'instabilité des peuplements pourrait constituer un critère d'évaluation de la récupération des fonctionnalités écologiques du cours dœau.
- ② La variabilité hydrologique des périodes estivales a une influence non négligeable sur les peuplements macrophytiques, tant dans leur développement que dans la succession des populations au cours de la période estivale.
- © Il serait intéressant døanalyser plus en détail des données supplémentaires sur un cycle annuel.

V - Références de précédentes études et bibliographie citée

- AFNOR NF T 90-395 (2003) Qualité de l'eau Détermination de l'indice biologique macrophytique en rivière (IBMR).
- AFNOR NF EN 13946 (2003) Qualité de l'eau Guide pour l'échantillonnage en routine et le prétraitement des diatomées benthiques de rivières.
- AFNOR NF T 90-350 (2004) Qualité de l'eau Détermination de l'indice biologique global normalisé (IBGN).
- AFNOR NF EN 14407 (2004) Qualité de l'eau Guide pour l'identification et le dénombrement des échantillons de diatomées benthiques de rivières, et leur interprétation.
- Aquascop (2006) Suivi du Vistre sur la commune de Nîmes Débimétrie et analyses. 54pp.
- Banque HYDRO (2009) "Le Vistre à Bernis (Y3514020)." (http://www.hydro.eaufrance.fr/)
- Blanc L. (2005) Impact de pressions polluantes sur le fonctionnement de communautés microbiennes aquatiques. Application à un bassin versant rural sous influence viticole. Mémoire Master 2, U. Blaise Pascal Clermont Ferrand II ó Cemagref Lyon, 48pp.
- Circulaire DE/MAGE/BEMA 07/n°4 (2007) Protocole de prélèvement et de traitement des échantillons des invertébrés sur le réseau de contrôle de surveillance. Bulletin officiel du 11 avril 2007.
- Denys L. (1991) A check-list of the diatom in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements, Introduction, ecological code and complete list. Prof. Paper 246, Service géologique de Belgique: 1ó41.
- Falasco E., Bona F., Ginepro M., Hlúbiková D., Hoffmann L. & Ector, L. (2009) Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35:595-606.
- Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher D. & Zohary T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 4036 424.
- Krammer, K. & Lange-Bertalot, H. (1986-1991) Bacillariophyceae. Bands 1-4. Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York.
- Lecointe C., Coste M. & Prygiel J. (1993) OMNIDIA software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509-513.
- MEED & Agences de l'eau (2003) Système d'Evaluation de la Qualité de l'eau des cours d'eau : rapport de présentation SEQ-eau version 2.
- Pielou, E. C. (1966) The measurement of diversity in different types of biological collection. Journal of Theoretical Biology 13:131-144.
- Ricart M., Guasch H., Barceló D., Brix R., Conceição M.H., Geiszinger A., López de Alda M.J., López-Doval JC., Muñoz I., Postigo C., Romaní AM., Villagrasa M., Sabater S. (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. Journal of Hydrology, 383: 52-61.

Romani, AM, Guasch H., Munoz I., Ruana J., Vilalta E., Schwartz T., Emtlazi F. & Sabater S. (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microbial Ecology 47:316-328.

Shannon, C. E. & Weaver W. (1949) The mathematical theory of communication. Urbana, University Illinois Press. 117pp.

Tachet H., Richoux P., Bournaud M. & Usseglio-Polatera P. (2000) Invertébrés d'eau douce. Systématique, biologie, écologie. CNRS EDITIONS, Paris. 587pp.

Usseglio-Polatera P., Richoux P., Bournaud M. & Tachet H. (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Archiv für Hydrobiologie 139: 53-83.

Wetzel R.G. & Likens G.E. (1991) Limnological Analyses. 2nd Ed. Springer-Verlag. 391 pp.

VI - Liste des Annexes

Annexe 1 : Matrice des corrélations des paramètres chimiques	64
Annexe 2 : Traits biologiques et modalités des macroinvertébrés benthiques	65
Annexe 3 : Traits écologiques et modalités des macroinvertébrés benthiques	67
Annexe 4 : Tableau granulométrique sur les 3 stations du Vistre (valeur moyenne de 3 échantillons	
poolés)	68
Annexe 5 : Chimie de l\(\phi\)eau Aquascop - Janvier \(\phi\) Juillet 2007	69
Annexe 6 : Concentrations des métaux dans les sédiments en septembre 2009 et janvier 2010 (3	
réplicats) en μg/kg. LQ : Limite de quantification	70
Annexe 7 : Concentrations des micropolluants dans lœau (métaux et pesticides) en septembre 2009	,
janvier 2010 et juillet 2010 en μg/l. LQ : Limite de quantification	71
Annexe 8 : Données microbiologiques obtenues sur le biofilm (seul la station château présentait des	s
biofilms épilithiques ; les autres étaient sur les sédiments). En jaune : données manquantes,	
estimées par la moyenne des deux valeurs disponibles du triplicat.	72
Annexe 9 : Données microbiologiques obtenues sur les sédiments. En jaune : données manquantes,	
estimées par la moyenne des deux valeurs disponibles du triplicat.	73
Annexe 10 : Valeur des indices taxonomiques calculés pour les 3 stations aux trois dates	75
Annexe 11 : Fréquence døutilisation (en %) des différentes modalités de traits biologiques et	
écologiques dans les communautés des 3 stations suivies, aux trois dates	76
Annexe 12 : Abondance au sein de chaque groupe fonctionnel et métriques fonctionnelles	81
Annexe 13 : Feuille de calcul IBMR pour la campagne de 2009 sur les stations Château, Fontaine,	
Bastide et Jardins.	82
Annexe 14 : Feuille de calcul IBMR pour la campagne de 2010 sur les stations Château, Fontaine,	
Bastide et Jardins.	85
Annexe 15 : Débits mensuels du Vistre de 2006 à 2010 (source Banque Hydro)	

Annexe 1 : Matrice des corrélations des paramètres chimiques.

	pН	NH4	NO2	NO3	Ptot	PO4	HCO3	Cl	Ca	Mg	Na	K
рН	1.000											
NH4	0.021	1.000										
NO2	-0.061	0.386	1.000									
NO3	0.031	-0.137	0.213	1.000								
Ptot	-0.028	0.851	0.273	-0.376	1.000							
PO4	-0.047	0.819	0.218	-0.496	0.985	1.000						
HCO3	-0.066	0.672	0.178	-0.258	0.448	0.498	1 .000					
C1	0.057	0.229	0.343	0.116	0.358	0.277	-0.485	1.000				
Ca	-0.255	-0.364	-0.038	0.120	-0.337	-0.282	0.195	-0.618	1.000			
Mg	0.285	0.129	0.155	0.008	0.263	0.232	-0.316	0.497	-0.249	1.000		
Na	0.141	0.657	0.309	-0.153	0.727	0.666	-0.045	0.828	-0.739	0.538	1.000	
K	0.134	0.607	0.380	-0.082	0.618	0.539	-0.041	0.803	-0.763	0.443	0.931	1.000

Annexe 2 : Traits biologiques et modalités des macro-invertébrés benthiques.

No.	Traits		No.	Modalités
1	Taille maximale		1	Ö0.25 cm
			2	0.25-0.5 cm
			3	0.5-1 cm
			4	1-2 cm
			5	2-4 cm
			6	4-8 cm
			7	×8cm
2	Cycle vital		1	Ö1 an
_	Sycic vital		2	> 1 an
3	Nombre	de		< 1
	génération/an		2	1
	generation an		3	>1
4	Stade aquatique		1	òuf
7	Stade aquatique		2	larve
			3	nymphe
			4	adulte
5	Reproduction		1	
3	Reproduction		2	ovoviviparité ò ufs isolés, libres
			3	ò ufs isolés, fixés
			3 4	
			5	pontes, fixées
				pontes, libres
			6	pontes dans la
			7	végétation
			7	pontes terrestres
_	D		8	reproduction asexuée
6	Dispersion		1	aquatique passive
			2	aquatique active
			3	aérienne passive
_			4	aérienne active
7	Forme de résistance		1	ò ufs, statoblastes
			2	cocons
			3	Cellule contre la
				dessiccation
			4	diapause ou dormance
			5	aucune
8	Respiration		1	tégument
			2	branchies
			3	plastron
			4	spiracle
9	Relation au substrat		1	vol
			2	nageur de surface
			3	nageur en pleines eaux
			4	marcheur
			5	fouisseur
				(épibenthique)
			6	endobenthique
				(interstitiel)
			7	fixation temporaire
			8	fixation permanente

10	Type de nourriture	1	Sédiments fins +
			micro-organismes
		2	détritus (< 1mm)
		3	débris (> 1mm)
		4	microphytes
		5	macrophytes
		6	animaux morts > 1 mm
		7	micro-invertébrés
		8	macro-invertébrés
		9	vertébrés
11	Mode d'alimentation	1	mangeur de sédiments
			fins
		2	broyeur
		3	racleur, brouteur
		4	filtreur
		5	perceur
		6	prédateur
		7	parasite

Annexe 3 : Traits écologiques et modalités des macro-invertébrés benthiques.

No.	Traits	No.	Modalités
1	Distribution transversale par rapport au chenal	1	chenal de rivière
		2	rives, chenaux secondaires
		3	étangs, mares, méandres abandonnés
		4	marais, tourbières
		5	eaux temporaires
		6	lacs
		7	eau souterraine
2	Distribution longitudinale	1	crénon
		2	épirhithron
		3	métarhithron
		4	hyporhithron
		5	épipotamon
		6	Métapotamon + estuaire
		7	hors hydrosystème fluvial
3	Altitude	1	plaine + collinéen (<1000m)
-		2	montagnard (1000-2000m)
		3	
		3	alpin (>2000m)
4	Zones biogéographiques	1	2 : Pyrénées
		2	4 : Alpes
		3	8 : Vosges, Jura, Massif Central
		4	13a : basses terres (oceanique)
		5	13b : basses terres (méditerranéen)
5	Microhabitat (préf.)	1	blocs, pierres, cailloux, galets
		2	graviers
		3	sable + limon
		4	macrophytes
		5	branches, racines
		6	débris organiques, litière
		7	vase
6	Courant (préf.)	1	nul
	•	2	lent (< 25 cm/s)
		3	moyen (25-50 cm
		4	rapide (> 50 cm/s)
7	Degré de trophie (préf.)	1	oligotrophe
	Control of the contro	2	mésotrophe
		3	eutrophe
8	Salinité (préf.)	1	eau douce
Ü	Samue (pren)	2	eau saumâtre
9	Température (préf)	1	sténotherme : psychrophile (< 15°C)
	1	2	sténotherme : thermophile (> 15°C)
		3	eurytherme
10	Valeur saprobiale	1	xénosaprobe
		2	oligosaprobe
		3	-mésosaprobe
11	nU (próf)	4	-mésosaprobe + polysaprobe
11	pH (préf)	1	Ö4.5
		2	> 4.5-5
		3	> 5-5.5
		4	> 5.5-6
		5	> 6

Annexe 4 : Tableau granulométrique sur les 3 stations du Vistre (valeur moyenne de 3 échantillons poolés).

	0-50μ	50-200μ	200-500μ	500-2000μ
	%	%	%	%
château0907	52,90	27,50	12,50	7,10
château0308	46,90	36,00	12,10	5,00
château0508	48,50	28,10	17,90	5,60
château0708	25,00	18,40	34,70	21,90
château0908	38,80	17,72	22,72	20,76
château1108	25,39	16,54	37,17	20,90
château0109	26,80	17,68	38,25	17,99
château0609	61,51	23,89	4,54	10,07
château0909	31,46	43,24	18,64	6,66
château0110	41,70	27,84	22,48	7,98
bastide0907	61,00	25,50	9,70	3,80
bastide0308	57,30	33,20	7,60	1,90
bastide0508	51,50	29,00	14,10	5,40
bastide0708	46,40	31,40	16,60	5,60
bastide0908	64,17	25,54	7,09	3,20
bastide1108	26,02	8,68	28,13	37,17
bastide0109	28,56	14,80	33,14	23,50
bastide0609	15,30	15,67	39,17	29,86
bastide0909	22,77	27,82	31,34	18,07
bastide0110	22,30	41,21	29,46	7,03
Jardins0907	76,30	20,70	2,60	0,40
Jardins0308	37,40	43,70	15,20	3,70
Jardins0508	52,00	29,50	11,60	7,00
Jardins0708	76,70	15,50	4,30	3,50
Jardins0908	41,57	21,92	17,32	19,20
Jardins1108	24,67	12,42	18,43	44,48
Jardins0109	23,78	12,84	23,59	39,79
Jardins0609	29,31	14,72	18,19	37,78
Jardins0909	36,18	22,35	31,31	10,16
Jardins0110	22,95	14,04	39,94	23,07
Fontaine0609	44,64	19,76	21,14	14,47
Fontaine0909	29,11	11,67	18,90	40,32
Fontaine0110	11,13	21,70	59,36	7,81

Annexe 5 : Chimie de lœau Aquascop - Janvier ó Juillet 2007.

		unit.	μS/cm	mg/L	°C	mg/L								
		рН	Conduc	MES	DCO	DBO5	NTK	NH4	NO2	NO3	Ptot	PO4	Т	D2 dis
	Château0107	7,98	952	5,6	15	2,8	2	1,9	0,39	24	1	2,8	12,7	11,5
	chateau0207	7,76	925	6,6	15	3	1,5	1,9	0,53	23	8,0	2,3	9,6	9,9
	chateau0307	7,81	941	8,6	15	2	2	1,9	0,23	20	0,8	2,1	14	12,2
Moulin Gazay	château0407	7,9	900	16	15	2	2	1,9	0,19	12	1,1	3,3	21	10,3
	château0507	7,71	698	16	15	1,6	2	1,9	0,14	11	0,8	2,1	17,5	8,9
	château0607	7,72	932	10	15	2	2	1,9	0,17	8,4	1,7	5	21,8	6,7
	chateau0707	7,96	946	3,2	15	2	2	1,9	0,23	9,3	1,2	3,6	21,8	9,3
	Bastide0107	7,65	913	7,2	15	6	8,6	9	0,49	12	1,4	4	13,4	7,7
	Bastide0207	7,62	953	6,4	15	8	11,7	12,9	0,62	12	1,4	3,3	10,6	7,2
	BAstide0307	7,61	986	8,6	15	5,5	14	16,7	0,39	9,7	2,7	6,3	13	8,02
Bastide	BAstide0407	7,7	894	7	15	4	10	10,8	0,53	8,4	1,3	3,7	19	5,2
	Bastide0507	7,5	736	20	15	5	7,3	8,5	0,46	8,4	0,9	2,3	16,8	4,9
	BAstide0607	7,54	916	4	15	5	12	14,2	0,33	5,3	1,8	5,2	21,4	6,7
	BAstide0707	7,56	944	5,6	15	6	12,7	14,2	1,54	5,7	1,7	5,1	21,2	4,8
	Jardins0107	7,55	1012	21	15	6	7,7	8,2	0,85	49	1,2	3,1	13,9	7,2
	Jardins0207	7,5	1028	10	15	8	8,2	9,7	0,69	49	1	2,4	11,8	7,3
	JArdins0307	7,75	1032	5	15	7,5	10	11,9	0,46	24	1,6	4,5	14,1	9,3
Moulin vedel	Jardins0407	7,6	928	12	15	4	8,5	9	0,59	27	1,2	3,3	18,7	5,4
	Jardins0507	7,41	777	14	15	4	6,1	6,8	0,46	28	0,8	1,9	17,3	5,6
	JArdins0607	7,34	1000	10	15	4,8	6,8	8,5	0,49	40	1,1	3	17,34	2,6
	Jardins 0707	7,55	992	12	15	7	10,1	11,6	1,67	27	1,3	3,7	21,6	4,7

Annexe 6: Concentrations des métaux dans les sédiments en septembre 2009 et janvier 2010 (3 réplicats) en μ g/kg. LQ: Limite de quantification.

	•	В	V	O:	Co	Ni	Qu	Zn	As	Ag	Cd	Pb	U
		ICP-MS	IOP-MS	IOP-MS-CCT	ICP-MS	ICP-MSCCT	ICP-MS	IOP-MS-CCT	ICP-MS-CCT	ICP-MS	ICP-MS	ICP-MS	ICP-MS
		LQ = 6.67	LQ=10	LQ = 0.33	LQ = 0.33	LQ = 0.33	LQ = 0.33	LQ = 1.67	LQ = 0.33	LQ = 0.33	LQ = 0.033	LQ = 0.33	LQ = 0.33
	Château	10,94	157,00	24,03	4,13	13,39	34,91	84,78	4,41	1,20	0,420	45,24	1,05
sept-09	Fontaine	14,57	148,80	21,45	4,50	12,52	110,97	133,57	4,57	1,81	0,421	189,75	1,37
sept-09	Bastide	11,44	132,80	20,98	4,23	10,61	59,31	150,59	4,24	1,92	0,489	106,10	1,26
	J ardins	11,87	150,00	22,19	4,14	11,78	45,94	119,11	4,81	1,24	0,347	64,83	1,02
	Château A	17,52	32,24	34,12	5,56	17,46	58,31	139,66	5,27	1,55	0,375	66,20	1,22
	Château B	11,98	26,90	27,99	4,99	13,80	47,18	105,25	4,72	1,18	0,343	53,22	1,12
	Château C	15,68	29,08	30,23	5,12	16,03	54,11	125,90	5,05	1,43	0,389	206,83	1,16
	Fontaine A	10,83	18,38	18,39	4,02	9,79	74,36	133,23	3,81	1,65	0,459	90,64	1,12
	Fontaine B	7,21	15,85	16,52	3,20	7,71	63,84	125,08	2,80	1,46	0,470	113,86	1,17
iony 10	Fontaine C	10,44	20,65	24,46	3,89	11,00	101,32	171,04	3,80	2,56	0,538	133,37	1,43
janv-10	Bastide A	8,29	19,64	19,62	4,50	10,30	60,52	136,50	4,24	1,43	0,469	83,65	1,33
	Bastide B	8,46	18,06	18,37	3,59	9,97	58,15	113,33	3,57	1,60	0,489	77,54	0,97
	Bastide C	8,08	19,23	19,77	4,39	10,61	68,42	141,64	4,57	2,03	0,503	96,44	1,14
	Jardins A	14,51	26,72	26,04	4,60	13,96	59,04	151,29	5,09	1,35	0,374	76,89	0,98
	Jardins B	7,80	17,79	18,16	3,49	9,08	36,94	84,98	3,71	1,02	0,311	64,70	0,85
	Jardins C	8,93	22,66	21,42	4,24	11,87	55,83	130,37	4,78	1,63	0,389	82,36	1,03

Annexe 7 : Concentrations des micropolluants dans l\(\phi\) au (m\(\phi\) taux et pesticides) en septembre 2009, janvier 2010 et juillet 2010 en μ g/l. LQ : Limite de quantification.

		В	V	۵	Co	Ni	Qu	Zn	As	Ag	Cd	Pb	U
		IOP-MS	IOP-MS	IOP-MS-CCT	ICP-MS	ICP-MS	ICP-MS	ICP-MS	IOP-MS-CCT	ICP-MS	ICP-MS	IOP-MS	ICP-MS
		LQ2	LQ 0.40	LQ 0.05	LQ 0.05	LQ 0.05	LQ 0.05	LQ 0.5	LQ 0.050	LQ 0.010	LQ 0.010	LQ 0.050	LQ 0.05
	Château	76,59	1,17	0,17	0,36	1,20	1,45	7,09	1,399	< LQ	<lq< td=""><td>0,338</td><td>-</td></lq<>	0,338	-
sept-09	Fontaine	79,65	1,07	0,32	0,50	2,01	1,77	4,43	1,881	< LQ	<lq< td=""><td>0,553</td><td>-</td></lq<>	0,553	-
sept-09	Bastide	68,58	1,32	0,16	0,38	1,30	1,33	3,91	1,436	< LQ	0,010	0,437	-
	J ardins	94,39	1,40	0,32	0,57	2,70	2,24	16,13	1,398	< LQ	0,018	0,385	-
	Château	41,28	0,70	0,09	0,32	0,57	1,68	6,25	0,734	< LQ	<lq< td=""><td>0,069</td><td>1,60</td></lq<>	0,069	1,60
janv-10	Fontaine	35,57	0,63	0,15	0,32	0,94	1,22	2,43	0,443	<lq< td=""><td><lq< td=""><td>0,137</td><td>1,05</td></lq<></td></lq<>	<lq< td=""><td>0,137</td><td>1,05</td></lq<>	0,137	1,05
Janv-10	Bastide	37,47	0,63	0,13	0,32	0,76	1,20	2,42	0,501	< LQ	<lq< td=""><td>0,098</td><td>1,25</td></lq<>	0,098	1,25
	J ardins	45,67	0,62	0,13	0,35	0,81	1,22	5,67	0,525	< LQ	<lq< td=""><td>0,109</td><td>1,19</td></lq<>	0,109	1,19
	Château	59,39	1,05	0,10	0,33	0,65	1,54	3,12	1,182	<lq< td=""><td>0,013</td><td>0,118</td><td>1,14</td></lq<>	0,013	0,118	1,14
juil-10	Bastide	61,07	1,05	0,12	0,33	0,88	1,91	3,17	1,153	<lq< td=""><td>0,011</td><td>0,233</td><td>1,12</td></lq<>	0,011	0,233	1,12
	J ardins	77,84	0,85	0,18	0,42	1,25	1,90	10,14	1,155	<lq< td=""><td>0,019</td><td>0,190</td><td>0,92</td></lq<>	0,019	0,190	0,92

Le dosage des pesticides non révélé aucune présence significative de pesticides dans locau. Seuls locatrazine déséthyl, le bentazone, le métobromuron, et le terbutylazine déséthyl ont pu être détectés, mais à une valeur inférieure au seuil de quantification.

Annexe 8 : Données microbiologiques obtenues sur le biofilm (seul la station château présentait des biofilms épilithiques ; les autres étaient sur les sédiments). En jaune : données manquantes, estimées par la moyenne des deux valeurs disponibles du triplicat.

		biomasse	glucosidaseB	xylosidaseB	PeptidaseB	respirationB	dénitrificationB
		mg/cm2	nmole/h.cm ²	nmole/h.cm ²	nmole/h.cm ²	ngCO2/h/cm ²	ngN20/h/cm ²
château0907	1	5,864	10,33	4,17	23,21	1480,00	985,00
château0907	2	3,449	6,92	4,99	14,22	2880,00	1140,00
château0907	3	2,846	13,83	3,17	10,04	2960,00	724,00
château0308	4	3,796	7,21	0,49	15,65	1190,00	503,00
château0308	5	3,330	13,62	0,24	20,26	1900,00	545,00
château0308	6	2,937	10,72	0,32	23,61	1750,00	1070,00
château0508	7	2,455	8,89	12,17	7,82	2400,00	345,00
château0508	8	2,441	9,59	6,63	10,16	2410,00	266,00
château0508	9	1,205	10,26	9,61	11,2	2405,00	386,00
château0708	10	1,599	9,32	5,15	14	1670,00	41,10
château0708	11	2,847	6,77	3,77	15,09	2290,00	42,50
château0708	12	1,770	5,78	4,09	12,19	2800,00	56,90
château0908	13	2,728	4,95	3,11	31,93	1580,00	51,80
château0908	14	1,829	8,85	5,43	27,07	1880,00	27,30
château0908	15	3,264	8,7	5,35	29,3	980,00	39,00
château1108	16	3,244	11,84	6,31	28,17	4090,00	47,70
château1108	17	2,965	9,75	4,45	23,16	4070,00	18,90
château1108	18	3,466	9,27	5,4	31,48	3220,00	29,70
château0109	19	3,616	2,92	2,12	14,12	2050,00	340,00
château0109	20	6,550	2,36	2,92	14,5	4200,00	363,00
château0109	21	5,367	1,76	1,55	12,24	2970,00	351,00
château0609	22	2,788	7,7	3,94	25,28	1310,00	243,00
château0609	23	2,570	6,26	5,14	28,06	1520,00	158,00
château0609	24	1,906	3,55	4,54	26,84	1220,00	204,00
château0909	25	1,955	9,63	3,88	22,27	1010,00	138,00
château0909	26	1,367	4,26	2,64	21,43	1930,00	77,50
château0909	27	1,522	6,14	3,63	24,77	1080,00	107,00
château0110	28	2,078	7,7	1,08	18,14	3200,00	425,00
château0110	29	3,590	5,55	1,19	21,82	2800,00	518,00
château0110	30	3,618	9,86	1,27	20,4	3600,00	335,00

Annexe 9 : Données microbiologiques obtenues sur les sédiments. En jaune : données manquantes, estimées par la moyenne des deux valeurs disponibles du triplicat.

	numérationS	glucosidaseS	xylosidaseS	PeptidaseS	respirationS	dénitrificationS	méthanisationS
	bact/g sed sec	nmole/h.g sed sec	nmole/h.g	nmole/h.g	ngCO2/h/g	ngN20/h/g	ngCH4/h.g sed sec
château0907	1,16E+09	843,03	337,77	587,71	51750,47	31900,00	2987,52
château0907	9,37E+08	612,97	337,42	819,40	53675,75	33416,61	5809,43
château0907	6,11E+08	626,62	220,05	695,19	54573,94	30572,47	4400,00
château0308	4,39E+08	732,69	331,78	652,84	51711,95	32771,30	94,78
château0308	4,57E+08	634,19	333,07	594,83	47819,62	25832,20	59,04
château0308	4,31E+08	584,45	219,80	707,03	75298,33	35544,02	76,00
château0508	6,40E+08	290,22	138,74	1100,00	26034,59	68832,96	45,29
château0508	1,10E+09	527,48	489,80	1509,57	30874,21	73303,23	23,03
château0508	5,78E+08	441,02	223,41	714,10	24856,73	71330,00	37,77
château0708	3,01E+08	423,10	188,44	591,80	6218,48	9849,00	0,00
château0708	2,09E+08	332,93	106,40	330,11	11315,45	9799,63	0,00
château0708	1,79E+08	334,02	81,43	320,27	13397,51	9900,64	0,00
château0908	6,28E+08	654,79	245,28	567,34	33201,92	17576,26	0,00
château0908	5,23E+08	499,52	286,40	494,08	32514,02	18253,98	0,00
château0908	3,44E+08	384,13	143,09	260,26	32860,00	7826,88	0,00
château1108	4,05E+08	429,99	194,47	428,47	10106,44	4691,57	0,00
château1108 château1108	2,73E+08 3,64E+08	420,84 453,29	178,12 198,74	504,79 491,29	12130,65 11562,81	3002,55 2840,46	0,00 0,00
château0109	2,14E+08	417,49	150,37	358,22	6642,88	3110,25	0,00
château0109	2,14E+08 3,20E+08	369,41	150,37	358,22	11822,74	5605,65	0,00
château0109	2,32E+08	344,48	118,30	303,08	8677,87	1956,14	0,00
château0609	8,92E+09	699,31	213,21	872,10	25180,51	16302,39	40,74
château0609	1,35E+10	619,29	230,62	939,57	28938,76	19712,32	65,46
château0609	1,12E+10	641,77	227,12	854,40	26249,73	19411,02	42,03
château0909	2,56E+08	697,56	108,51	259,16	9006,52	5588,31	0,00
château0909	3,09E+08	772,15	128,28	305,88	9979,72	5039,39	0,00
château0909	4,16E+08	729,89	152,23	416,73	11679,54	8095,87	0,00
château0110	2,56E+08	1382,84	289,46	851,80	65160,93	0,00	16,21
château0110	3,09E+08	1127,74	232,59	556,54	26291,64	0,00	21,50
château0110	4,16E+08	1394,98	277,56	889,93	46981,83	0,00	26,89
bastide0907	2,17E+09	634,48	347,51	581,98	195937,50	63600,00	6200,00
bastide0907	1,30E+09	706,78	378,04	742,58	167174,46	68544,03	5523,11
bastide0907	8,86E+08	1240,72	698,19	1360,00	109842,13	58795,37	6962,50
bastide0308	4,48E+08	540,53	229,87	531,75	92558,68	62223,48	1952,83
bastide0308	4,07E+08	686,25	217,71	460,25	114962,04	78579,13	2066,03
bastide0308	3,81E+08	464,40	199,17	529,09	96289,06	72052,09	1499,32
bastide0508	7,65E+08	269,86	194,25	655,90	90979,63	101093,15	2532,24
bastide0508	3,29E+08	227,20	157,07	303,29	87392,02	32358,06	1629,57
bastide0508 bastide0708	4,54E+08 7,11E+08	338,36	175,66	401,48	89106,83	64530,21	1988,69
	' _	507,56	160,03	794,17	48003,40	64960,51	25,00
bastide0708 bastide0708	2,68E+08 1,28E+09	434,87 631,61	186,46 182,73	690,75 907,42	49153,68 84506,17	42530,11 64943,31	30,41 20,02
bastide0700	7,74E+08	511,22	210,04	604,61	48097,51	17185,12	411,91
bastide0908	8,00E+08	473,62	214,95	789,46	51571,77	15478,22	334,68
bastide0908	9,44E+08	421,99	195,39	494,96	53402,65	19894,20	109,77
bastide1108	5,27E+08	350,51	127,43	441,70	16320,37	8669,03	15,87
bastide1108	4,12E+08	421,43	152,23	470,49	17890,10	7954,90	24,90
bastide1108	3,30E+08	409,49	129,64	446,25	17958,24	7815,25	20,95
bastide0109	2,20E+08	341,96	102,49	250,97	15030,11	7406,77	29,27
bastide0109	1,53E+08	404,13	124,03	345,51	12956,42	11160,15	15,84
bastide0109	1,59E+08	427,74	102,12	664,03	20274,62	6489,21	22,30
bastide0609	5,77E+09	422,72	94,84	394,75	9750,69	3902,96	22,93
bastide0609	5,03E+09	359,55	86,19	283,27	8382,47	2655,81	24,69
bastide0609	4,42E+09	334,73	75,99	298,76	7418,67	2827,65	21,33
bastide0909	2,42E+08	600,44	65,42	255,37	8026,77	4575,65	25,27
bastide0909	4,98E+08	614,55	101,04	270,43	11290,80	5347,69	31,83
bastide0909	4,11E+08	504,82	62,07	290,27	7921,16	4624,70	25,29
bastide0110	2,42E+08	657,03	80,07	238,28	7684,18	0,00	0,00
bastide0110	4,98E+08	637,14	81,38	185,34	8919,82	0,00	0,00
bastide0110	4,11E+08	616,83	78,81	221,53	9925,98	0,00	0,00

	numérationS	glucosidaseS	xylosidaseS	PeptidaseS	respirationS	dénitrificationS	méthanisationS
	bact/g sed sec	nmole/h.g sed sec	nmole/h.g	nmole/h.g	ngCO2/h/g	ngN20/h/g	ngCH4/h.g sed sec
jardin0907	2,45E+09	474,44	196,43	595,21	39325,05	27208,70	0,00
jardin0907	1,28E+09	793,61	366,50	1044,57	40550,00	29808,00	0,00
jardin0907	1,59E+09	531,96	175,98	691,52	44154,81	32406,43	0,00
jardin0308	2,48E+08	347,84	83,37	378,66	52469,63	32506,44	289,74
jardin0308	2,62E+08	302,50	68,88	431,73	44627,49	32441,60	165,48
jardin0308	2,10E+08	365,92	94,35	426,99	58176,22	28664,52	108,54
jardin0508	3,99E+08	298,68	194,37	765,76	55700,00	173556,34	492,00
jardin0508	3,69E+08	409,76	145,49	857,12	61415,87	38693,55	317,35
jardin0508	4,26E+08	355,32	254,76	1132,62	50777,03	139053,56	670,96
jardin0708	6,72E+08	374,70	140,01	508,32	50992,04	25437,56	26,60
jardin0708	5,47E+08	396,25	129,52	650,24	32149,16	15419,63	40,40
jardin0708	6,05E+08	312,72	93,17	395,34	41600,00	7800,93	54,22
jardin0908	9,03E+08	437,77	181,46	393,65	21494,67	12950,97	0,00
jardin0908	5,25E+08	509,66	160,98	405,24	19486,53	10795,59	0,00
jardin0908	5,42E+08	423,49	148,06	316,41	14017,19	9376,89	0,00
jardin1108	1,89E+08	359,26	156,74	712,75	7621,96	2011,66	0,00
jardin1108	1,40E+08	315,95	128,24	643,71	8176,18	1712,05	0,00
jardin1108	1,53E+08	362,40	155,71	731,34	8486,85	2435,10	0,00
jardin0109	1,22E+08	253,60	54,62	257,84	8014,77	1805,79	0,00
jardin0109	1,21E+08	259,40	68,65	238,32	7995,40	6857,02	0,10
jardin0109	1,51E+08	249,05	61,75	240,78	8626,28	3804,35	0,00
jardin0609	7,04E+09	533,59	167,64	352,50	8881,24	5555,12	0,00
jardin0609	4,79E+09	415,77	115,86	332,58	7294,43	3128,60	1,48
jardin0609	5,54E+09	386,71	118,11	365,22	8777,30	3726,30	0,70
jardin0909	4,31E+08	581,63	105,87	378,97	11676,93	7953,57	0,00
jardin0909	4,36E+08	589,58	111,25	439,26	11174,08	8010,48	0,00
jardin0909	4,29E+08	503,56	113,48	413,25	10609,40	7848,71	0,00
jardin0110	4,31E+08	691,42	121,67	419,30	21897,28	0,00	0,00
jardin0110	4,36E+08	674,59	101,69	208,77	12342,49	0,00	0,00
jardin0110	4,29E+08	813,51	89,54	212,33	12309,73	0,00	0,00
Fontaine0609	1,14E+10	669,20	221,16	694,10	20861,90	16724,27	114,45
Fontaine0609	1,15E+10	647,69	199,55	726,31	20000,43	17427,64	109,32
Fontaine0609	9,89E+09	529,59	177,68	580,99	15354,61	12474,30	63,80
Fontaine0909	3,67E+08	595,14	108,88	393,18	9832,01	12872,52	0,00
Fontaine0909	6,24E+08	491,08	102,25	420,05	9127,77	11144,67	0,00
Fontaine0909	5,44E+08	543,77	105,68	516,99	8129,70	9097,29	0,00
Fontaine0110	3,67E+08	452,27	79,25	302,05	10350,31	0,00	0,00
Fontaine0110	6,24E+08	474,00	63,12	210,97	11050,00	0,00	0,00
Fontaine0110	5,44E+08	648,11	80,96	324,09	11728,84	0,00	0,00

Annexe 10 : Valeur des indices taxonomiques calculés pour les 3 stations aux trois dates.

_		2007			2008			2009	
_	Château	Bastide	Jardins	Château	Bastide	Jardins	Château	Bastide	Jardins
Abondance	8284	9802	10697	8536	16031	16174	18896	11784	16644
Richesse	42	14	20	44	41	35	44	39	33
Diversité H'	3,91	1,71	1,86	3,71	2,31	1,35	3,72	2,61	2,51
Equitabilité J'	0,72	0,45	0,43	0,68	0,43	0,26	0,68	0,49	0,50
Variété taxonomique	36	35	37	9	30	34	13	24	27
Classe de variété taxonomiqu	10	10	11	3	9	10	5	7	8
GFI	5	5	5	2	5	5	2	5	5
GFI2	3	3	3	1	3	3	1	2	3
IBGN	14	4	6	14	13	11	15	14	12
Gammarus/Asellus ratio	237,17	0,00	0,00	11,15	0,09	0,01	556,50	1284,00	nc
% GOLD Q	34,44	77,03	45,93	36,00	56,32	11,93	49,84	72,56	83,72
% EPT Q	11,07	0,00	0,03	6,75	2,01	1,06	7,72	12,30	9,07
% GOLD S	40	50	40	34	37	26	36	31	36
% EPT S	14,29	0,00	5,00	13,64	12,20	14,29	15,91	15,38	18,18
% Diptera Q	24,38	31,71	10,79	13,82	7,21	3,46	38,38	69,09	74,84
% Coleoptera Q	24,06	0,00	0,01	7,66	0,06	0,07	19,21	0,25	0,13
% Ephemeroptera Q	3,09	0,00	0,03	3,77	1,78	1,01	2,86	9,96	8,41
% Trichoptera Q	7,98	0,00	0,00	2,98	0,22	0,05	4,86	2,34	0,67
% Odonata Q	2,39	0,00	0,01	2,68	0,44	0,26	2,52	2,61	1,11
% Heteroptera Q	0,14	0,00	0,00	0,00	0,04	0,01	0,06	0,08	0,01
% Moluscs Q	8,06	0,02	0,04	24,46	0,70	0,49	8,92	1,88	2,49
% Crustacea Q	17,25	21,08	41,77	30,19	30,96	80,78	11,81	10,94	0,24
% Autre Q	12,64	47,19	47,36	14,43	58,59	13,86	11,38	2,85	12,12

Annexe 11 : Fréquence døutilisation (en %) des différentes modalités de traits biologiques et écologiques dans les communautés des 3 stations suivies, aux trois dates.

-		C1 ^4	D (11	т 1'	C1 ^4	D ('1	т 1'	C1 ^4	D ('1	T 1'
Traits	Modalités	u 2007		2007	u 2008		2008	u 2009		Jardins 2009
Taille	Modantes	u 2007	2007	2007	u 2008	2008	2008	u 2009	2009	2009
maximale	Ö.5 cm	36,79	1,49	1,14	26,52	3,48	1,09	38,22	24,72	29,74
maximate	> .5-1 cm	19,09	7,98	3,88	20,69	8,08	3,37	30,36	49,02	52,90
	$> 1.5^{-1}$ cm $> 1-2$ cm	23,36	41,90	50,83	27,20	37,65	83,12	17,26	17,37	8,04
	> 1-2 cm > 2-4 cm	15,82	14,48	9,64	22,59	9,51	3,77	10,70	7,51	4,40
	> 2-4 cm	4,94	34,15	34,51	3,01	41,28	8,66	3,46	1,38	4,91
Durée du		4,74	34,13	34,31	3,01	41,20	8,00	3,40	1,30	4,71
cycle vital	Ö1 an	53,68	48,44	42,34	49,54	32,90	65,55	62,92	87,78	84,53
cycle vitai	> 1 an	46,32	51,56	57,66	50,46	67,10	34,45	37,08	12,22	15,47
Nombre de		70,32	31,30	37,00	30,40	07,10	37,73	37,00	12,22	13,47
générations/										
an	<=1	55,57	26,78	34,87	40,69	34,36	30,15	54,94	40,32	47,95
	> 1	44,43	73,22	65,13	59,31	65,64	69,85	45,06	59,68	52,05
Stades	, <u>-</u>	,	, , , ,	00,10	03,01	00,0.	02,00	,	27,00	
aquatiques	ñ uf	29,49	23,30	30,48	33,91	33,13	33,18	26,29	16,26	16,39
1 1	Larve	36,39	38,53	35,70	30,26	34,43	33,77	36,50	43,20	43,38
	Nymphe	14,68	15,80	5,39	7,88	3,43	1,68	20,62	35,04	35,15
	Adulte	19,44	22,37	28,44	27,95	29,02	31,37	16,60	5,50	5,07
Technique										
de										
Reproduction	Ovovivipa									
n	rité	23,53	27,53	51,81	54,07	36,51	83,77	20,53	20,63	10,46
	Autre	9,26	4,92	3,75	8,07	8,20	2,62	11,55	13,86	13,02
	Pontes,									
	cimentées									
	ou fixées	51,04	37,25	25,25	25,18	38,53	8,74	46,74	31,50	38,10
	Pontes,									
	libre	11,52	18,89	10,34	7,38	4,44	2,31	17,30	33,12	34,29
	Reproducti									
	on asexuée	4,66	11,41	8,84	5,30	12,32	2,55	3,89	0,90	4,12
	Aquatique									
Dispersion	passive	42,38	72,98	82,21	43,66	82,20	91,56	36,34	30,91	27,24
	Aquatique	25 40	0.40		2424	0.44		2 < 00	21.20	21.55
	active	27,49	8,49	6,84	34,24	9,44	4,41	26,99	21,28	21,75
	Aérienne	10.54	12.00	0.27	10.70	c 07	2.02	10.00	20.44	25.62
	passive	12,54	13,99	9,37	13,72	6,07	2,92	18,98	30,44	35,62
	Aérienne	17.50	151	1.50	0.27	2.20	1 11	17.60	17.26	15.20
	active	17,59	4,54	1,58	8,37	2,30	1,11	17,69	17,36	15,39
Forms 1.	Oeufs,									
Formes de résistance	e statoblaste		0,21	0,02	3,47	1,83	0,56	3,26	6,21	14,69
resistance	S Coccons	2,41								
	Cocoons	5,04	21,50	28,18	9,87	31,72	9,09	5,95	1,38	6,35
	Diapause ou	9,88	18,75	23,57	26,29	16,33	40,87	13,67	15,66	24,75
	Ju	7,00	10,73	23,31	20,29	10,55	1 0,07	13,07	15,00	47,13

	quiescence									
	Aucune	82,67	59,54	48,23	60,37	50,12	49,48	77,12	76,75	54,21
Respiration	Tégument	44,18	69,15	54,13	37,00	62,81	16,94	52,95	61,12	69,35
	Branchies	43,32	30,72	45,84	59,57	36,46	82,82	37,59	37,98	24,45
	Aérienne	12,51	0,13	0,02	3,43	0,72	0,24	9,46	0,90	6,20
Relation au]									
substrat	Nageur	14,13	6,38	3,42	14,99	5,83	2,13	15,33	21,90	17,26
	Rampant	53,00	24,08	37,77	57,56	29,89	55,02	50,27	41,90	37,31
	Fouisseur									
	(épibenthi									
	que)	7,59	20,33	12,73	10,20	15,35	2,95	7,14	3,91	4,51
	Interstitiel									
	(endobent									
	hique)	13,81	39,33	39,13	11,56	42,44	37,66	14,60	15,00	15,20
	Fixation	11,47	9,88	6,96	5,69	6,49	2,24	12,67	17,28	25,71
	Sédiments									
	fins +	-								
Nanmitana	microorga	1.76	9.40	6.60	1 66	0.17	1.50	2.42	6.07	7.00
Nourriture	nismes Débris <	1,76	8,49	6,60	1,66	9,17	1,52	3,43	6,07	7,08
	Débris < 1mm	22,50	44,33	32,31	15,11	36,35	19,54	26,27	34,21	44,34
	Débris	22,30	++,55	32,31	13,11	30,33	17,54	20,27	34,21	77,57
	végétaux >									
	1mm	8,44	10,54	20,92	18,45	15,46	40,44	9,14	11,18	8,28
	Microphyt	0,	10,5 .	20,52	10, 10	10,10	,	,, <u>.</u> .	11,10	0,20
	es vivants	32,92	19,75	17,06	22,35	19,75	17,09	34,29	29,32	25,82
	Macrophyt		,	,	,	,	,	,	,	,
	es vivants		9,19	8,88	10,57	5,94	14,03	5,48	4,95	2,06
	Animaux									
	morts >	•								
	1mm	3,92	0,02	0,06	5,03	1,15	0,52	3,14	2,80	1,63
	Microinve									
	rtébrés									
	vivants	11,20	2,93	1,01	9,16	1,89	0,89	7,26	6,44	4,41
	Macroinve									
	rtébrés	11.60	4.22	1 22	17.22	2.60	2.17	10.02	1.00	c 12
	vivants	11,62	4,33	1,33	17,32	2,69	2,17	10,93	4,86	6,13
Ma 1-	Vertébrés	0,37	0,41	11,83	0,34	7,60	3,80	0,07	0,17	0,25
Mode										
d'alimentati on	Absorbeur	0.74	8,33	6,45	0,46	8,90	1,46	0,71	0,29	1,18
OII	Mangeur	0,74	0,33	0,43	0,40	0,90	1,40	0,71	0,29	1,10
	de									
	sédiments									
	fins	10,93	43,80	29,92	8,76	38,59	7,03	15,00	24,89	26,27
	Broyeur	25,12	27,25	43,88	39,17	30,88	80,84	22,94	20,69	13,30
	Racleur	34,55	5,86	3,18	25,75	7,54	2,89	37,04	33,51	27,98
	Filtreur	10,99	6,54	2,15	8,45	2,30	0,95	10,50	12,57	23,28
	Perceur	2,62	0,21	5,99	1,57	3,99	2,02	1,11	0,41	0,32
		, - —	- , -	- ,	<i>,</i> - •	- ,	, - —	, –	- , -	· ,

	Prédateur Parasite	12,96 2,09	3,22 4,78	1,29 7,14	14,71 1,13	2,83 4,97	2,48 2,32	10,45 2,25	4,27 3,36	6,51 1,17
Distribution		_, _,	-,,, -	.,					-,	
transversale	Chenall Rives, chenaux	23,75	13,05	16,47	20,54	16,98	21,14	19,53	10,39	17,15
	secondaire s Étangs, mare, meanders abandonné	38,24	30,39	32,73	37,34	32,97	36,79	36,55	31,89	31,87
	s Marais,	10,99	17,18	20,17	13,55	16,68	22,07	12,38	12,88	11,47
		3,71	5,93	3,11	3,11	3,60	0,97	5,12	8,34	6,76
	s Lacs Habitat	6,71 16,00	7,03 20,42	3,19 19,69	6,58 18,53	3,50 19,85	1,11 16,87	9,21 16,67	15,63 20,65	15,23 16,64
	souterrain	0,59	6,00	4,65	0,35	6,42	1,06	0,55	0,22	0,88
Distribution longitudinal				.,	5,00		1,00	5,00		0,00
e	Crénon Epirhithro	8,60	11,27	13,52	7,32	13,36	12,69	8,80	10,16	9,38
	n Métarhithr	14,89	11,71	11,00	10,75	12,63	12,10	15,18	15,05	16,50
	on Hyporhithr	16,68	11,96	11,39	12,68	13,18	12,41	16,47	15,44	17,32
	on Epipotamo	18,01	12,73	12,02	13,78	14,05	12,65	17,74	15,63	18,06
	n Metapota	14,46	17,49	13,79	15,56	14,21	12,67	13,24	11,57	10,81
	mon	11,02	16,72	13,23	16,53	13,32	12,45	9,59	7,13	6,39
	Estuaire Hors système	4,77	4,92	6,03	9,93	4,33	10,31	5,56	6,62	4,51
	fluvial	11,58	13,21	19,01	13,44	14,92	14,72	13,43	18,39	17,02
	Plaine (<		,	,	,	,. =	,,,_	,	,-,	- · , · · <u>-</u>
Altitude	1000 m) Piedmont	68,60	89,51	92,43	69,82	83,29	95,21	63,04	51,32	49,84
	(1000 - 2000 m)	25,34	7,39	5,22	25,70	11,56	3,32	27,34	32,41	32,79
	Alpin (> 2000 m)	6,06	3,10	2,35	4,48	5,15	1,47	9,63	16,27	17,37
Zones biogéograph	,	-,00	-,	_,~~	-,	-,	-,	.,	~, ·	, - ,
iques	Pyrenées .	18,19	12,41	9,74	17,81	10,87	3,36	18,32	19,66	18,00
-4000	4 : Alpes	20,21	25,21	27,48	21,39	25,95	33,99	20,75	20,28	21,05
		20,21	26,39	28,60	20,99	27,94	34,71	21,19	21,20	21,43
	•	,_,	_0,0)	- 78	,	,_ '	,,, 1	,-/	,_0	,

	Vosges, Jura,									
	Massif									
	Central									
	13a :									
	basses									
	terres									
	(océanique		26.42	20 11	22.05	20.22	25.62	21.25	20.52	21.70
) 12h .	21,41	26,42	28,11	22,05	28,33	25,63	21,35	20,52	21,70
	13b : basses									
	terres									
	(méditerra									
	néen)	17,92	9,57	6,06	17,76	6,91	2,31	18,40	18,34	17,82
	Dalles,									
	blocs,									
	pierres,									
Substrat	galets	17,22	12,59	13,02	19,09	13,76	9,02	18,90	20,17	22,95
	gravel	14,02	13,77	10,91	10,90	13,57	7,11	13,16	9,26	7,43
	Sable	13,11	11,78	8,80	9,50	9,77	6,43	11,96	9,58	7,91
	Limon	7,86	7,07	4,36	6,43	5,39	1,16	7,12	4,77	4,01
	Macrophyt		10.22	26.52	10.10	22.42	20.22	21.20	22.04	27.22
	es Missosbut	22,01	19,33	26,52	19,10	23,42	29,23	21,38	23,84	27,32
	Microphyt es	3,19	5,37	8,66	6,53	7,36	14,66	3,26	2,88	0,71
	Branches,	3,17	3,37	0,00	0,55	7,30	14,00	3,20	2,00	0,71
	raciness	8,52	8,18	7,63	8,08	6,61	10,21	7,99	10,97	10,55
	Litières	7,98	7,88	10,07	10,65	9,64	15,60	9,37	11,09	10,77
	Vase	6,09	14,03	10,03	9,73	10,49	6,59	6,87	7,44	8,36
Vitesse du	l		,	,	,			,	,	
courant	Nulle	20,38	45,15	41,88	26,05	32,17	45,84	21,28	23,37	22,10
	Lente (<									
	25cm/s)	38,53	34,38	40,34	35,62	37,77	46,66	35,81	29,82	26,84
	Moyenne									
	(25-50	20.25	1001	10.11	20.55	10.26	4.00	20.55	20.72	20.44
	cm/s)	28,27	13,04	12,11	29,57	19,26	4,89	28,55	29,52	29,44
	Rapide (>		7.42	<i>5 6</i> 0	0 75	10.00	2.60	14 27	17.20	21.62
Ctatut	50 cm/s) Oligotroph	12,82	7,43	5,68	8,75	10,80	2,60	14,37	17,30	21,62
Statut trophique	ique	39,17	19,80	18,81	30,10	25,79	18,02	39,26	35,38	35,55
tropinque	Mésotroph		17,00	10,01	30,10	23,17	10,02	37,20	33,30	33,33
	ique	42,71	41,16	50,67	45,24	47,22	50,60	43,91	45,96	44,12
	Eutrophiq	,, -	,	,- :		,	,	,	10,50	,
	ue	18,11	39,05	30,52	24,66	27,00	31,38	16,83	18,65	20,32
Salinité	Eau douce	80,64	75,56	73,36	69,52	79,53	64,48	77,05	69,26	73,97
	Eau									
	saumâtre	19,36	24,44	26,64	30,48	20,47	35,52	22,95	30,74	26,03
	Psychroph									
Températur		4= 0 :	4=	40.55	1500	4	0.05	100:	00.1=	00.15
e	(<15°C)	17,94	17,98	10,92	15,83	16,08	3,93	18,04	22,15	20,11

	Thermophi	i								
	le (>15°C)	13,41	18,10	9,33	14,31	9,57	2,51	14,33	18,26	25,65
	Eurytherm									
	e	68,65	63,92	79,76	69,86	74,35	93,56	67,63	59,60	54,24
Valeur	Xénosapro	1								
saprobiale	be	6,13	0,69	0,51	6,73	2,26	0,97	8,98	14,08	12,64
	Oligosapro)								
	be	26,01	13,62	9,03	20,74	14,47	3,57	28,32	34,66	35,62
	b-									
	mésosapro									
	be	44,82	36,57	38,19	41,24	39,66	35,16	43,11	33,47	35,12
	a-									
	mésosapro									
	be	18,59	31,97	38,99	25,26	33,79	45,86	17,16	16,77	15,07
	Polysapro									
	be	4,45	17,15	13,27	6,04	9,81	14,44	2,43	1,02	1,56
Sensibilité										
aux faibles										
pН	Ö4	4,66	7,74	6,42	4,95	5,32	8,14	5,39	7,95	6,77
	> 4-4.5	5,98	8,43	6,95	6,62	6,37	8,55	6,84	9,45	7,54
	> 4.5-5	13,71	9,81	8,01	12,63	8,62	9,08	15,02	17,64	16,80
	> 5-5.5	16,75	21,52	18,37	15,39	20,10	18,12	18,02	19,97	21,74
	> 5.5-6	18,71	24,07	22,66	17,10	23,50	25,63	19,63	21,26	22,27
	> 6	40,19	28,42	37,58	43,31	36,08	30,48	35,11	23,72	24,89

Annexe 12 : Abondance au sein de chaque groupe fonctionnel et métriques fonctionnelles.

	Château	Bastide-	Jardins-	Château	Bastide-	Jardins-	Château	Bastide-	Jardins-
	-2007	2007	2007	-2008	2008	2008	-2009	2009	2009
	4620	72	32	3444	1489	662	9474	5113	5651
	2008	2244	5772	2273	6281	13905	6338	5858	9110
	343	6	24	464	357	196	542	329	205
	1	0	1	5	3	6	4	1	0
	1196	7476	4858	2338	7873	1389	2230	472	1598
Abondance totale	8168	9798	10687	8524	16003	16158	18588	11773	16564
Diversité									
fonctionnelle	1,56	0,84	1,04	1,78	1,48	0,76	1,54	1,36	1,41
Diversité									
taxonomique*	3,43	1,01	1,24	3,28	1,78	1,07	3,31	2,23	2,14
Richesse									
fonctionnelle	5	4	5	5	5	5	5	5	4

^{*} recalculée avec la même liste faunistique

Annexe 13 : Feuille de calcul IBMR pour la campagne de 2009 sur les stations Château, Fontaine, Bastide et Jardins.

Relevés floristiques	s aquatiqu	es - IBMR						GIS	Macrophyte	es - juillet 2006
CEMAGREF		Christian C	Chauvin	Alain D	Outai	tre)	conforme	AFNOR T90	-395 oct. 2003
VISTRE		CHÄTEAU					(Code station)	(dossier, ty	/pe réseau	1)
18-août-09					Rés	sul	tats			
	F. courant	F. lent	station				IBMR: 5,96)		
Type de faciès	radier	pl. lent			niv.	tr	ophique: très él	evé		
% faciès / station	20	80	100						cote sp.	coef stén.
VEGETA	LISATION		tot. pond	déré				moyenne	7,58	1,67
% surf. vég.Totale	50,00	90,00	82,00	_				écart-type	3,23	0,65
% périphyton		0,01	0,01	_		nb	taxons	mini	2	1
% hétérotrophes		·	0,00	-	hé	t.	-	maxi	11	3
% algues	0,20	0,20	0,20		alç] .	3		nb taxon	s
% bryophytes	2,00		0,40		bry	0.	1	total	14	
% ptérido. & lichens			0,00		pté	é.	-	contribut.	12	
% phanérogames	50,00	90,00	82,00		pha	n.	10	sténo. 1	5	
% vég. flottante	1,00	80,00		64,20				sténo. 2	6	
% vég. immergée	50,00	10,00		18,00				sténo. 3	1	
% hélophytes	0,50	0,10		0,18						
			82,60	82,38						
LISTE rec / faciès	53,72	91,05	83,58							
rec. pondéré	10,74	72,84	83,58							
CODES	%	%	% sta.	grp	Csi			noms		
AMB.RIP	2,00			BRm	5		Amblystegium ripa	arium (Lepto	dictyum ri	parium)
CLA.SPX	0,01		0,002		6	1	Cladophora sp.			
CYL.SPX		0,01	0,008				Cylindrospermum	sp.		
LEM.MIN		0,50		PHy	10		Lemna minor			
LUD.GRA	0,50	1,00		PHe			Ludwigia grandiflo			
LYC.EUR		0,01	0,008		11		Lycopus europaet			
MYR.SPI	0,50	2,00		PHy	8		Myriophyllum spic			
NAS.OFF		0,01	0,008		11		Nasturtium officina		nasturtiur	n-aquaticum
PHA.ARU	0,50		,	PHe	10		Phalaris arundina			
POL.AMP	0,01	0,50	0,402		9		Polygonum amphi			hibia)
POT.NOD	10,00	85,00		PHy	4		Potamogeton nod		tans)	
POT.PEC	40,00	2,00		PHy	2		Potamogeton pec	tinatus		
RHI.SPX	0,20		0,04		4		Rhizoclonium sp.			
VER.ANA		0,02	0,016	PHe	11	2	Veronica anagallis	s-aquatica		
			0							

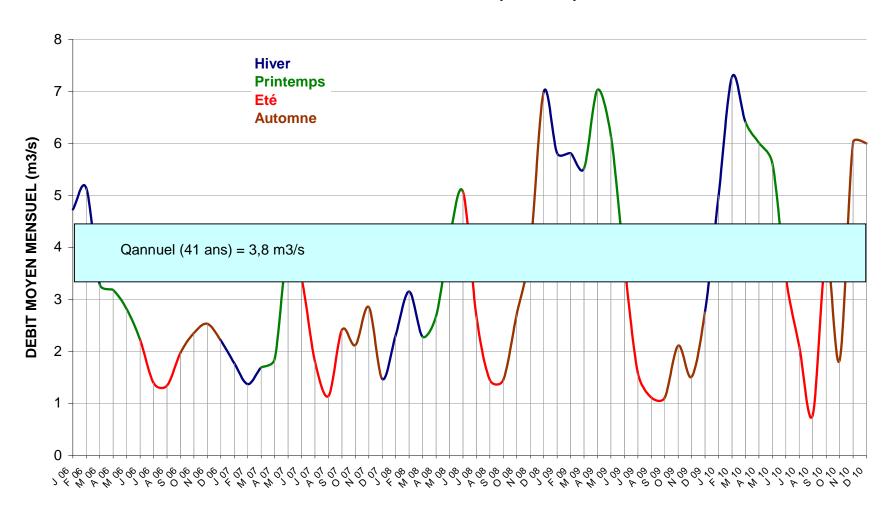
Relevés floristiques	s aquatiqu	es - IBMR							GIS	Macrophyt	es - juillet 2006
CEMAGREF		Christian (Chauvin	Alain D)uta	rtre)		conforme .	AFNOR T90	-395 oct. 2003
VISTRE		FONTAINE					(Code stat	ion)	(dossier, ty	pe résea	ı)
18-août-09					Rés	sul	tats	<u> </u>	• •		,
	F. courant	F. lent	station				IBMR:	6,38			
Type de faciès	radier	pl. lent			niv.	tr	ophique:	très éle	evé		
% faciès / station	10	90	100					_		cote sp.	coef stén.
VEGETA	LISATION		tot. pond	léré					moyenne	8,83	1,58
% surf. vég.Totale	90,00	90,00	90,00						écart-type	3,51	0,51
% périphyton			0,00	•		nb	taxons		mini	2	1
% hétérotrophes			0,00		hé	t.	-		maxi	13	2
% algues	1,00	30,00	27,10		alg	j.	7			nb taxon	s
% bryophytes			0,00		bry	0.	-		total	13	
% ptérido. & lichens			0,00		pte	á.	-		contribut.	12	
% phanérogames	90,00	90,00	90,00		pha	ın.	6		sténo. 1	5	
% vég. flottante	0,01			0,00					sténo. 2	7	
% vég. immergée	90,00	90,00		90,00					sténo. 3	-	
% hélophytes		0,01		0,01							
			117,10	90,01							
LISTE rec / faciès	90,54	120,66	117,65								
rec. pondéré	9,05	108,59	117,65								
CODES	%	%	% sta.	grp	Csi	Ei			noms		
API.NOD		0,01	0,009	PHy	10	1	Apium nod	diflorum ((Sium nodif	lorum)	
CAL.SPX	0,01	0,01	0,01	PHy			Callitiriche	sp.			
DIA.SPX	0,01		0,001	ALG	12	2	Diatoma s	p.			
LEM.MIN		0,10	0,09	PHy	10	1	Lemna mii	nor			
LYN.SPX		0,01	0,009		10		Lyngbya s				
OSC.SPX		0,01	0,009		11		Oscillatoria				
POL.AMP		0,01	0,009	PHe	9	2	Polygonun	n amphil	bium (Persi	caria amp	hibia)
POT.PEC	90,00	90,00	90	PHy	2	2	Potamoge	ton pect	inatus		
RHI.SPX	0,50	30,00	27,05		4		Rhizocloni				
SPI.SPX		0,50	0,45		10		Spirogyra				
STI.SPX	0,01		0,001		13		Stigeoclor				
VAU.SPX	0,01		0,001		4		Vaucheria				
VER.ANA		0,01	0,009	PHe	11	2	Veronica a	anagallis	-aquatica		
			0								

Relevés floristique	s aquatiqu	es - IBMR						GI	S Macrophyte	es - juillet 2006
CEMAGREF		Christian C	Chauvin	Alain D	utartı	re		conforme	AFNOR T90	9-395 oct. 2003
VISTRE		BASTIDE				(Code sta	tion)	(dossier, t	ype réseai	n)
17-août-09					Résu	ltats	_			
	F. courant	F. lent	station			IBMR:	4,97			
Type de faciès		ch. lentique	•		niv. t	rophique:	très éle	evé		
% faciès / station	40	60	100						cote sp.	coef stén.
VEGETA	LISATION		tot. pond	léré				moyenne	6,50	1,83
% surf. vég.Totale	80,00		32,00					écart-type	3,08	0,75
% périphyton			0,00		n	b taxons		mini	2	1
% hétérotrophes			0,00	_'	hét.	-		maxi	10	3
% algues			0,00		alg.	1			nb taxon	S
% bryophytes			0,00		bryo.	-		total	8	
% ptérido. & lichens			0,00		pté.	-		contribut.	6	
% phanérogames	80,00		32,00		phan	. 7		sténo. 1	2	
% vég. flottante	5,00			2,00				sténo. 2	3	
% vég. immergée	75,00			30,00				sténo. 3	1	
% hélophytes	0,10			0,04						
			32,00	32,04						
LISTE rec / faciès	83,63	82,21	82,78							
rec. pondéré	33,45	49,33	82,78							
CODES	%	%	% sta.	grp	Csi E			noms	3	
CLA.SPX	0,50		,	ALG	6 1	Cladopho				
LUD.PEP	0,01	0,10	0,064			Ludwigia		S		
LYT.SAL	0,01		0,004			Lythrum s				
MYR.SPI	1,00	2,00		PHy		Myriophyl				
PHA.ARU	0,10	0,10		PHe		Phalaris a				
POL.AMP	0,01	0,01	0,01			Polygonui				hibia)
POT.NOD	2,00	5,00		PHy		Potamoge			itans)	
POT.PEC	80,00	75,00		PHy	2 2	Potamoge	eton pecti	inatus		
			0							

Relevés floristiques	s aquatiqu	es - IBMR						GIS	S Macrophyte	es - juillet 2006
CEMAGREF		Christian C	Chauvin	Alain D)utartı	re		conforme	AFNOR T90	-395 oct. 2003
VISTRE		JARDINS				(Code stat	tion)	(dossier, t	ype réseai	ı)
18-août-09					Résu	ltats	_			
	F. courant	F. lent	station			IBMR:	4,41			
Type de faciès		pl. lent			niv. t	rophique:	très éle	evé		
% faciès / station		100	100						cote sp.	coef stén.
_	LISATION		tot. pond	déré				moyenne	6,17	2,00
% surf. vég.Totale		90,00	90,00					écart-type	3,25	0,63
% périphyton			0,00		n	b taxons		mini	2	1
% hétérotrophes			0,00	_	hét.	-		maxi	10	3
% algues		60,00	60,00		alg.	1			nb taxon	S
% bryophytes			0,00		bryo.			total	6	
% ptérido. & lichens			0,00		pté.	-		contribut.	6	
% phanérogames		90,00	90,00		phan	. 5		sténo. 1	1	
% vég. flottante		10,00		10,00				sténo. 2	4	
% vég. immergée		80,00		80,00				sténo. 3	1	
% hélophytes				0,00						
			150,00	90,00						
LISTE rec / faciès	0	151,03	151,03							
rec. pondéré	0,00	151,03	151,03							
CODES	%	%	% sta.	grp	Csi E			noms	3	
LEM.MIN		1,00		PHy	10 1					
MYR.SPI		0,02	0,02			Myriophyli				
POL.AMP		0,01	0,01			Polygonui				hibia)
POT.NOD		10,00		PHy		Potamoge			itans)	
POT.PEC		80,00		PHy		Potamoge		inatus		
RHI.SPX		60,00		ALG	4 2	Rhizoclon	ium sp.			
			0							

Annexe 14 : Feuille de calcul IBMR pour la campagne de 2010 sur les stations Château, Fontaine, Bastide et Jardins.

Relevés floristique	s aquatiqu	es - IBMR							GIS	Macrophyte	es - juillet 2006
CEMAGREF		Christian (Chauvin	Cécile	Ada	m			conforme	AFNOR T90	-395 oct. 2003
VISTRE		CHÂTEAU					(Code station	١)	(dossier, ty	/pe réseat	ı)
01-juin-10					Rés	sul	tats				
	F. courant	F. lent	station				IBMR:	6,49			
Type de faciès	radier	pl. lent			niv.	tr	ophique: tr	ès éle	vé		
% faciès / station	20	80	100							cote sp.	coef stén.
VEGETA	LISATION		tot. pond	léré					moyenne	7,40	1,60
% surf. vég.Totale	25,00	30,00	29,00	•					écart-type	2,92	0,63
% périphyton			0,00	•		nk	taxons		mini	2	1
% hétérotrophes			0,00		hé	t.	-		maxi	11	3
% algues	8,00	15,00	13,60		alg	j .	2			nb taxon	s
% bryophytes	0,50		0,10		bry	Ό.	1		total	16	
% ptérido. & lichens			0,00		pte	é.	-		contribut.	15	
% phanérogames	20,00	20,00	20,00		pha	ın.	13		sténo. 1	7	
% vég. flottante		2,00		1,60					sténo. 2	7	
% vég. immergée	25,00	20,00		21,00					sténo. 3	1	
% hélophytes	3,00	0,50		1,00							
			33,70	23,60							
LISTE rec / faciès	23,1504	32,03	30,25								
rec. pondéré	4,63	25,62	30,25								
CODES	%	%	% sta.	grp	Csi				noms		
AMB.RIP	0,01		0,002		5		Amblystegiui				iparium)
API.NOD	0,10	0,50	0,42		10		Apium nodifle			lorum)	
CAL.PLA	0,01	1,00	0,802		10		Callitriche pla		ра		
LEM.MIN		0,50		PHy	10	1	Lemna minor	r			
LUD.PEP	0,01	0,50	0,402	PHe			Ludwigia pep	oloides	3		
MYR.SPI	0,50	1,00		PHy	8		Myriophyllum				
PHA.ARU	3,00	0,10	0,68		10		Phalaris arur				
POL.AMP	0,01	0,50	0,402		9		Polygonum a			caria amp	hibia)
POT.CRI		0,01	0,008	_	7		Potamogetor				
POT.NOD	4,00	7,00		PHy	4		Potamogetor			tans)	
POT.PEC	7,00	0,10	1,48		2		Potamogetor		inatus		
RHI.SPX	0,50			ALG	4		Rhizocloniun				
SPA.EML		0,01	0,008		7		Sparganium			longues	/> 20 cm)
SPA.ERE		0,01	0,008				Sparganium		ım		
VAU.SPX	8,00	20,00	17,6		4		Vaucheria sp				
VER.ANA	0,01	0,80	0,642	PHe	11	2	Veronica ana	agallis	-aquatica		
			0								


Relevés floristique	s aquatiqu	es - IBMR							GIS	Macrophyte	es - juillet 2006
CEMAGREF		Christian C	Chauvin	Cécile	Ada	m			conforme.	AFNOR T90	0-395 oct. 2003
VISTRE		FONTAINE					(Code stat	ion)	(dossier, ty	/pe réseai	n)
01-juin-10					Rés	ult	ats	_			
	F. courant	F. lent	station				IBMR:	5,56			
Type de faciès	radier	pl. lent			niv.	tro	ophique:	très éle	vé		
% faciès / station	10	90	100							cote sp.	coef stén.
VEGETA	LISATION		tot. pond	léré					moyenne	7,20	1,50
% surf. vég.Totale	95,00	95,00	95,00						écart-type	3,19	0,53
% périphyton			0,00			nb	taxons		mini	2	1
% hétérotrophes			0,00		hé	t.	-		maxi	11	2
% algues	60,00	85,00	82,50		alg	J.	4			nb taxon	s
% bryophytes			0,00		bry	ο.	-		total	10	
% ptérido. & lichens			0,00		pté	é.	-		contribut.	10	
% phanérogames	30,00	50,00	48,00		pha	n.	6		sténo. 1	5	
% vég. flottante				0,00					sténo. 2	5	
% vég. immergée	100,00	95,00		95,50					sténo. 3	-	
% hélophytes				0,00							
			130,50	95,50							
LISTE rec / faciès	94,72	124,54	121,56								
rec. pondéré	9,47	112,09	121,56								
CODES	%	%	% sta.	grp	Csi	Ei			noms		
API.NOD		0,01	0,009		10	_			Sium nodif	lorum)	
CAL.PLA	0,01	0,50	,	,	10	_	Callitriche		ра		
CLA.SPX	60,00	70,00		ALG	6	_	Cladophor				
OED.SPX	1,50		0,15		6	_	Oedogonii				
PHA.ARU		0,01	0,009		10		Phalaris a				
POL.AMP	0,01	0,01	0,01		9				bium (Persi	caria amp	hibia)
POT.PEC	30,00	50,00		PHy	2		Potamoge		inatus		
RHI.SPX	2,00		0,2		4	_	Rhizocloni				
VAU.SPX	1,20	4,00	3,72		4	_	Vaucheria				
VER.ANA		0,01	0,009	PHe	11	2	Veronica a	nagallis	-aquatica		
			0								

Relevés floristique	s aquatiqu	es - IBMR						GIS	S Macrophyt	es - juillet 2006
CEMAGREF		Christian C	Chauvin	Cécile	Adan	1		conforme	AFNOR T90	0-395 oct. 2003
VISTRE		BASTIDE				(Code stat	ion)	(dossier, t	ype résea	u)
31-mai-10					Résu	ıltats				
	F. courant	F. lent	station			IBMR:	5,61			
Type de faciès	ch. lotique	autre			niv. t	rophique:	très éle	evé		
% faciès / station	40	60	100				_		cote sp.	coef stén.
	LISATION		tot. pond	léré				moyenne	7,07	1,57
% surf. vég.Totale	95,00	90,00	92,00	•				écart-type	2,97	0,65
% périphyton			0,00		n	b taxons		mini	2	1
% hétérotrophes			0,00		hét.	-		maxi	11	3
% algues	75,00	75,00	75,00		alg.	4			nb taxon	ıs
% bryophytes	0,01	0,01	0,01		bryo	. 1		total	15	
% ptérido. & lichens			0,00		pté.	-		contribut.	14	
% phanérogames	60,00	35,00	45,00		phan	. 10		sténo. 1	7	
% vég. flottante		0,01		0,01				sténo. 2	6	
% vég. immergée	90,00	75,00		81,00				sténo. 3	1	
% hélophytes	0,01			0,00						
			120,01	81,01						
LISTE rec / faciès	140,24	124,55	130,83							
rec. pondéré	56,10	74,73	130,83							
CODES	%	%	% sta.	grp	Csi E			noms		
AMB.RIP	0,01	0,01	0,01			2 Amblysteg				iparium)
API.NOD	0,01	0,01	0,01			Apium nod			florum)	
CAL.PLA	0,10	0,10		PHy		Callitriche		ра		
CLA.SPX	50,00	70,00		ALG		Cladophor				
LEM.MIN		0,10	0,06		10 1	Lemna mii				
LUD.PEP	0,01	0,01	0,01			Ludwigia p	- 1			
MYR.SPI	5,00	3,00		PHy		Myriophyll				
NAS.OFF	0,01	F 00	0,004					ile (Rorippa	a nasturtiu	m-aquaticum
OED.SPX	0.40	5,00		ALG		Oedogonii				
PHA.ARU	0,10	0,01	0,046			Phalaris a				(-:(-:-\
POL.AMP POT.NOD		0,01	0,006			Polygonum				піріа)
	60.00	0,80	0,48			Potamoge			itaris)	
POT.PEC RHI.SPX	60,00	30,00 0,50		PHy ALG		Potamoge Rhizocloni		เกลเนร		
VAU.SPX	25,00	15,00		ALG		Vaucheria				
VAU.SFA	25,00	15,00	0	ALG	4	vaucnena	sμ.			
			U							

Relevés floristiques aquatiques - IBMR GIS Macrophytes - juillet 2006											
CEMAGREF	Christian Chauvin Cécile Adam						conforme AFNOR T90-395 oct. 2003				
VISTRE	JARDINS				(Code station)			(dossier, type réseau)			
02-juin-10					Rés	sul	tats				
	F. courant	F. lent	station				IBMR:	5,31			
Type de faciès		pl. lent	•		niv.	tr	ophique:	très éle	evé		
% faciès / station		100	100							cote sp.	coef stén.
VEGETA		tot. pondéré						moyenne	6,75	1,67	
% surf. vég.Totale		60,00	60,00						écart-type	2,90	0,65
% périphyton			0,00			nk	taxons		mini	2	1
% hétérotrophes			0,00		hé	t.	-		maxi	11	3
% algues		20,00	20,00		alç	g.	4			nb taxon	s
% bryophytes			0,00		bry	o.	-		total	13	
% ptérido. & lichens			0,00		pte	é.	-		contribut.	12	
% phanérogames		60,00	60,00		pha	ın.	9		sténo. 1	5	
% vég. flottante		0,50		0,50					sténo. 2	6	
% vég. immergée		50,00		50,00					sténo. 3	1	
% hélophytes				0,00							
		80,00	50,50								
LISTE rec / faciès	0	88,72	88,72								
rec. pondéré	0,00	88,72	88,72								
CODES	%	%	% sta.	grp	Csi				noms		
API.NOD		0,50	0,5	PHy	10	1	Apium nod	liflorum ((Sium nodif	lorum)	
CLA.SPX		1,00	1	ALG	6	1	Cladophora	a sp.			
LEM.MIN		0,10	0,1	PHy	10	2011110 11111101					
MYR.SPI		0,50		PHy	8	,					
NAS.OFF		0,01	0,01	PHe	11						
OED.SPX		1,00	1	ALG	6		Oedogoniu				
POL.AMP		0,10	0,1	PHe	9	2	Polygonum	n amphil	bium (Persi	caria amp	hibia)
POT.CRI		0,50	0,5	PHy	7 2 Potamogeton crispus						
POT.NOD		15,00		PHy	4 3 Potamogeton nodosus (P. fluitans)						
POT.PEC		50,00		PHy	2 Potamogeton pectinatus						
RHI.SPX		15,00		ALG	4 2 Rhizoclonium sp.						
SCR.AUR		0,01	0,01	PHg			Scrophular	ria auric	ulata		
VAU.SPX		5,00		ALG	4	1	Vaucheria	sp.			
			0								

Annexe 15 : Débits mensuels du Vistre de 2006 à 2010 (source Banque Hydro).

Le VISTRE à CAILAR (490 km²)

Après mise en service de la nouvelle station d'épuration de l'agglomération de Nîmes et le déplacement vers l'aval en 2008 du nouveau point de rejet des eaux traitées, un bilan des situations écologiques a été entrepris entre 2007 et 2010 dans différents compartiments physiques, physicochimiques et biologiques. Les résultats rendent compte d'une baisse de la pression polluante après la mis en service de la nouvelle station, mais avec la possibilité d'un facteur confondant, pour certains aspects, lié à un contraste d'hydraulicité entre l'année sèche 2007 et les années suivantes. Des enregistrements nycthéméraux effectués montrent la forte réactivité du débit au ruissellement urbain proche, et soulignent l'intérêt de disposer des variations nycthémérales de l'oxygène dissous pour statuer sur la charge organique réactive du tronçon étudié et le facteur limitant associé aux faibles teneurs.

Mots-clé: Vistre, restauration chimique, hydromorphologie, physico-chimie, cycle physico-chimique nycthéméral, communautés microbiennes, diatomées, macrophytes, macroinvertébrés, traits de vie

Direction générale Parc de Tourvoie BP 44 - 92163 Antony cedex Tél. 01 40 96 61 21 - Fax 01 40 96 62 25 www.cemagref.fr